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Appropriately defining and enumerating “fitness” is fundamental to explaining and predicting evolutionary dynamics. Yet, general

theoretical concepts of fitness are often hard to translate into quantities that can be measured in wild populations experiencing

complex environmental, demographic, genetic, and selective variation. Although the “fittest” entities might be widely understood

to be those that ultimately leave most descendants at some future time, such long-term legacies can rarely be measured, impeding

evaluation of the degree to which tractable short-term metrics of individual fitness could potentially serve as useful direct proxies.

One opportunity for conceptual and empirical convergence stems from the principle of individual reproductive value (Vi), here

defined as the number of copies of each of an individual’s alleles that is expected to be present in future generations given the

individual’s realized pedigree of descendants. As Vi tightly predicts an individual’s longer term genetic contribution, quantifying Vi

provides a tractable route to quantifying what, to date, has been an abstract theoretical fitness concept. We used complete pedigree

data from free-living song sparrows (Melospiza melodia) to demonstrate that individuals’ expected genetic contributions stabilize

within an observed 20-year (i.e. approximately eight generation) time period, allowing estimation of individual Vi. Considerable

among-individual variation in Vi was evident in both sexes. Standard metrics of individual lifetime fitness, comprising lifespan,

lifetime reproductive success, and projected growth rate, typically explained less than half the variation. We thereby elucidate the

degree to which fitness metrics observed on individuals concur with measures of longer term genetic contributions and consider

the degree to which analyses of pedigree structure could provide useful complementary insights into evolutionary outcomes.

KEY WORDS: Evolutionary dynamics, fitness, genealogy, gene-dropping, individual reproductive value, lifespan, lifetime repro-

ductive success, pedigree, population growth rate.
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Impact Summary
The concept of “fitness” is central to understanding how

the frequencies of different genes within a population

change over generations, and hence to understanding

and predicting the progress of evolution. Many biol-

ogists would broadly agree with the overarching idea

that the “fittest” genes, or individual organisms, are

ultimately those that contribute the most descendant

gene copies to a population at some point in the fu-

ture. Yet long-term genetic contributions are very dif-

ficult to measure, especially within the typical time-

frames of research projects on free-living populations.

Consequently, biologists have rarely directly evaluated

individuals’ longer term genetic contributions, or then

evaluated the degree to which an individual’s own re-

productive output, which is somewhat easier to mea-

sure, adequately predicts its longer term contribution

and hence could provide a reliable proxy indicator.

We used >20 years of unusually complete and ac-

curate family-tree (i.e., “pedigree”) data from free-living

song sparrows (Melospiza melodia) to quantify individ-

uals’ genetic contributions to the focal population across

multiple generations of descendants. We show that in-

dividuals’ expected contributions stabilized to an ap-

proximately constant value within the observed 20-year

timeframe, allowing individuals’ longer term genetic

contributions to be inferred. These contributions var-

ied substantially among individuals of each sex: some

individuals left considerable genetic legacies in future

generations, whereas other individuals left none. How-

ever, these longer term contributions were only partly

predicted by an individual’s own observed reproductive

output, largely because some individuals that produced

multiple offspring still had zero local genetic legacy in

the longer term.

Our analyses illuminate the degree to which short-

term measures of individual reproduction recorded in

wild populations experiencing naturally complex envi-

ronmental and genetic variation can be used to directly

infer longer term evolutionary outcomes. They also il-

lustrate how analyses of individuals’ pedigrees could

potentially provide additional insights into evolutionary

outcomes that complement other approaches to evolu-

tionary analysis.

Appropriately defining and enumerating “fitness” is funda-

mental to all theoretical and empirical attempts to explain and

predict the dynamics of allele frequencies, phenotypes, and popu-

lations (de Jong 1994; Day and Otto 2001; Grafen 2006; Orr 2009;

Sæther and Engen 2015). Yet it has proved hard to define quan-

titative metrics of fitness that unify all theoretical and empirical

subdisciplines in evolutionary biology and to translate theoretical

concepts into quantities that can feasibly be measured in wild

populations (Kozłowski 1993; de Jong 1994; Käär and Jokela

1998; Brommer 2000; Metcalf and Parvard 2007; Orr 2009; Hunt

and Hodgson 2010; Sæther and Engen 2015; Grafen 2018). Per-

haps the closest to broad conceptual unanimity is the idea that the

“fittest” entities are ultimately those that contribute most descen-

dants to a population at some point in the future (Benton and Grant

2000; Day and Otto 2001; Brommer et al., 2002, 2004; Hunt et al.

2004; Grafen 2006; Roff 2008; Hunt and Hodgson 2010; Graves

and Weinreich 2017). Yet, such concepts can seem remote from

the short-term metrics of individual fitness that empiricists work-

ing on free-living populations commonly aim to measure, which

typically comprise simple functions of individuals’ realized sur-

vival and/or reproductive success (Brommer et al., 2002, 2004;

Link et al. 2002; Coulson et al. 2006; Hendry et al. 2018; Wolak

et al. 2018). Such metrics can correctly enumerate individual

contributions to the next year or generation, but will not necessar-

ily directly predict longer term genetic contributions, especially

given density-, frequency-, and/or environment-dependent selec-

tion (de Jong 1994; Day and Otto 2001; Hunt et al. 2004; Roff

2008; Sæther and Engen 2015; Graves and Weinreich 2017).

