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Abstract
The aim of this study was to analyse the association between plain water intake and glycated Hb (HbA1c) in the National Diet and Nutrition
Survey (2008–2012) rolling survey. These data included diet (4-d diaries) and HbA1c (fasted blood sample) measures of 456 men and
579 women aged 44 (SD 18) years with full information on covariates of interest (age, ethnicity, BMI, smoking status, education, other beverage
intake, energy intake and fibre). Data were analysed using sex-stratified linear and logistic regressions modelling the associations of cups per d
(240ml) of plain water with HbA1c, and odds of HbA1c≥ 5·5%, respectively. Substitution analyses modelled the replacement of sugar-
sweetened beverages, fruit juice and artificially sweetened beverages with plain water. After adjustment, 1 cup/d of plain water was associated
with a −0·04% lower HbA1c (95% CI −0·07, −0·02) in men. In logistic regression, men had a 22% (95% CI 10, 32%) reduced odds of
HbA1c≥ 5·5%/cup per d of plain water. There was no evidence of an association with either HbA1c or odds of HbA1c≥ 5·5% in women.
None of the substitution models was associated with a change in odds of HbA1c≥ 5·5%. Plain water intake was associated with lower HbA1c
in men but not in women. Substituting water for specific beverages was not associated with a reduced odds of HbA1c≥ 5·5%, suggesting that
the addition of water is the more pertinent factor. Future trials should test whether the relationships between water intake and HbA1c is causal
as this could be a cost-effective and simple health intervention.
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It is commonly recommended to drink water as part of a healthy
diet; yet, optimal intakes are unknown, meaning guidelines
often refer to adequate intakes(1). Water is essential for normal
metabolism and may also specifically be associated with
reduced type 2 diabetes (T2D) risk; in brief, in addition to plain
water intake being a marker of a generally healthier lifestyle
(associated with lower sugar intake and more physical
activity (PA)(2)), and potentially increasing satiation(3), it also
contributes to hydration. This reduces arginine vasopressin
secretion(4,5) (AVP, a blood pressure regulating hormone that
impacts glycaemia) and increases plasma volume (subsequently
decreasing the plasma concentration of glucose(6)), both of
which influence glucose homoeostasis(5,6).
There is also evidence that osmolality (which can be influ-

enced by hydration status and is a key influencer of AVP
secretion) impacts glucose metabolism; higher plasma glucose
concentrations have been found during hyperosmolality com-
pared with iso-osmolality or hypo-osmolality(7), supported by an
increase in hepatic gluconeogenesis during hyperosmolality(7)

and dehydration(6). Extracellular osmolality also impacts cell
volume and intracellular metabolism, which may explain these
findings possibly due to the role of insulin on cell swelling and
glucagon on cell shrinkage(7,8). These potential mechanisms
linking water intake to glycaemic control are outlined in Fig. 1.

Despite plausible mechanisms, there is a paucity of research
directly investigating the relationship between plain water
intake and glycaemia. Although some studies have included
water intake as a secondary finding or substitution(9,10), only
three have directly investigated the relationship between water
intake and T2D risk or hyperglycaemia. In the US Nurses’
Health Study II (NHS-II), plain water intake was not associated
with a change in T2D risk, across five intake categories
ranging from <1 cup/d (reference category) to ≥6 cups/d(11).
In the multivariable model, consuming 1 or 2–3 cups/d was
non-significantly associated with a 7% lower T2D risk, whereas
consuming 4–5 or ≥6 cups/d was associated with a
non-significant 6–9% increased risk of T2D compared with the
reference category(11).

Abbreviations: AVP, arginine vasopressin; EER, estimated energy requirements; EI, energy intake; HbA1c, glycated Hb; IQR, interquartile range;
NDNS, National Diet and Nutrition Survey; PA, physical activity; SSB, sugar-sweetened beverages; T2D, type 2 diabetes.

