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Abstract 

We describe the dielectric response of a series of liquid crystalline 4-n-alkoxybenzoic acids, 

nOBAs, with different alkyl chains, n = 4, 5, 7 and 8, in planarly aligned cells, as potential 

anhydrous electrolytes for electrochemical cells.  All nOBAs display two modes of dielectric 

relaxations and conductivity.  At moderate-high frequencies, f ~ 101 to 104 Hz, the so-called 

mode 1 involves fast dipole rearrangements leading to direct current, DC, conductivities in 

the σdc1 ~ 10-5 S cm-1 range, which are eventually insensitive to bias fields.  At lower 

frequencies, f ~ 10-1 to 101 Hz, the so-called mode 2 is related to slower processes with 

lower DC conductivities, σdc2 ~ 10-6 S cm-1, which are further facilitated under sufficiently 

strong bias fields.  Whilst mode 1 can be associated to the presence (and motions) of 

asymmetric dimers stabilised by hydrogen bonding and free acids in the nematic phase, 

mode 2 may involve the extension of the hydrogen-bonded network to longer ranges, 

probably by the formation of catemeric species, and its conductivity increases on heating in 

both the nematic and isotropic phases.  Even though the conductivity values fall below those 

of benchmark electrolytes used in fuel cells (σdc ~ 0.1 S cm-1), our results are promising, 

particularly for non-doped/non-hydrated electrolytes, and highlight the potential of the nOBAs 

and other hydrogen-bonded liquid crystals as components of electrolytes for ion conductivity. 

 

Keywords 

Liquid crystalline electrolytes; ion hopping; proton conductivity; 4-n-alkoxybenzoic acids; 

impedance spectroscopy; hydrogen-bonded liquid crystals.  
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1.  Introduction 

The development of electrolytes with high ionic conductivity under specific operation 

conditions is paramount to consolidate new electrochemical devices for energy conversion 

and storage applications 1.  Fuel cells, for example, convert chemical energy into electric 

work with high efficiencies and low emissions 2.  One unsolved challenge of low temperature 

fuel cells is to achieve high proton conductivity through the electrolyte, from anode to 

cathode, in the absence of solvents and dopants.  Current benchmark electrolytes, like 

Nafion, need to be hydrated in the fuel cells to achieve high proton conductivity, through the 

so-called vehicular transport (����).  As a result, operation temperatures are capped to 

prevent water evaporation, and fuel cells undergo severe fuel crossover and efficiency 

losses when using polar liquid fuels, like methanol or ethanol 3.  Anhydrous electrolytes with 

high conductivities will allow to operate at higher temperatures without evaporation 

concerns, to use cheaper catalysts less sensitive to poisoning (e.g., CO), and to reduce fuel 

crossover 4. 

Liquid crystals hold promise as alternative electrolytes, in order to facilitate ion (proton) 

conductivity mechanisms in the absence of solvents 5.  Their local mobility can promote ion-

hopping transport between neighbouring molecules, whilst their long-range order net ionic 

conductivity between anode and cathode 6-9.  Recently, we have developed a series of liquid 

crystalline polymers containing polar sulfonic groups as electrolytes in electrochemical 

devices 10-13.  Even though the conductivity values obtained in these and other liquid crystals 

are promising (σdc ≤ 10-4 S cm-1 range), a breakthrough is still necessary to compete with 

benchmark electrolytes, such as Nafion (σdc~0.1 S cm-1) 3.  Moreover, the costly synthetic 

steps required to include the sulfonic groups as conducting units, can represent further 

technical constrains. 