One opportunity to link these conceptual and empirical ap-

proaches stems from the principle of “individual reproductive

value” (Vi), here specifically defined as the number of copies

of each of an individual’s alleles that is expected to be present

in future generations given the individual’s realized pedigree of

descendants (following Barton and Etheridge 2011). Vi results

from Mendelian allele inheritance given the realized survival and

reproductive success of a focal individual and successive genera-

tions of descendants, which in turn result from context-dependent

natural and sexual selection on multivariate expressed phenotypes

alongside typically major components of environmental and de-

mographic stochasticity (Sæther and Engen 2015; Snyder and

Ellner 2018). In sexually reproducing species, any successful in-

dividual’s ultimate genetic contribution will emerge over long

timeframes (i.e., >>100 generations), but its expected genetic

contribution (i.e., Vi) should stabilize over relatively few genera-

tions: approximately log2(N), where N is population size (Chang

1999; Barton and Etheridge 2011). This equals approximately 7,

10, and 13 generations given N = 100, 1000, and 10,000, respec-

tively, meaning that Vi should be estimable within timeframes that

are increasingly within reach of empirical studies of free-living

populations, at least for species with moderately short genera-

tion times. Further, Barton and Etheridge (2011) showed that

an individual’s stabilized Vi accurately predicts the longer term
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(i.e., at generation t, where �(Nloge(N))<<t<<N) probability

that a neutral or weakly selected allele carried by that individual

will persist in the focal population (versus go extinct), while the

distribution of allele copy number conditional on persistence is

independent of Vi. Importantly, these results hold true even at the

level of single individuals and alleles, not just across groups or

classes of individuals. Consequently, an individual’s stabilized Vi

tightly predicts its longer term genetic contribution (Barton and

Etheridge 2011).

These key theoretical results were initially derived assum-

ing idealized conditions of neutral alleles segregating in a sin-

gle well-mixed (i.e., random mating, no population structure,

or subdivision) diploid Wright–Fisher population with discrete

nonoverlapping generations and constant population size that is

sufficiently large to preclude short-term inbreeding. However,

they also apply adequately given some population structure and

different distributions of reproductive success, and to alleles that

affect reproductive success (given standard assumptions of the in-

finitesimal model, implying weak selection, Chang 1999; Barton

and Etheridge 2011; Barton et al. 2017). To the degree that such

short-term stabilization and predictive ability of Vi hold under

natural conditions encompassing age structure, overlapping gen-

erations, nonrandom mating, highly heterogeneous reproductive

success within and between lineages, and dynamic finite popu-

lation sizes with inbreeding and potentially nonzero immigration

and emigration (Chang 1999; Gravel and Steel 2015), then the

availability of multigeneration pedigree data from wild popula-

tions provides opportunities to directly quantify Vi and thereby

infer longer term probabilities of allele persistence and individual

genetic contributions. This provides a route to direct field quan-

tification of what, to date, has been an abstract theoretical fitness

concept.

Datasets that allow estimation of Vi can then be used to ex-

amine the degree to which more typically tractable short-term

metrics of individual fitness, comprising simple functions of in-

dividuals’ realized survival and reproductive success, can predict

Vi and hence longer term individual genetic contributions. Such

analyses facilitate further informed consideration of what evo-

lutionary inferences can or cannot potentially be directly drawn

from such metrics (Brommer et al., 2002, 2004). Metrics of in-

dividual lifetime fitness that are widely used by field biologists

include lifetime reproductive success (LRS), a time-independent

metric defined as the total number of offspring produced by an

individual over its lifetime, and individual growth rate (λind), a

time-dependent metric that emphasizes offspring produced early

in life (McGraw and Caswell 1996; Käär and Jokela 1998; Brom-

mer et al., 2002, 2004; MacColl and Hatchwell 2004, see Methods

section). In principle, LRS and λind can both predict individual

long-term genetic contributions given constant population size

and lineage-invariant selection, but λind may be more appropri-

ate in increasing populations (Brommer et al. 2002; Graves and

Weinreich 2017). Both metrics are expected to out-perform mea-

sures of individual survival or lifespan, especially given trade-offs

between survival and reproduction (Day and Otto 2001; Brommer

et al. 2002; Hunt et al. 2004).

Yet, in reality, populations do not retain constant growth rates,

but vary in size due to environmental stochasticity, and experi-

ence density-, frequency-, and/or environment-dependent selec-

tion alongside substantial within-lineage demographic stochastic-

ity (de Jong 1994; Benton and Grant 2000; Hunt et al. 2004; Lande

et al. 2009). Allele frequency dynamics then become very diffi-

cult to predict, especially in age-structured populations, even if

key rules governing selection and population dynamics are known

(Day and Otto 2001; Lande et al. 2009; Gravel and Steel 2015;

Sæther and Engen 2015; Myhre et al. 2016; Graves and Wein-

reich 2017). The degree to which metrics of individual lifetime

fitness do (or do not) predict Vi and hence longer term individ-

ual genetic contributions given natural demographic variation and

stochasticity, and thereby potentially provide any capability for

direct long-term evolutionary inference, then becomes an empir-

ical question (Brommer et al., 2002, 2004; Hunt and Hodgson

2010; Graves and Weinreich 2017).