* Corresponding author: H. A. Carroll, fax +44 1225 383833, email h.a.carroll@bath.ac.uk

British Journal of Nutrition (2016), 116, 1770–1780 doi:10.1017/S0007114516003688
© The Authors 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core . U

niversity of Aberdeen , on 26 Jul 2019 at 11:00:48 , subject to the Cam
bridge Core term

s of use, available at https://w
w

w
.cam

bridge.org/core/term
s . https://doi.org/10.1017/S0007114516003688

mailto:h.a.carroll@bath.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1017/S0007114516003688&domain=pdf
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0007114516003688


Conversely, in the Data from Epidemiological Study on
Insulin Resistance Syndrome cohort in France, after adjustment
for potential confounders, 0·5–1 litres/d of plain water was
associated with a significantly lower odds of hyperglycaemia
compared with consuming <0·5 litres/d (OR 0·68; 95% CI 0·52,
0·89)(4). Consuming >1 litres/d was also associated with lower
odds compared with consuming <0·5 litres/d, although this was
not significant (OR 0·79; 95% CI 0·59, 1·05)(4). A small cross-
sectional study in the UK found that 1 cup (240ml)/d of plain
water was linearly associated with a 0·72-point reduced T2D
risk (based on a 0–47-point scale of T2D risk characteristics)(12).
The results of existing studies are somewhat conflicting,

potentially explained by the validity of the dietary data used
(FFQ including plain water intake, with two studies reporting no
validation(4,12)), the characteristics of the cohorts used (nurses
only(11), convenience sampling(12) or volunteers offered free
health checks(4)) or by sex differences – Pan et al.(11) included
only females (finding no significant association between plain
water intake and T2D risk), whereas the other studies(4,12)

included both sexes (finding an inverse association).
Plain water intake represents a potentially efficacious target for

health promotion, which is simultaneously simple to understand
and inexpensive. Cost-effective interventions are of particular
importance as those from lower socio-economic statuses are at
higher risk of metabolic diseases(13). The present study therefore
investigated the role of plain water intake on glycated Hb (HbA1c)
in a large UK sample, hypothesising that plain water intake is
associated with lower HbA1c. As a previous study was conducted
only in women(11) with conflicting results compared with other
mixed-sex studies, we aimed to investigate whether there were
differences between sexes by conducting sex-stratified analyses.

Our final objective was to explore the influence of substituting
certain beverages for plain water on HbA1c.

Methods

Study design and population

Full details of data collection are available online(14). In
summary, the National Diet and Nutrition Survey (NDNS) is a
cross-sectional rolling survey that collects lifestyle and 4-d dietary
records from approximately 1000 nationally representative
respondents from the UK (aged 1·5–64 years) per year
(2008–2012, n 4165). All respondents provided informed consent,
and the study gained ethical approval from appropriate
Local Research Ethics Committees(14).

In the present analyses, participants were included if they
were aged ≥16 years (as they could opt-in for the blood test at
this age), with diet/beverage and blood measures, full infor-
mation on covariates of interest and without self-reported T2D
diagnosis (Fig. 2). Those with self-reported T2D diagnosis were
excluded in order to reduce the likelihood of reverse causality
as diagnosis may lead to lifestyle change or a reduction in
HbA1c in response to medication. The current analyses there-
fore used 1035 respondents’ data from the NDNS 2008–2012
data set and was approved by the Research Ethics Approval
Committee for Health at the University of Bath (ref. no. EP 14/
15 215). Data were downloaded from the UK Data Service(15).

Measure of diet

The NDNS protocol consists of 4-d unweighted food diaries
(although some participants only provided 3-d data), with

Ingestion of PW 

Marker of a
healthy lifestyle

Increased
satiation

Improved hydration status

Displacement
of energy content

from high risk
foods (e.g.