In this work, we evaluate the potential of a series of commercially available 4-n-

alkoxybenzoic acids, the nOBAS, 1, as components of electrolytes in electrochemical cells, 

 

 

1, nOBAs 

Our motivation is two-fold.  First, to reduce viscosity by using low molar mass compounds, 

which will ultimately increase molecular (and ionic) mobility.  Second, to promote hydrogen 

bonding between the acids as an intrinsic drive for proton conductivity, based on localised 

O

CH3
O

OH

n
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ion hopping.  To do this, we carry out an exhaustive dielectric study of four nOBAs 

analogues with different chain lengths, n, as a function of temperature, frequency and the 

presence of bias electric fields.  Due to the role of dipole moments and molecular anisotropy 

on the interactions responsible for the formation of mesophases, dielectric analysis is 

particularly suitable to study the structural and electro-responsive properties of liquid 

crystals14-22.  We believe that the molecular mechanisms investigated via the macroscopic 

electric properties of the nOBAs, will open new strategies to use non-expensive benzoic 

acids, as well as other hydrogen-bonded compounds, as components of fuel cells 

electrolytes. 

 

2.  Experimental procedure 

Preparation and phase behaviour of the nOBAs 

Four 4-n-alkoxybenzoic acids, nOBAs, 1, have been analysed, containing alkoxy chains with 

different lengths: n= 4, 5, 7 and 8 (CH3(CH2)n-1O).  The nOBAs are well-known mesomorphic 

materials, and are widely considered as the first examples of supramolecular liquid crystals 

with extended linearity, stabilised by hydrogen bonding, see Figure 1 23-28.  A recent review 

on the applications and thermal behaviour of nOBAs can be found, for example, in 29. 

 

 

Figure 1.  (nOBA)2 symmetric dimer stabilised by hydrogen bonding (dotted lines) between 

benzoic acids, showing the linear supramolecular core.  

 

All nOBAs in the present study were purchased from Sigma-Aldrich, except 4-

pentoxybenzoic acid, 5OBA, which was supplied by TCI EUROPE N.V.  All compounds were 

purified by recrystallisation from ethanol and hot filtration, followed by drying at 50°C, under 

vacuum overnight (Thermo Scientific Vacuum Oven).  The purity of the nOBAs was 

confirmed to an accuracy of 99.5% via nuclear magnetic resonance spectroscopy, 1H NMR, 

in CDCl3, using a Bruker 300 MHz NMR spectrometer.  Their phase transitions were 

assessed by differential scanning calorimetry, DSC, using a Mettler Toledo DSC821 module 
29.  Thermograms were obtained by heat, cool and reheat cycles, with a heating rate of 10° 

min-1, under nitrogen. 

The liquid crystal behaviour of the nOBAs was identified by polarised optical microscopy, 

POM, using an Olympus BH-2 optical microscope equipped with a Linkam THMS 600 
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heating stage and a TMS 91 control unit.  Nematic phases were characterised by Schlieren 

textures with two- and four-point singularities, which flashed when subjected to mechanical 

stress.  Smectic C phases were also characterised by Schlieren textures, but with only one 

type of singularity and no homeotropic regions.  All compounds exhibit nematic phases, and 

7OBA and 8OBA also show additional smectic C phases in narrow ranges.  The phase 

behaviour of the four nOBAs is summarised in Table 1 29, and is in excellent agreement with 

previous reports 30. 

 

Dielectric characterisation and analysis 

The dielectric and conductivity response of the nOBAs was studied by complex impedance 

spectroscopy.  Indium Tin Oxide cells, ITO (SG100A080uG180, Instec), were filled by 

capillary with nOBAs in the melt state, to yield anti-parallel alignments with 1° to 3° pre-tilted 

angles, as confirmed by POM.  Cells had � = 100	��� active areas, with 100 Ω resistance 

and  = 8.0	�� thickness.  The capacitance of the cell, ��, was then calculated as, 

 

�� = ��
�

= 1.10675 ∗ 10���� 

 

where  �� = 8.854	 ∙ 10���	� ∙ ���, is the dielectric permittivity of vacuum. 