We use >20 years of complete genetically verified pedigree

data from a free-living song sparrow (Melospiza melodia) popula-

tion to evaluate the degree to which individuals’ expected genetic

contributions stabilize within an observed number of years and

generations, thereby allowing individual Vi to be estimated and

longer term probabilities of allele persistence and genetic contri-

butions to be inferred. We then quantify the degree to which indi-

viduals’ stabilized Vi values are predicted by standard metrics of

individual lifetime fitness (lifespan, LRS, and λind), and thereby

elucidate what could potentially be directly inferred from such

metrics in the context of natural environmental, demographic,

genetic, and selective variation.

Methods
STUDY SYSTEM

Quantifying individual Vi (defined as the expected number of al-

lele copies contributed to future generations conditional on an in-

dividual’s realized pedigree of descendants, Barton and Etheridge

2011) requires complete, accurate, pedigree data spanning suffi-

cient generations (approximately log2(N)) for the expectation to

stabilize. This equates to approximately Glog2(N) years, where

G is mean generation time. Such multigeneration data exist for a

small, largely philopatric, population of song sparrows inhabiting

Mandarte island, Canada (full details in Supporting Information

S1). The available data allow calculation of any desired metric

of relatedness and fitness across individuals hatched since 1992,

with little uncertainty or missing data with respect to the local
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population (Reid et al., 2014, 2016; Wolak et al. 2018, Support-

ing Information S1).

On Mandarte, among-year variation in local environmental

conditions and population density drives considerable among-

year variation in song sparrow reproduction and survival (Arcese

et al. 1992; Wilson and Arcese 2003; Tarwater and Arcese 2018),

inducing substantial among-cohort variation in mean lifespan

and LRS (Lebigre et al. 2012; Wolak et al. 2018). Total adult

population size consequently varied substantially among years

(arithmetic mean: 73 ± 29 SD individuals, range: 33–128,

Supporting Information S1). The adult sex ratio was typically

male biased (mean proportion males: 0.59 ± 0.07 SD, range:

0.39-0.75, Supporting Information S1), allowing the mean and

variance in LRS to differ between females and males (Lebigre

et al. 2012). Generation time, calculated as mean parent age,

was approximately 2.5 years (Supporting Information S2).

Following basic theory (Chang 1999), individuals’ expected

genetic contributions should therefore stabilize within roughly

Glog2(N) � 2.5log2(73) � 15 years, and potentially sooner given

that the harmonic mean and effective population sizes are smaller

than the arithmetic mean (Supporting Information S1). Stabilized

Vi should therefore be estimable for song sparrows hatched early

within the period for which genetically verified pedigree data for

descendants are available (i.e., from 1992).

CALCULATION OF INDIVIDUALS’ EXPECTED GENETIC

CONTRIBUTIONS

The first objective was to calculate the number of copies of a (hy-

pothetical) autosomal allele present in any focal individual that

is expected to be present in the population in each year follow-

ing the focal individual’s natal year, and thereby evaluate each

individual’s stabilized Vi. Such expectations can be readily cal-

culated directly (i.e., analytically) from pedigree data using stan-

dard recursive algorithms for coefficients of kinship (Caballero

and Toro 2000; Reid et al. 2016). However, the full distribu-

tions of allele copy numbers, and hence the variance around the

expectation (stemming from multiple generations of Mendelian

sampling) and associated probabilities of allele extinction, are not

straightforward to calculate for individuals in complex pedigrees

with irregular systems of inbreeding involving multiple ancestors

(e.g., Hill and Weir 2011). We therefore used “gene-dropping”

simulations on the observed pedigree to compute key quantities

(e.g., MacCluer et al. 1986; Caballero and Toro 2000, see below).

Because song sparrows have considerably overlapping gen-

erations (median age at first reproduction: 1 year; maximum lifes-

pan: 10 years, Supporting Information S2), analyses focused on

cohorts and years rather than discrete generations. Each individual

hatched in a focal cohort that survived to adulthood (i.e., age one

year) was assigned a unique allele identity, which was “dropped”

down the observed pedigree assuming autosomal Mendelian in-

heritance (i.e., neutrally passed to each offspring of each sex with

probability 0.5). The identities of all alleles present in all indi-

viduals in the total extant population (i.e., all adults and chicks,

constituting a postbreeding census) in each subsequent year were

extracted. Gene-drops were replicated 8000 times. The mean

number of copies of each allele present in each year (i.e., the ex-

pectation); the frequency of zero copies (and hence the probability

of allele extinction, PE); and the mean, variance, and coefficient of

variance (CV = standard deviation/mean) of allele copy number

conditional on allele persistence (i.e., number of copies >0) were

computed across replicates. Allele copies present in descendants

of both sexes were counted irrespective of the sex of the focal

individual in which an allele originated, thereby tracking allele

propagation through the full pedigree rather than solely through

single-sex lineages (contra Brommer et al. 2004). Current simula-

tions therefore assume that focal cohort individuals are heterozy-

gous and unrelated at the hypothetical locus (i.e., single unique

alleles), and correctly account for realized within-lineage inbreed-

ing in subsequent generations. They can therefore be considered

to quantify the fate of a single neutral or weakly selected muta-

tion in each focal individual (e.g., Barton and Etheridge 2011).

Gene-dropping was not applied to focal individuals that died be-

fore adulthood because their direct genetic contribution is known

to be zero (hence PE = 1), allowing them to be included in sub-

sequent analyses without need for gene-drop computations.