SSB)

Consumption of
less (junk) food

Increased
plasma volume

Reduced arginine
vasopressin secretion

Reduced
osmolality

Increased
cell volume

Weight stability

Reduced
gluconeogenesis

Improved glucose
metabolism

Lower blood glucose concentration/improved glycaemic control

Fig. 1. Mechanisms potentially associating increased water intake with improved glycaemic control. Ingestion of plain water (PW) is a marker of a healthy lifestyle(2);
part of this can manifest itself in consuming PW in place of unhealthy foods/beverages or by coincidental consumption of less unhealthy food. Further, PW intake is
debatably linked to increased satiation(3), thus potentially reducing energy consumption. These factors contribute to improved glycaemia both indirectly (via weight
stability) and directly (via fewer and/or lower blood glucose concentration spikes). Ingestion of PW also contributes to hydration. Improved hydration status reduces the
secretion of arginine vasopressin (a blood pressure regulating hormone that plays an important role in glycaemic control)(4,5). Having an improved hydration status
increases plasma volume, which could reduce the concentration of blood glucose(6). Finally, hydration status directly impacts osmolality, which in turn impacts arginine
vasopressin secretion. Hydration also increases cell volume(8), which both impacts and is impacted by osmolality. Both these factors effect cellular glucose
metabolism(5,6), resulting improved glycaemic control when euhydrated. Further, both dehydration(6) and higher osmolality increase hepatic gluconeogenesis(7), which
may negatively affect glycaemia. SSB, sugar-sweetened beverages.
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instructions on how to estimate portion size(16). The NDNS data
contain a breakdown of nutrients in each food consumed,
including the water content of foods and beverages, based on
the Department for Health NDNS Nutrient Databank(16).
Plain water was the main exposure of interest. This was

defined as water with no added flavours, non-nutritive sweet-
eners, nutrients (such as vitamins), stimulants or energy
(Table 1). Thus, carbonated water was included as it fitted the
above criteria with the only key difference being a slight
increase in acidity compared with most bottled or tap waters.
Other beverages were divided into beverage categories

(Table 1), and water intake from each category was calculated.
This was carried out by aggregating the appropriate food
numbers and/or food groups from the ‘food level dietary data’

NDNS file, followed by adding up the water content of each
category for each person accordingly. This figure was divided
by the number of days of diet reported by each participant to
provide average intake per day (g). Average cups (240ml)
per day of water from each beverage source were then calcu-
lated, as well as total water from food, and total water (water
from plain water, plus beverages, plus food). Although the data
are given in grams, the conversion from grams to millilitres for
water is 1:1.

In order to account for misreporting of energy intake (EI) and
indicate the completeness of the diet record, estimated energy
requirements (EER) were calculated as per the Institute of
Medicine(17) equations (page 182 for males and females
aged ≤18 years and page 185 for males and females aged
≥19 years(17)). For these purposes, those with no PA data were
categorised as ‘sedentary’ as this was the modal average of the
sample (based on self-report data).

Reported EI should equal EER under the assumption of
energy balance; therefore, EI:EER= 1. Because of the error in EI
and EER estimations, we calculated CI for the EI:EER ratio,
within which respondents were considered as ‘plausible’
reporters. To calculate the total CV, the equations and data from
Black & Cole(18), Institute of Medicine(17) and Mendez et al.(19)

were used, with the CV of EI calculated using the individualised
method(20). In this sample, 73·2% were deemed as
under-reporters (mean EI:EER 0·63 (SD 0·14)), 21·4% were
plausible reporters (mean EI:EER 0·98 (SD 0·8)) and 5·4% were
over-reporters (mean EI:EER 1·28 (SD 0·16)), similar to
a previous study using NDNS data(20). Participants were then
categorised according to their reporter category, which was
included in the model as a confounder(21).

Original cohort of NDNS respondents 2008–2012 (all with
3–4 d food diary, age, sex, ethnicity data)

n 4156

Valid diet data
n 4154

Valid HbA1c data
n 1503

Valid diet and
HbA1c data

n 1501

Valid diet, HbA1c,
BMI, education and
smoking status data

n 1084

Self-report T2D
n 47 (excluded)

Total for analyses 1:
n 1035

Total for analyses 2
(moderate-to-

vigorous PA and
systolic blood

pressure data):
n 594

Fig. 2. Flow chart of participant inclusion. NDNS, National Diet and Nutrition
Survey; HbA1c, glycated Hb; PA, physical activity; T2D, type 2 diabetes.