 

The ITO cells were connected to a PARSTAT MC multichannel potentiostat (Ametek) and 

were placed on a Linkham TMS 91 hot stage for temperature control (±0.1 oC).  The 

dielectric measurements consisted of isothermal frequency sweeps between 106 Hz and 0.1 

Hz, with Vrms= 1000 mV amplitude alternating electric fields, and were taken first in the 

absence of bias electric fields (Vbias = 0 V).  Then, the isothermal frequency sweeps were 

repeated under the application of different bias fields, Vbias =1 - 7 V.  Experiments were 

carried out by cooling from the isotropic state (T=181oC) to around 100oC (at the crystal or 

smectic C ranges).  Samples were labelled with the name of the 4-n-alkoxybenzoic acid 

(nOBA), followed by the temperature of the measurement in Celsius (for example, T120C), 

and the bias electric field applied (0 V to 7 V). 

Several complex variables were calculated, as a function of the frequency, ω (rad·s-1), the 

temperature, T, and the bias field, Vbias.  The complex impedance, �∗, was expressed as: 

�∗� ! = �" + $	�"" 
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where �" and �""are the real and imaginary impedance components, respectively, and $ is 

the imaginary unit, √−1. 

The complex permittivity, '∗� ! = '" − $'"", was also calculated, according to: 

�∗ =
1

$ ���∗
	 

with �" = ())

*+,|(|
, the elastic permittivity and , '"" = ()

*+,|(|
, the dielectric loss factor. 

The complex electric modulus, .∗� ! = ." + $."", was also studied, in order to discriminate 

polarisation and conductive effects 31 : 

 

.∗ =
1
'∗
=

1
'" − '""

=
'"

'"� + '""�
+ $

'"′

'"� + '""�
 

with .′ = 0)

0)1�0))1
  and  ."" = 0))

0)1�0))1
 . 

 

The conductivity of the samples was quantified through the complex variable, 2∗� ! = 2" +

$2"", 32 

 

2∗ = '∗'�  

calculated as  2" =  ���""  and 2"" =  ���" . 

Unless stated otherwise, the frequency, f, was expressed in hertz, with f =  /	25. 

 

3.  Results and discussion 

Conductivity and dielectric modes.  Effect of bias electric fields 

In Figure 2, 8OBA illustrates the dielectric response of the 4-n-alkoxybenzoic acids, nOBAs, 

in the nematic phase.  The Nyquist plot of 8OBA-T130C-0V, obtained in the absence of 

direct current (DC) bias electric fields, Vbias = 0 V, depicts one semi-circle associated to a 

dielectric process with low impedance, appearing at high frequencies, log(f/Hz) > 1, which 

will be hereinafter denoted as mode 1, Figure 2(a).  At lower frequencies, another process 

appears, with higher impedance and capacitance, so-called mode 2.  As expected, the 

application of bias fields modifies the dielectric response of 8OBA, and Figure 2(b) depicts 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Brown and Martinez-Felipe  Manuscript-R1 

6 
 

the case of 8OBA-T130C-7V as a representative example, Vbias = 7 V.  The maximum in the 

Nyquist arc corresponding to mode 2 is now visible, indicative of a decrease in impedance in 

its frequency range.  

The corresponding complex permittivity and conductivity values were calculated, as 

described in the experimental section, and the results are plotted in Figure 3 for 8OBA-

T130C-7V.  Both modes have associated DC processes, visible as plateaus in the log(σ’(f)) 

plots, and as maxima of the ε’’ curves (shifted to lower frequencies 33).  The corresponding 

direct current conductivity values can be estimated from the σ’ (f) plateaus, falling in the σdc,2 

~10-6.1 S cm-1 range for mode 2, which is considerably high for non-doped liquid crystalline 

materials 6-8, 10. 

 

Figure 2.  Nyquist plots corresponding to: (a) 8OBA-T130C-0V (b) and 8OBA-T130C-7V. 