ANALYSES OF INDIVIDUAL GENETIC

CONTRIBUTIONS AND REPRODUCTIVE VALUE

Gene-dropping focused on three song sparrow cohorts hatched

during 1992–1994, for which �20 years of complete genetically

verified pedigree data on descendants are in hand (Supporting

Information S1). To evaluate whether individual stabilized Vi

could be reliably ascertained, we examined whether individu-

als’ absolute or proportional expected genetic contributions to

the total extant population in each year stabilized within an ob-

served 20-year posthatch timeframe. Proportional contributions

were calculated by dividing each individual’s absolute contribu-

tion (i.e., the expected number of allele copies) by the total number

of alleles present in the population in the focal year (i.e., twice the

total extant population size). This standardization facilitates direct

comparison of values across years and cohorts given the varying

population size. Stabilization was evaluated by calculating the

Pearson correlation coefficient (rp) between individuals’ gene-

dropped expectations 20 years posthatch versus in each previous

year, and the mean absolute difference (μd) between individuals’

expectations between consecutive years. Convergence of rp and

μd toward one and zero, respectively, indicates stabilization.

We then quantified the degree to which an individual’s ex-

pected genetic contribution 20 years posthatch (interpreted as its

Vi) predicts key attributes of the full distribution of allele copy
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number emerging across gene-drop iterations. These analyses al-

low inspection of the degree to which empirical patterns concur

with Barton and Etheridge’s (2011) theoretical development, sup-

porting the premise that Vi predicts an individual’s longer term

genetic contribution. First, to verify that Vi does tightly predict

individual-level probability of allele extinction within the ob-

served 20-year timeframe, and is consequently likely to do so

across longer timeframes, we regressed the gene-dropped proba-

bility of allele extinction (PE) after 20 years on Vi across individ-

uals. Second, to quantify the degree to which Vi also predicts the

full distribution of allele copy number conditional on allele per-

sistence, we related the mean, variance, and CV of the number of

copies after 20 years across gene-drop iterations where the allele

did not go extinct to Vi.

CALCULATION OF SHORT-TERM METRICS OF

INDIVIDUAL FITNESS

The second objective was to evaluate the degree to which stan-

dard short-term metrics of individual realized lifetime fitness pre-

dict Vi and hence could in principle be used to directly infer

individuals’ longer term genetic contributions. In the context of

evolutionary quantitative genetic theory, lifetime fitness should

ideally be measured zygote-to-zygote across a single generation

(Lande and Arnold 1983; Wolf and Wade 2001; Hunt and Hodg-

son 2010). However, in practice, and in other contexts, fitness is

commonly measured adult-to-offspring or adult-to-adult. This in-

cludes studies that aim to quantify fitness consequences of expres-

sion of adult traits (including reproductive or secondary sexual

traits) and directly infer evolutionary outcomes, or to estimate Ne

(e.g., Wolf and Wade 2001; Kokko et al. 2003; Hunt et al. 2004;

MacColl and Hatchwell 2004; Sæther and Engen 2015; Myhre

et al. 2016; Wolak et al. 2018). To encompass this spectrum of

approaches, we extracted six lifetime fitness metrics for each fo-

cal individual. Lifespan was calculated as an individual’s age in

its last observed summer (one metric per individual). LRS was

calculated as the total numbers of ringed (i.e., 6 days posthatch),

independent (i.e., alive at cessation of parental care approximately

24 days posthatch) or recruited (i.e., age one year) genetic off-

spring produced by each focal individual over its lifetime (hence

three metrics of LRS per individual). λind was calculated as the

dominant eigenvalue of an individual projection matrix of dimen-

sion equal to the individual’s lifespan (McGraw and Caswell 1996;

Brommer et al. 2002, Supporting Information S3). Top row fe-

cundity terms were specified as either 0.5.mring.φj, where mring is

the number of ringed offspring produced by each focal individual

at each age and φj is the mean population-wide juvenile survival

rate in the focal year, or as 0.5.mrec, where mrec is the number of

recruited offspring produced by each focal individual at each age.

This generates two metrics of λind per individual, pertaining to

ringed and recruited offspring, respectively (Supporting Informa-

tion S3). The factor 0.5 accounts for the transmission probability

of a focal parental allele to each offspring given Mendelian in-

heritance. This must be directly incorporated into the calculation

of λind prior to any further analyses, but can be readily applied as

post hoc scaling factor for analyses of LRS (Brommer et al. 2004;

Reid et al. 2016).

ANALYSES OF INDIVIDUAL FITNESS AND

REPRODUCTIVE VALUE

To evaluate the degree to which the six short-term metrics of indi-

vidual lifetime fitness explained and predicted variation in Vi, we

calculated Pearson and Spearman correlation coefficients, and lin-

ear regression slopes and associated adjusted R2 values, between

Vi and each fitness metric across individuals. These statistics were

calculated using individuals’ absolute fitness and Vi, and using

relative fitness and Vi (i.e., individual value divided by the sex-

specific mean). Statistics were calculated across individuals from

focal cohorts that survived to adulthood (as is currently common

practice in studies that examine variation in fitness associated

with adult phenotypes), and recalculated including values of zero

for individuals that died before adulthood (thereby incorporating

the otherwise “missing fraction”).