Table 1. Description of beverage categories

Beverage groups Description

Alcoholic beverages Beer, wine, spirits, other drinks
containing alcohol

Artificially sweetened
beverages/low-energy
beverages

Any beverage containing artificial
sweeteners, including milk-based
drinks, drinks with and without caffeine
or any diet/reduced-energy soft drink

Fruit juice 100% fruit or vegetable juice including
from concentrate, but not with added
sugar

Milk Fully reduced and low-fat milks, including
powdered varieties, but not hot
chocolate, non-cow animal milks or
plant-based milks

Plain water Plain water with no added flavours
(including non-nutritive sweeteners),
nutrients (such as vitamins),
stimulants or energy

Sugar-sweetened beverages Carbonated and non-carbonated soft
drinks with added sugar as sweetener,
including fruit juices with added sugar,
drinks with and without caffeine, and
sugar-sweetened water beverages

Tea and coffee Caffeinated and non-caffeinated,
including green/other teas

Miscellaneous beverages Hot chocolate, smoothies, water with
additives such as Ca or vitamins,
non-cow milks, plant-based milks,
protein drinks

1772 H. A. Carroll et al.
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Measure of glycated Hb

Participants could opt-in for a blood test, which typically took
place ≥8 weeks after diet recording. HbA1c was the outcome of
interest. In order to obtain the sample, overnight fasted blood
samples (33ml) were drawn into EDTA tubes, and posted by
the nurses to the UK National Health Service Laboratory at
Addenbrooke’s Hospital, Cambridge, UK. Duplicates were run
only if the results were outside the acceptable range(22).

Covariates

Lifestyle information was gained via interviews. This included
PA (using the Recent Physical Activity Questionnaire, which
was validated to estimate energy expenditure in the NDNS(23)),
general dietary habits and other lifestyle factors (e.g. smoking
status and highest level of education achieved)(14) Objectively
measured anthropometrics were also taken(24).

Statistical analysis

Descriptive statistics summarise the data according to tertiles of
plain water intake; summaries according to HbA1c categories
can be found in the online Supplementary Material. For the
purposes of these summary statistics, three HbA1c categories
were created, on the basis of a criterion for diagnosing T2D
(≥6·5%)(25), increased cardiometabolic risk (5·5–6·49%)(26,27)

and low cardiometabolic risk (<5·5%)(26–28). Data are presented
as percentage of total, means and standard deviations or
median and interquartile range (IQR) for each covariate, as
appropriate. Differences between groups were tested using the
χ2 test, ANOVA with post hoc Bonferroni correction or the
Kruskal–Wallis test with post hoc Dunn–Bonferroni correction
as appropriate.
For beverage categories, the median (IQR) intake of con-

sumers was calculated. To establish the relationship with plain
water and HbA1c, correlations were run using Spearman’s ρ.
The percentage contribution to total average daily water intake
from different sources of water was calculated for binary HbA1c
categories with <5·5% (minimal risk(26–28)) and ≥5·5%
(increased risk(26,27)). Missing data analyses were conducted as
above on respondents aged ≥16 years and are presented in the
online Supplementary Material. Comparisons between included
and excluded respondents were tested statistically using t test,
Mann–Whitney U test or χ2 test.
Potential confounding and mediating variables were identi-

fied from a literature search of studies on T2D and beverages as
well as theory. The following confounders were identified for
inclusion in the model and were available in the NDNS data set:
age, ethnic group (white or non-white), BMI ( kg/m2), smoking
status (current smoker or not), education level (holds a degree
or not), total average daily water from beverages minus average
daily plain water intake, systolic blood pressure (mmHg) and
PA (h/d moderate-to-vigorous PA).
In addition, two mediator models were included. EI

(kJ (kcal)) and reporter category (under-, plausible- or over-
reporter) were included in one model, and fibre (g/4184 kJ
(g/1000 kcal)) was included in another model. Although reporter

category is technically a confounder, it was included in the
mediator model of EI in order to account for misreporting in the
same model. Missing data were not imputed (this was only
conducted to calculate the EI:EER). Thus, if adding a covariate
substantially reduced the sample size, as in the case of PA and
systolic blood pressure, a new analysis was run in the smaller
sample.