 

Figure 3.  Double logarithmic plots of the elastic dielectric constant ( , ε’), dielectric loss ( , 

ε’’) and real component of the complex conductivity ( , σ’), as a function of the frequency, f, 

corresponding to 8OBA-T130C-7V. 
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The conductivity plateaus corresponding to the two modes coincide with maxima in the .′′ 

curves 31, and overlap with �′′ peaks, see Figure 4.  These results imply that both 

conductivity processes are associated to long-range ion diffusion, and not only to simple 

dipole rearrangements 34.  The Bode plots suggest that mode 1 has a strong capacitive 

component, with the phase angle close to 7~90°, Figure ESI.1, and the equivalent circuits 

were obtained for 8OBA-T130C, see also Figure 2(b) 35.  Whilst mode 1 is described by a 

simple capacitor/resistance array in parallel, typical of a Debye response of dielectric 

materials, mode 2 is explained by the presence of a Warburg element, typical of long-range 

ionic conductivity, :. 

 

Figure 4.  Comparison between the imaginary components of impedance, Z’’ ( , ) and 

electric modulus, M’’ (  , ) for 8OBA-T130C-XV.  Void symbols refer to results obtained in 

absence of electric fields, Vbias = 0 V (X = 0); filled symbols refer to results obtained under 

Vbias = 7 V (X = 7). 

The effect of a progressive increase in bias voltages on 8OBA-T130C is shown in Figure 5, 

and the corresponding equivalent circuits were also calculated, see Table 2.  Conductivity of 

mode 2 increases in the presence of stronger DC fields, whilst mode 1 remains largely 

unaffected.  The capacitance values in Table 2 for mode 2 fall within the range of grain-

boundary or interfacial polarisation effects (~10-9 F) 36, which may require collective 

rearrangements of dipoles and ions 37.  Hence, the sufficiently large relaxation times involved 

may be sensitive to the presence of DC fields.  While :2 decreases asymptotically with 

Vbias, suggesting a limiting number of charges to be transported across 8OBA, the 

capacitance values, �2, increase linearly, Figure ESI2.  Capacitance values of mode 1, �1, 
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on the other hand, are typical of bulk phenomena (~10-11 F), and can be associated to local 

dipole motions 37, hence less affected by DC electric fields.  Conductivity related to this latter 

mode must be driven by short-range fluctuations related to proton hopping, occurring 

between the nOBAs molecules, and we will return to this observation later. 

 

Figure 5.  Effect of bias electric field (dotted arrow indicates increasing Vbias) on the real 

component of the complex conductivity for 8OBA-T130C-XV (X = 0 to 7). 

 

Effect of temperature and phase behaviour 

We now examine the effect of temperature on the dielectric and conductivity response of the 

4-n-alkoxybenzoic acids, taking 8OBA as a model, in both the absence of bias electric fields 

(Vbias = 0 V), and under the maximum DC value (Vbias = 7 V).  Comparable results are 

obtained for the rest of nOBAs and will be discussed with more detail in the next subsection.  

In Figure 6 we show the log(σ’(f)) isothermal plots of 8OBA-TXC-0V, obtained at different 

temperatures on cooling from the isotropic melt, T=181oC, to the smectic C regime, 

T=100oC.  At sufficiently high temperatures, the two modes discussed above are visible in 

the conductivity, Figure 6(a), and electric modulus plots, Figure 6(b).  The highest 

conductivities are found in the isotropic phase, and then decrease on cooling, due to thermal 

activation of ion transport at higher temperatures, with step changes at the phase transitions, 

TNI~145oC and TSmCN~109oC, see Table 1.  A similar temperature dependence is observed 

in the presence of electric fields, 8OBA-TXC-7V, even though the plateaus associated to DC 

conductivity in mode 2 are more evident through the whole temperature range, see Figure 3 

and also Figure ESI3. 
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Figure 6.  Temperature dependence of the dielectric response of 8OBA-TXC-0V in the 

frequency domain, corresponding to: (a) real conductivity, log(σ’(f)); (b) imaginary 

component of the electric modulus, log(M''(f)).  TNI, nematic to isotropic transition; TSmCN, 

smectic C to nematic transition.  Dotted arrows indicate direction on cooling from T=181oC to 

T=100oC. 

In order to quantify the effects of both temperature and bias fields on the dielectric response 

of the nOBAs, Arrhenius plots were obtained from the σdc values and the maxima frequency 

of the M’’ peaks, see Figure 7 for 8OBA, and the activation energies, ;<, were calculated 

considering the corresponding linear regions: 

 

ln�2?@! = ln�2�! −
AB�CDE!