Because estimates of Vi for individuals hatched in 1992–

1994 are partially nonindependent (because pedigrees are partially

nested, Supporting Information S1), and because we considered

multiple nonindependent fitness metrics, we report estimated cor-

relation and regression parameters but do not focus on hypothesis

testing. Regression intercepts were estimated for analyses of lifes-

pan but forced through the origin otherwise, because individuals

with zero LRS or λind must have exactly zero Vi. Because the to-

tal extant population sizes were similar across the three end years

(i.e., 20 years posthatch for each cohort, Supporting Information

S1), analyses of absolute and proportional Vi yielded similar con-

clusions (Supporting Information S4 and S5). Key results were

also quantitatively unchanged if gene-drops for all cohorts were

run to the same end year (i.e., 22, 21, and 20 years posthatch for the

1992, 1993, and 1994 cohorts, respectively). Standard statistics

(mean, variance, skew, CV) were used to summarize distributions

of estimated Vi and fitness metrics. Analyses were implemented in

R version 3.3.3 (R Core Team 2017) using package nadiv (Wolak

2012).

Results
INDIVIDUAL GENETIC CONTRIBUTIONS AND

REPRODUCTIVE VALUE

In total, 21, 24, and 10 female and 38, 23, and 23 male song

sparrows hatched in 1992, 1993, and 1994, respectively, survived

to adulthood (i.e., age one year). These individuals’ absolute and

proportional expected genetic contributions to the total extant
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Figure 1. Observed lifetime reproductive success (LRS) measured as ringed offspring (top row) and absolute expected genetic contribu-

tions of 24 individual female song sparrows (columns) hatched in 1993 that survived to adulthood to the total extant population 1–20

years posthatch (descending rows). Black shading denotes genetic contributions arising because a focal female was still alive in the focal

year. Dark gray, light gray, and white shading denote expected genetic contributions to offspring produced in the focal year, to surviving

offspring produced in previous years, and to all subsequent descendants, respectively. All bars (except LRS) are scaled to maximum

y-axis values of eight allele copies to allow direct comparison across years. Columns (i.e., females) are ordered by increasing expected

contributions across final observed years. Equivalent data for females hatched in 1992 and 1994, and proportional genetic contributions

for all females, are shown in Supporting Information S4 and S5.

population on Mandarte in each subsequent year clearly stabilized

within the observed 20 year timeframe (Figs. 1 and 2; Support-

ing Information S4 and S5). Quantitatively, the correlations rp

between the genetic contributions expected after 20 years and in

each preceding year exceeded 0.95 by 12–13 years posthatch in

both sexes, and were typically close to one by the basic theoreti-

cal expectation of �15 years posthatch (Fig. 3). Correspondingly,

the mean deviations μd were very small (<0.0005, Supporting

Information S5). This implies that the expectations evident by

20 years posthatch, and indeed after �13 years posthatch, can be

interpreted as good approximations of individual Vi (as defined

by Barton and Etheridge 2011).

The distributions of individuals’ expected genetic contribu-

tions show that 67% of females and 71% of males that survived
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Figure 2. Observed lifetime reproductive success (LRS) measured as ringed offspring (top row) and absolute expected genetic contri-

butions of 23 individual male song sparrows (columns) hatched in 1993 that survived to adulthood to the total extant population 1–20

years posthatch (descending rows). Figure attributes are as for Figure 1. All bars (except LRS) are scaled to maximum y-axis values of

12 allele copies to allow direct comparison across years. Equivalent data for males hatched in 1992 and 1994, and proportional genetic

contributions for all males, are shown in Supporting Information S4 and S5.

to adulthood made zero contribution to the total extant population

20 years later (i.e., Vi = 0, Fig. 4). This occurred even though

many individuals had nonzero values for short-term metrics of

fitness (e.g., adult LRS measured as ringed offspring, Figs. 1,

2, and 4; Supporting Information S4). The sex-specific distribu-

tions of Vi were consequently highly skewed; few individuals per

cohort contributed to the genetic composition of subsequent gen-

erations (Fig. 4). The variance in Vi was smaller than the variance

in 0.5LRS in both sexes, both across individuals that survived

to adulthood and across all hatched individuals, but the CV was

slightly larger for Vi (Fig. 4).

Individual Vi estimated 20 years posthatch tightly predicted

the probability of allele extinction (PE) during the same time-

frame (Fig. 5), as is expected and inevitable given the typically

high PE (Barton and Etheridge 2011). There was substantial vari-

ation in the number of allele copies present in the total extant

population conditional on allele persistence (i.e., �1 copy), both

among individuals (Fig. 6) and among gene-drop iterations within

individuals (Supporting Information S6). The mean and variance

in copy number were both strongly positively associated with

individual Vi, but the CV was independent of Vi on average

(Fig. 6). This concurs with the expectation that, conditional on
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Figure 3. Pearson correlation coefficients between individuals’ absolute expected genetic contributions to the total extant population

20 years posthatch versus each previous year for adult (A) female and (B) male songs sparrows hatched in 1992 (black), 1993 (blue),

and 1994 (red) that survived to adulthood. Dashed horizontal lines demarcate correlations that equal or exceed 0.95. Dotted vertical

lines demarcate the numbers of years posthatch at which the correlation reached 0.95 for all three cohorts. Correlation coefficients were

virtually identical given proportional rather than absolute expected genetic contributions.

allele persistence, the longer term distribution of genetic contri-

butions will be independent of Vi (Barton and Etheridge 2011).

The tight relationship between Vi and PE that is already evident

(Fig. 5) therefore implies that Vi encapsulates an individual’s

longer term genetic contribution.