Multiple linear regression using heteroscedasticity-consistent
standard error estimators(29) was conducted with continuous
HbA1c as the outcome variable. Model assumptions were
checked and met. Linearity was formally tested using nested
regression models and compared using a likelihood ratio test.

Logistic regression was conducted to test differences between
those at low (HbA1c< 5·5%(26–28)) and increased (HbA1c≥
5·5%(26,27)) cardiometabolic risk in order to provide clinically
meaningful results. Model assumptions were checked and met.
For both regressions, systolic blood pressure (mmHg) and
moderate-to-vigorous PA (h/d) were added in a separate
model, because of the loss in sample size (outlined in Fig. 2). All
analyses were split by sex based on sex differences noted when
comparing previous studies(4,11,12). Sex differences in the
association between plain water intake and HbA1c were
confirmed statistically by adding an interaction term into the
models (linear regression sex×plain water intake interaction
P= 0·010; logistic regression sex×plain water intake interaction
P= 0·008).

Finally, four substitution models were run in order to estimate
the association with HbA1c of substituting one beverage for
another. The effect estimates were generated using logistic
regression with the same covariates as above but with all drink
categories included in the model individually (rather than as
total beverages). The following substitutions were conducted,
using the post-estimation command lincom in Stata, which
linearly combines the exp(b) values for each drink and
estimates the 95% CI based on the variance and covariance of
both drinks: substituting sugar-sweetened beverages (SSB) for
plain water, substituting fruit juice for plain water, substituting
artificially sweetened beverages (ASB) for plain water and
substituting SSB for ASB. The final substitution was run in order
to find whether an alternative no/low-energy beverage would
be associated with a better HbA1c profile, as adherence to this
substitution may be easier compared with plain water(30).

Data were not weighted to take into account known
socio-demographic differences between responders and non-
responders, as previous studies have shown the impact of this
adjustment to be extremely small and not significant(31–33). In
addition, we were only interested in the relationship between
variables rather than estimates of disease prevalence(32). For all
analyses, the α level was set at ≤0·05 (two-tailed) and were
run using SPSS (version 22; IBM), except for the substitution
models, which were run in Stata (version 13; StataCorp LP),
as necessary for completing the respective analyses.

Results

A total of 1035 respondents were included in these analyses
(Fig. 2). Of the sample, 44 % were men. The mean age and BMI
were 44 (SD 19) years and 26·7 (SD 4·6) kg/m2 among men
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(Table 2) and 46 (SD 18) years and 27·0 (SD 5·9) kg/m2 among
women (Table 3), respectively. In this study, 76% of men and
88% of women reported consuming plain water. The median
intake was 1·4 (IQR 0·5, 2·6) cups/d in men and 1·5 (IQR 0·7, 2·8)
cups/d in women (Table 4). Mean HbA1c was 5·5 (SD 0·5)% for
men and 5·5 (SD 0·4)% for women (Tables 2 and 3, respectively).
In unadjusted analyses, HbA1c was lower in men consuming

≤0·21 and 0·22–1·59 cups/d of plain water compared with
>1·59 cups/d (P≤ 0·037 and P≤ 0·001, respectively; Table 2).
Similarly, women in the middle tertile (consuming 0·67–2·05
cups/d) of plain water consumption had higher HbA1c com-
pared with those in the upper tertile (consuming >2·05 cups/d;
P= 0·048; Table 3). In both men (P= 0·462) and women
(P= 0·233), BMI did not vary according to plain water intake.
Participants with at least a degree were more likely to consume
higher amounts of plain water among men (P= 0·043; Table 2)
and women (P= 0·001; Table 3). Systolic blood pressure was
higher in those with HbA1c≥ 6·5% in men (P≤ 0·016; online
Supplementary Table S1) and HbA1c≥ 5·5% in women
(P≤ 0·033; online Supplementary Table S2), compared with
those with HbA1c< 5·5%.
Water intake from different beverage sources and the relation