F
	�
G
    ;    lnHIJ""KBLM = ln�I�! −

AB�J))!
F

	�
G
 

 

where 2� and I� are pre-exponential factors, T is the absolute temperature, and R = 8.31 J 

(mol K)-1 the gas constant.  The ;< results are summarised in Table 3.  Fittings were carried 

out on the linear regions of each phase, and square residual values of R2 ≥ 0.99 were 

obtained. 

In the nematic range, the Arrhenius plots corresponding to mode 1 follow well-defined linear 

profiles, with considerably high activation energies, indicating that the dipole reorganisations 
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associated to an increase in the nematic order parameter, and we will return to this 

observation later.  Bias electric fields seem to have limited effect on the σdc1 values and the 

thermal activation of conductivity, but reduce slightly the activation energy of M’’, see Figure 

7(b).  In the isotropic phase, variations with temperature are much less acute (hence lower 

activation energies in Table 3).  The increase in σdc2 under bias voltages, on the other hand, 

is consistent with the occurrence of long-range phenomena in mode 2, and takes place in all 

the temperature range.  Contrarily to mode 1, σdc2 increases through the isotropic phase, 

Figure 7(a), and there is not a clear change in trend at TNI.  It is worth mentioning, however, 

that, after the application of Vbias, Ea increases in the nematic phase, but remains essentially 

unchanged in the isotropic melt, indicating that mode 2 still presents some degree of phase 

sensitivity. 

 

 

Figure 7.  Arrhenius plots corresponding to 8OBA-TXC: (a) DC conductivity of mode 1 (σdc1) 

and mode 2 (σdc2); (b) maxima of the electric modulus, M’’, calculated for mode 1.  Void 

symbols correspond to Vbias = 0 V, and filled symbols to Vbias = 7 V.  I: isotropic phase; N: 

nematic phase. 

 

-10

-9

-8

-7

-6

-5

-4

2 2.2 2.4 2.6 2.8

1/T (103·K-1)

log(σdc /S·cm-1)

mode 1

σdc1

mode 2

σdc2

TNI

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.2 2.4 2.6 2.8

mode 1

1/T (103·K-1)

log(fmax(M’’)/Hz)

(a) (b)

NI

N



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Brown and Martinez-Felipe  Manuscript-R1 

11 
 

Effect of the alkoxy chain length, n, on the dielectric conductivity response of nOBAs 

We now compare the response of the four nOBAs under study in the nematic and isotropic 

phases, see Figure 8, and in Figure 9 we show the Arrhenius plots for σdc1 and σdc2, 

considering the effect of bias fields too.  In general terms, the overall thermal activation of all 

samples agrees with the observations made above for 8OBA.  Conductivity of mode 1, σdc1, 

is essentially insensitive to electric fields, Figure 9(a) and 9(c), whilst the application of Vbias 

increases the conductivity of mode 2, σdc2, Figure 9(b) and 9(d). 

 

Figure 8.  Compositional dependence of the conductivity, log(σ’(f)), for the nOBAs in the: (a) 

nematic range, T=130oC, nOBA-T130C-0V; and (b) isotropic range, T=166oC, nOBA-T166C-

0V (Vbias = 0 V). 

For mode 1, 8OBA and 7OBA display the highest conductivities in the nematic range, and 

4OBA, in the isotropic range, see Figures 8(a) and 8(b), respectively.  Whilst the σdc1 values 

tend to plateau in the isotropic phases of these three samples, the dielectric response of 

5OBA seems to be less phase sensitive, and shows a linear trend extending through the 

nematic and isotropic regimes, Figures 9(a) and 9(c).  In the case of 4OBA, σdc1 undergoes 

a sudden drop on cooling, at around T=150oC, due to its very narrow nematic range before 

crystallisation, see Table 1.  These results confirm that conductivity, σdc1, is inversely 

dependent on the liquid crystal phase order.  Interestingly, longer alkyl chains seem to 
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facilitate proton transfer in the nematic phase, n = 7, 8, whist the opposite occurs in the 

isotropic range. 