INDIVIDUAL FITNESS METRICS AND REPRODUCTIVE

VALUE

Across the totals of 55 females and 84 males hatched during 1992–

1994 that survived to adulthood, individual Vi estimated 20 years

posthatch was positively associated with each of the six metrics of

individual lifetime fitness (Figs. 7 and 8; Supporting Information

S7). However, correlation coefficients were moderate for lifespan

(�0.3–0.4) and for metrics of ringed and independent offspring

(�0.4–0.5), and still far from unity for metrics of recruited off-

spring (�0.6–0.7, Figs. 7 and 8; Supporting Information S7). As

might be expected, there is considerable scatter around estimated

linear regressions, meaning that the focal fitness metrics typi-

cally explain less than half the estimated among-individual vari-

ation in Vi (Figs. 7 and 8; Supporting Information S7). Although

the slopes of regressions of absolute Vi on absolute fitness met-

rics commonly diverged substantially from one, those for relative

(i.e., mean-standardized) Vi on relative fitness metrics were fairly

close to one (Figs. 7 and 8; Supporting Information S7). This

implies that metrics of individuals’ relative lifetime fitness can

potentially provide unbiased predictors of relative genetic contri-

butions to future generations on average, despite the considerable

individual-level deviation. There was no substantial difference in

predictive ability between LRS and λind measured to analogous

offspring life stages (Figs. 7 and 8; Supporting Information S7).

These conclusions, and particularly regression slopes and R2 val-

ues, did not change markedly when including values of zero Vi

and fitness for totals of 248 females and 194 males hatched during

1992–1994 that died before adulthood (Figs. 7 and 8; Supporting

Information S7), or using proportional rather than absolute Vi.

Discussion
All attempts to explain and predict evolutionary dynamics re-

quire some assessment of the “fitness” of alleles and/or indi-

vidual organisms; yet theoretical fitness concepts can be hard

to reconcile with empirical realities encompassing overlapping

generations, environmental and demographic stochasticity, and

context-dependent selection and genetic variation (de Jong 1994;

Hunt and Hodgson 2010; Sæther and Engen 2015; Graves and

Weinreich 2017). Relationships between short-term metrics of

individual fitness and phenotypic trait values define selection

gradients, which can be combined with information on addi-

tive genetic (co)variances among traits of interest to infer evo-

lutionary outcomes (conditional on fulfilling key assumptions of
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Figure 4. Distributions of individuals’ absolute expected genetic contributions to the total extant population 20 years posthatch (i.e.,

estimated reproductive value, Vi) in (A) 55 female and (B) 84 male song sparrows hatched during 1992–1994 that survived to adulthood

and these individuals’ lifetime reproductive success (LRS) measured as ringed offspring (inset panels). Y-axis scales are standardized to

facilitate comparison. Descriptive statistics comprise the percentage of individuals with values of zero, mean, variance (Var), skew, and

coefficient of variance (CV, in square brackets). Statistics were calculated for 0.5LRS to facilitate direct comparison with Vi. Corresponding

statistics for full distributions including values of zero for individuals that died before adulthood are as follows: Vi: mean 0.2 and 0.4,

variance 1.7 and 2.8, skew 8.4 and 5.5, CV 5.6 and 4.7; and 0.5LRS: mean 1.0 and 1.2, variance 8.5 and 9.3, skew 3.3 and 3.1, CV 2.9 and

2.9, for females and males, respectively. Further summary statistics are in Supporting Information S7.

evolutionary quantitative genetic theory, Lande and Arnold 1983).

Yet, especially in systems where genetic (co)variances cannot

be readily quantified and/or major cross-generation effects (e.g.,

maternal effects) are postulated, evolutionary outcomes are com-

monly discussed and inferred solely based on observed variation

in individual or lineage fitness and associations with focal phe-

notypes (Kokko et al. 2003; Hunt et al. 2004; Hunt and Hodg-

son 2010). Any possible success of such purely phenotypic in-

ferences depends, not least, on the degree to which available

short-term metrics of individual fitness do reliably predict longer

term genetic contributions (Benton and Grant 2000; Brommer

et al. 2002; Hunt et al. 2004). However, few studies have at-

tempted to quantify such relationships in populations experienc-

ing natural environmental, demographic, genetic, and selective

variation. Brommer et al. (2004) used partial pedigree data from

open populations of collared flycatchers (Ficedula albicollis) and

ural owls (Strix uralensis) to relate individual LRS and λind to

longer term genetic contributions estimated over more than two

generations. However, genetic contributions were only tracked

through maternal lineages, meaning that persistence of autoso-

mal alleles, which are propagated through both sexes, was prob-

ably greatly underestimated (Brommer et al. 2004). Individual

LRS (measured as recruited offspring) and λind explained only

one-third of observed variation in a number of locally fledged

grand-offspring (i.e., one further generation) in long-tailed tits

(Aegithalos caudatus, MacColl and Hatchwell 2004). Conse-

quently, the general failure to measure individual “fitness” across

multiple generations has even been highlighted as a shortcoming

in the context of phenotypic approaches to testing sexual selec-

tion theory (Kokko et al. 2003; Hunt et al. 2004, but see Hunt and

Hodgson 2010).

Our analyses of �20 years (i.e., approximately eight gener-

ations on average) of locally complete, accurate, pedigree data

from free-living song sparrows showed that individuals’ expected

genetic contributions to the total extant population approximately

stabilized within the observed timeframe (Figs. 1–3). “Individ-

ual reproductive value” (Vi, as defined by Barton and Etheridge

2011) can consequently be estimated, and showed considerable
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Figure 5. Relationships between an individual’s probability of allele extinction (PE) and absolute expected genetic contribution to the

total extant population 20 years posthatch (i.e., estimated reproductive value, Vi) for (A) female and (B) male song sparrows hatched in

1992 (black), 1993 (blue), and 1994 (red) that survived to adulthood. Short lines denote multiple individuals with zero expected genetic

contribution and hence PE = 1. Solid lines depict the expected exponential relationship (i.e., PE = exp(–αVi); Barton and Etheridge 2011)

fitted to all three cohorts combined. Estimated coefficients α were –0.040 and –0.048 for females and males, respectively, for absolute Vi,

and –19.9 and –21.8, respectively, for proportional Vi.

among-individual variation in both sexes (Fig. 4). As expected,

Vi tightly predicted the short-term probability of allele extinction

(or, conversely, persistence), and is therefore likely to be highly

quantitatively informative regarding longer term individual ge-

netic contributions (Barton and Etheridge 2011). But, widely used

metrics of individual lifetime fitness typically explained less than

half the observed among-individual variation in Vi (Figs. 7 and 8).

The availability of tractable metrics of observed phenotypic

fitness that do partially predict individuals’ expected longer term

genetic contributions in nature, despite the complexity and in-

evitable stochasticity of all underlying processes, could be deemed

a success. However, there is unsurprisingly substantial unex-

plained variation, and hence potential to draw erroneous evo-

lutionary inferences directly from purely phenotypic analyses of

observed among-individual variation in short-term fitness. Dis-

crepancies arose because some individuals with low (but non-

zero) LRS and λind made substantial longer term genealogical

and hence expected genetic contributions to the focal popula-

tion, and because many individuals with non-zero LRS and λind

made zero longer term contribution (Figs. 1, 2, and 4; Supporting

Information S4). These outcomes do not simply reflect the fo-

cal population’s small size. In sexually reproducing species with

limited reproductive capacity (e.g., any species with substantial

parental care), probabilities of lineage and allele extinction will

be high irrespective of total population size, simply due to the

inevitable substantial individual-level environmental and demo-

graphic stochasticity and drift (e.g., Gravel and Steel 2015). How-

ever, allele extinction probabilities must also depend on mean

demographic rates and population dynamics (e.g., Metcalf and

Parvard 2007; Gravel and Steel 2015; Graves and Weinreich

2017). The focal song sparrow population decreased in size in

1998–1999 (Supporting Information S1), which was sufficiently

soon after the focal cohorts hatched to potentially eliminate all

descendants of some individuals. Such lineage extinctions be-

come less likely across subsequent generations, because all in-

dividuals with nonzero expected genetic contributions will, in

the medium term, be genealogical ancestors of all extant popu-

lation members (Chang 1999; Caballero and Toro 2000; Barton

and Etheridge 2011; but see Gravel and Steel 2015). However

variation in local population size, caused by environmentally

induced variation in fitness, will affect almost all populations

and subpopulations in nature, and will consequently be integral

to any evolutionary outcome (Sæther and Engen 2015; Engen

and Sæther 2017). The focal song sparrow population is largely
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Figure 6. Relationships between an individual’s absolute expected genetic contribution to the total extant population 20 years posthatch

(i.e., estimated reproductive value, Vi) and the (A) mean, (B) variance, and (C) coefficient of variance in the number of allele copies

conditional on allele persistence (i.e., �1 copy) for 18 female (filled symbols) and 24 male (open symbols) song sparrows hatched in 1992

(black), 1993 (blue), and 1994 (red) with Vi > 0. In (A) and (B), dotted lines depict loess regressions (linear regressions were not fitted

because estimated intercepts would not make biological sense). In (C), the dashed line denotes the linear regression (slope estimate:

0.001).

philopatric (Supporting Information S1), facilitating estimation

of Vi. In more dispersive populations, similar patterns to those

observed in song sparrows are likely to hold across a larger spa-

tial scale that encompasses dispersal, while individual Vi values

measured more locally would typically tend to decrease toward

zero.

An individual’s observed LRS and λind can be viewed as

stochastic realizations of its underlying propensity for fitness,

which is not directly observable on individuals as opposed to

estimable from groups or classes of individuals (McGraw and

Caswell 1996; Link et al. 2002; Snyder and Ellner 2018). Yet,

realized lifetime fitness, comprising the number of offspring that

was actually produced, might be envisaged as a reasonable pre-

dictor of longer term genetic contribution that captures the im-

plications of initial individual-level realizations of environmental

and demographic stochasticity in survival and reproductive suc-

cess (e.g., Sæther and Engen 2015). Predictive capability will also

depend partly on the additive genetic variance and heritability in

LRS, which is nonzero but small in song sparrows (<0.1 mea-

sured approximately chick-to-chick, implying that �90% of phe-

notypic variation represents “stochasticity”; Wolak et al. 2018).

Such small or moderate values may be broadly typical, although

still surprisingly few rigorous estimates are available (Shaw and

Shaw 2014; Hendry et al. 2018). Overall, therefore, the song

sparrow data serve to illustrate the degree to which measures of

longer term genetic contributions are in practice removed from

short-term metrics of phenotypic fitness that are directly observ-

able on individuals (e.g., de Jong 1994).