All samples show comparable conductivity values for mode 2, σdc2, and electric fields have 

similar effects on all of them, with an average increase of around one order of magnitude by 

the application of Vbias
 = 7 V, Figure 9(b) and 9(d).  For this mode, 4OBA also shows the 

highest σdc2 values in the isotropic phase, with a drastic drop on cooling, attributed to 

crystallisation.  As a general observation valid for both modes, the highest activation 

energies in the isotropic phases are found for the shorter chain analogues, 5OBA and 4OBA, 

whilst in the nematic phase, for the samples with longer chains, 7OBA and 8OBA. 

 

Figure 9.  Arrhenius plots for the DC conductivity values, σdc, obtained for mode 1, (a) and 

(c); and mode 2, (b) and (d).  Results obtained under Vbias = 0 V (a) and (b); and Vbias = 7 V 

(c) and (d). 
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From our previous observations, it is evident that mode 1 is more sensible to chain length, n, 

and in Figure 10 we have plotted the temperature dependence of the dielectric elastic 

constant, ε’, obtained when fast molecular motions are prominent, f =1 Hz.  Since samples 

are confined in planar cells, Figure 10 must be mostly associated to the perpendicular 

component of the dielectric elastic constant, 'N, and the drop in the nematic phase indicates 

that the nOBAs have positive anisotropy 41.  This is in agreement with the formation of 

symmetric dimers sketched in Figure 1, since the main molecular dipoles are associated to 

the O-H groups, which lay parallel to the main axis of the supramolecular dimer.  As the 

order parameter of the nematic phase increases on cooling, this parallel alignment is 

favoured, resulting in the progressive reduction of 'N seen experimentally. 

 

Figure 10.  Dielectric elastic constant, ε’, obtained at f = 1 Hz (mode 1), on cooling from the 

isotropic to the crystal and smectic C ranges: (a) 4OBA; (b) 5OBA; (c) 7OBA and (d) 8OBA.  

Results obtained under Vbias = 0 V (void symbols) and Vbias = 7 V (filled symbols).  T* 

highlights step drops observed for 5OBA and 7OBA. 
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We know, however, that alkoxybenzoic acids can form several supramolecular species that 

coexist in temperature dependent equilibria42, including: symmetric dimers, Figure 1, 

asymmetric dimers, free or “monomeric” acids and so-called catemers, Figure 11 43-45.  In 

planarly aligned samples, the dipole moments of some of these species will form certain 

angles with the ITO slides, and hence they may contribute to ε’ in Figure 10.  Indeed, 

nOBAs samples present considerably large amounts of asymmetric dimers at high 

temperatures 29, 42, and on cooling, these are progressively replaced by symmetric dimers, 

more compatible with the nematic field, causing the mode 1 dielectric elastic constant (and 

conductivity) to decrease in Figure 10.  Similar observations were reported previously by 

Kato 46, 47 and Petrov 48, who considered the presence of linear open dimers.  The curved 

geometry of the asymmetric dimers in Figure 11(b), which contain one free carbonyl group, 

C=O, may further contribute to the polarisability of electrolyte materials.  The curved 

geometry of hydrogen-bonded asymmetric dimers favours, for example, intermolecular 

interactions that stabilise the twist-bend nematic phase, NTB  49-55. 

 

Figure 11.  Supramolecular nOBA species stabilised by hydrogen bonding (dotted lines): (a) 

symmetric dimer; (b) asymmetric dimer, including the dipole moment associated to the non-

hydrogen-bonded C=O group, �O ; (c) free “monomeric” acids; (d) catemers.  Dotted lines 

illustrate proton hopping assisted by hydrogen bonding. 

 

Figure 10(b) and (c) also depict small step drops of ε’ at the low temperature range of the 

nematic phases of 5OBA (T*~ 130oC) and 7OBA (T*~ 120oC), respectively, associated to 

the evolution of cybotatic nematic phases containing local “smectic-like” domains56.  This 

pseudo-first order phase transition coincides with the removal of free acids after cooling 
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below certain temperature, T†, which recombine to form hydrogen-bonded species 29, 48.  