EVOLUTION LETTERS JUNE 2019 2 8 1



J. M. REID ET AL.

2 4 6 8

0
2

4
6

8
10

Lifespan

E
xp

ec
te

d 
ge

ne
tic

 c
on

tr
ib

ut
io

n

A
r = 0.33 (0.48)

B = 0.53 [1.08]

Rsq = 0.09 (0.25)

0 5 10 15 20 25 30 35
0

2
4

6
8

10

LRS (ringed)

E
xp

ec
te

d 
ge

ne
tic

 c
on

tr
ib

ut
io

n

B
r = 0.51 (0.59)

B = 0.13 [1.16]

Rsq = 0.36 (0.37)

0 5 10 15 20 25

0
2

4
6

8
10

LRS (independent)

E
xp

ec
te

d 
ge

ne
tic

 c
on

tr
ib

ut
io

n

C
r = 0.49 (0.59)

B = 0.20 [1.12]

Rsq = 0.35 (0.36)

0 2 4 6 8 10 12

0
2

4
6

8
10

LRS (recruited)

E
xp

ec
te

d 
ge

ne
tic

 c
on

tr
ib

ut
io

n

D
r = 0.62 (0.68)

B = 0.63 [1.11]

Rsq = 0.47 (0.48)

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

Lambda (ringed)

E
xp

ec
te

d 
ge

ne
tic

 c
on

tr
ib

ut
io

n

E
r = 0.43 (0.53)

B = 1.69 [1.17]

Rsq = 0.29 (0.30)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
2

4
6

8
10

Lambda (recruited)

E
xp

ec
te

d 
ge

ne
tic

 c
on

tr
ib

ut
io

n

F
r = 0.55 (0.62)

B = 1.94 [1.18]

Rsq = 0.40 (0.41)

Figure 7. Relationships between an individual’s absolute expected genetic contribution to the total extant population 20 years posthatch

(i.e., estimated reproductive value, Vi) and six short-term metrics of fitness across 55 female song sparrows hatched in 1992–1994 that

survived to adulthood. Fitness metrics are (A) lifespan, lifetime reproductive success (LRS) measured as (B) ringed, (C) independent, and

(D) recruited offspring, and λind (Lambda) measured across (E) ringed and (F) recruited offspring. Short lines denote multiple individuals

with identical values. Solid lines denote linear regressions (forced through the origin in B–F). Statistics are Pearson correlation coefficient

(r), linear regression slope (B), and adjusted R2 (Rsq) calculated for absolute values of Vi and fitness across adults, or including individuals

that died before adulthood (in parentheses), or using mean-standardized relative values (in square brackets). Further summary statistics

are in Supporting Information S7.

If direct estimation of individual Vi is, or soon could be,

within reach of at least some field studies, what are its uses?

Vi substantially provides the correct answer as to which individ-

uals are expected to make longer term genetic contributions to

any focal population (Barton and Etheridge 2011). Yet, as a sin-

gle summary number, Vi directly integrates effects of selection

and drift acting across multiple generations and does not itself

provide direct insights into which processes or traits cause over-

all outcomes. Observed phenotypic trait values of interest could

potentially be related to Vi rather than to short-term fitness met-

rics, thereby directly capturing associations between phenotypes

and longer term genetic contributions. However, as studies that

can quantify individual Vi will necessarily have multigeneration

pedigree (and/or genomic) data, such data might often be more in-

sightfully deployed to estimate genetic covariances among traits

of interest and single-generation metrics of fitness and thereby

employ the well-established machinery of evolutionary quantita-

tive genetics. In principle, and conditional on key assumptions,

well-specified quantitative genetic analyses can distinguish ge-

netic (co)variances from environmental (co)variances, quantify

evolutionary constraints and cross-generational effects, and pre-

dict overall evolutionary outcomes (de Jong 1994; Morrissey et al.
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Figure 8. Relationships between an individual’s absolute expected genetic contribution to the total extant population 20 years posthatch

(i.e., estimated reproductive value, Vi) and six short-term metrics of fitness across 84 male song sparrows hatched in 1992–1994 that

survived to adulthood. Fitness metrics are (A) lifespan, lifetime reproductive success (LRS) measured as (B) ringed, (C) independent, and

(D) recruited offspring, and λind (Lambda) measured across (E) ringed and (F) recruited offspring. Figure attributes are as for Figure 7.

Further summary statistics are in Supporting Information S7.

2010; Reid 2012; Shaw and Shaw 2014). Yet, such approaches

and their extrapolation to evolutionary predictions across multi-

ple generations also face considerable challenges, especially given

class structure, density-, frequency-, and environment-dependent

selection and genetic variation, and inbreeding and other interac-

tions among relatives. Because individual Vi represents the out-

come of genetic and environmental effects acting across multiple

generations, it should not generally be directly treated as a focal

trait in quantitative genetic analysis. Rather, further direct con-

sideration of the structure of individual pedigrees and genealo-

gies and hence Vi might provide useful complementary insights

into evolutionary outcomes, including age- and sex-structured

contributions, lineage introgression, individuals responsible for

inbreeding, and ultimately inclusive fitness (e.g., Caballero and

Toro 2000; Suwanlee et al. 2007; Barton and Etheridge 2011;

Newman and Easteal 2015).
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