Due to the high mobility of these monomeric species, Figure 11(c), we believe that they may 

assist proton conductivity between other supramolecular species above T† (T* in Figure 10) 

acting as dopants capable to establish dynamic hydrogen bonds, hence mediating ion 

hopping 57.  The recombination of nOBA monomers and dimers by hydrogen bonding on 

cooling, also promotes the formation of catemers, consisting of arrays of alkoxybenzoic 

molecules stabilised by lateral hydrogen bonding, see Figure 11(d) 29.  Similar long-range 

arrangements were previously associated to ion conductivity between contiguous acrylic 

alkoxybenzoic acids in nematic planar electrolytes 6.  Even though polymerisation (and 

further crosslinking) limited those conductivity values to the σdc~10-8 S·cm-1 range 58, they 

were comparable to our results obtained for mode 2, σdc2, and are consistent with the 

formation of longer-range ionic conductive pathways in nOBAs. 

 

4.  Concluding remarks 

The 4-n-alkoxybenzoic acids undergo two modes of dielectric relaxation and conductivity.  At 

low frequencies, the so-called mode 2 exhibits values of DC conductivity in the σdc2 ~ 10-10 

S·cm-1  to 10-5.5 S·cm-1 range, associated to long-range diffusion of protons through the 

electrolytes, which are further promoted by the presence of bias fields.  It is not possible to 

explain the improvement in conductivity of mode 2 by a net perpendicular (homeotropic) 

realignment of the samples’ director under these DC electric fields, since the highest field 

applied, Vbias = 7 V, falls below to the Fréederiscksz transition of the nOBAs (observed 

around Vbias = 15 V by polarised optical microscopy).  Alternatively, it is possible that the 

electric fields mitigate defects between conducting domains (considering that the 

capacitance values fall within the so-called “grain-boundary” regimes) 59, ultimately 

facilitating long-range proton conductivity. 

Mode 1, on the other hand, takes place at higher frequencies, and is based on local 

rearrangements of the dipoles in the nOBAs, associated to their hydrogen bonds.  This 

mode provides higher conductivity values than mode 2 and is more sensitive to phase 

behaviour.  The conductivity in the nematic phase decreases on cooling due to an increase 

of the local order/parameter in the nematic field.  Conductivity (σdc1) is linked to the existence 

and exchange between different hydrogen-bonded species.  More precisely, we believe that 

asymmetric dimers (with a net dipole non-parallel to the electrodes in planarly aligned 

samples, see Figure 11(b)) and monomeric species (with high molecular mobility, Figure 
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11(c)) may act as proton bridges between symmetric dimers and catemers, this latter being 

more relevant to yield long-range conductivity. 

To sum up, our results highlight the potential of the 4-n-alkoxybenzoic acids, nOBAs (and 

therefore similar benzoic acids), as ionic conductors, in the absence of dopants.  More 

specifically, the results exhibited by 7OBA and 8OBA in the nematic range unveil an 

interesting strategy to control their anisotropic conductivity, and their activation energies, the 

potential to regulate conductivity with temperature.  Introducing mechanisms to tune the 

equilibria between hydrogen-bonded nOBAs species, or including these materials into 

devices by supramolecular complexation, open exciting possibilities to achieve proton 

electrolytes under anhydrous conditions in electrochemical devices. 
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Tables 

 

Ion conductivity mediated by hydrogen bonding in liquid crystalline 4-n-alkoxybenzoic acids. 

 

Andrew Watmough Brown1, Alfonso Martinez-Felipe1,* 

 

1.Chemical and Materials Engineering Group, School of Engineering, University of Aberdeen. 

King’s College, Aberdeen AB24 3UE, UK. 

* Corresponding author, a.martinez-felipe@abdn.ac.uk 

 

Table 1 .  Transition temperatures corresponding to the nOBAs, obtained by differential 

scanning calorimetry, DSC, in cooling scans. 

nOBA 
TCrN

a 

TCrSmC
b 

TSmCN* TNI** 

4OBA 146.8a - 158.9 

5OBA 124.4a - 150.1 

7OBA 92.7b 99.0 144.9 

8OBA 101.7b 108.5 144.6 

Temperatures (/ oC) corresponding to: aCrystal to Nematic transition; 
bCrystal to Smectic C transition; *Smectic C to Nematic transition; 

**Nematic to Isotropic transition. 
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Table 2 .  Elements of the equivalent circuits corresponding to 8OBA-T130C-XV, obtained 

under different bias electric fields, X = 0 V to 7 V (��, resistance, �� capacitance, �� 

Warburg element) for modes i = 1 (�1, �1) and i=2 (�2, �2,�2). 

Bias  voltage 
/ Volt �	 / Ω ·10-4 
	 / F ·1011 ��/ Ω ·10-7 
�/ F·109 �� / Ω·s-1 

0 
(no bias) 

9.71 7.6 1.04 8.9 10.8 

1 9.72 7.6 1.13 9.5 9.3 

2 9.87 7.8 1.30 12.0 6.4 

3 9.70 7.7 1.31 16.5 4.6 

4 9.79 7.8 0.93 26.5 4.0 

5 9.69 7.7 1.06 32.8 2.9 

6 9.80 7.8 0.92 42.4 2.6 

7 9.96 8.0 0.79 55.1 2.3 

 

 

Table 3 .  Activation energies, Ea (kJ·mol-1) obtained from modes 1 and 2 of the different 

nOBA, corresponding to the DC conductivity values (σσσσdc) and frequency of M’’ peak maxima 

fmax (M’’).  I: isotropic phase; N, nematic phase.  

 
σσσσdc1 

mode 2    
σσσσdc2 

mode 1    
fmax (M’’)  

mode 1 

Sample I N I N I N 

8OBA-0V 55.9 47.7 16.5 115.5 16.5 132.8 

8OBA-7V 55.3 100.3 15.2 115.1  141.1 

7OBA-0V 47.9 81.2 51.6 102.9 28.4 106.7 

7OBA-7V 77.2 128.8 45.4 107.5 19.2 85.9 

5OBA-0V 111.8 29.6 67.7 97.8 76.4 104.3 

5OBA-7V 66.6 98.1 66.0 63.8 37.5 69.2 

4OBA-0V 210.4 - 86.1 59.6 52.7  

4OBA-7V 79.8 44.6 24.7  22.5  
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“Ionic conductivity mediated by hydrogen bonding in liquid crystalline 4-n-alkoxybenzoic 

acids” 

 

 

Highlights 

 

4-n-alkoxybenzoic acids, nOBAs, are readily available ionic conducting electrolytes. 

Linear anisotropy of hydrogen bonded dimers promotes aligned superstructures for ion 

conductivity. 

High anisotropic conductivity in nematic ranges is based on local molecular and dipole 

motions. 

Long-range conductivity is associated to catemeric arrays and lateral hydrogen bonding. 

Equilibria between different hydrogen bonded species can control the conductivity of benzoic 

acid electrolytes. 
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Figure ESI1.  Bode plots corresponding to the impedance modulus, |�| ( ), and phase, Θ (

), corresponding to 8OBA-T130C-XV.   
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Figure ESI2.  Effect of bias electric field, X, on the capacitance, �2 ( ), and Warburg 

element, �2 ( ), in the equivalent circuits corresponding to 8OBA-T130C-XV. 

 

 

Figure ESI3.  Temperature dependence of the dielectric response of 8OBA-TXC-7V in the 

frequency domain, corresponding to: (a) real conductivity, log(σ’(f)); (b) imaginary 

component of electric modulus, log(M''(f)).  TNI, nematic to isotropic transition; TSmCN, smectic 

C to nematic transition.  Dotted arrows indicate direction on cooling from T=181oC to 

T=100oC. 
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