with plain water intake and HbA1c are shown in Table 4. SSB
were consumed in larger quantities among male consumers, but
were positively correlated with HbA1c in females only (rs 0·21).
Milk intake was positively correlated with HbA1c in men
(rs 0·15) and women (rs 0·11), as were tea and coffee intakes
(rs 0·21, rs 0·26 for men and women, respectively). Tea and
coffee were also negatively correlated with plain water intake
(rs −0·15 for men and rs −0·12 for women; Table 4).
Those with HbA1c< 5·5% had a greater contribution to total

water from plain water in both men (P< 0·001) and women
(P< 0·05; Fig. 3). In addition, this group (HbA1c< 5·5%)
had a lower contribution from other drinks in both men
(P= 0·007) and women (P< 0·05; Fig. 3). Although there was no
significant difference in the contribution from water in
food in women, men with HbA1c< 5·5% consumed sig-
nificantly less water from food than men with HbA1c≥ 5·5%
(P< 0·05; Fig. 3).
Likelihood ratio tests of nested regression models provided

no evidence of deviation from a linear trend (P= 0·451 men,
P= 0·600 women; Fig. 4 and 5, respectively). In the unadjusted
linear regression analysis, 1 cup/d of plain water was associated
with lower HbA1c (B −0·05%; 95% CI −0·08, −0·02; Table 5) in
men. After adjusting for age, ethnic group, BMI, smoking status
and education level, this was attenuated slightly to −0·03%
(95% CI −0·06, −0·01). After further adjustment for total drinks,
EI, reporter category and fibre intake, these coefficients altered
slightly (B −0·04; 95% CI −0·07, −0·02). In the unadjusted model
for women, 1 cup/d plain water was associated with −0·15%
(95% CI −0·17, −0·13) lower HbA1c. However, after further
adjustment (model 2), there was no evidence of lower HbA1c
per cup/d plain water, which remained unchanged in the most
adjusted model (B −0·01; 95% CI −0·02, 0·01; Table 5).
Including PA and systolic blood pressure reduced the sample
size (men n 258; women n 336), but did not meaningfully alter
the coefficients in the linear regression models (online
Supplementary Table S3). Ta
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Table 3. Characteristics of female National Diet and Nutrition Survey respondents according to plain water intake (n 579)
(Mean values and standard deviations/interquartile ranges (IQR))

Plain water intake

Characteristics Total SD/IQR ≤0·66 cups/d SD/IQR 0·67–2·05 cups/d SD/IQR >2·05 cups/d SD/IQR Pfor difference

Participants (n) 579 – 194 – 192 – 193 – –
Ethnicity (% white) 93 – 95 – 89 – 94 – 0·044
Age (years) (mean) 46 18 46 17 48 19 45 18 0·200
HbA1c (% mean) 5·5 0·4 5·5 0·4 5·5 0·4 5·4 0·4 0·050*
Current smoker (%) 18 – 22 – 17 – 14 – 0·079
BMI (kg/m2 mean) 27·0 5·9 26·7 5·8 26·7 5·8 27·6 6·1 0·233
Education (% degree or more) 23 – 14 – 24 – 30 – 0·001
EI (kJ/d mean) 6745 1774 6540 1753 6837 1787 6862 1770
EI (kcal/d mean) 1612 424 1563 419 1634 427 1640 423 0·135
EI:EER (mean) 0·75 0·23 0·74 0·23 0·77 0·24 0·75 0·22 0·214
Fibre (g/4184 kJ (g/1000 kcal) mean ) 8 3 8 3 8 3 9 3 0·050**
Participants (n) 336 – 113 – 109 – 114 – –
Systolic blood pressure (mmHg mean) 122 17 122 16 122 18 122 16 0·999
MVPA (h/d median)† 0·6 0·3, 1·3 0·4 0·1, 1·0 0·7 0·3, 1·5 0·8 0·3, 1·5 0·002***

HbA1c, glycated Hb; EI, energy intake; EER, estimated energy requirement; MVPA, moderate-to-vigorous physical activity.1 cup=240ml.
* Significantly different between 0·67–2·05 and >2·05 cups/d (P≤0·048).
** No significant difference between any group after correction.
*** Significantly different between ≤0·66 and 0·67–2·05 cups/d (P= 0·019) and significantly different between ≤0·66 and ≥2·05 cups/d (P= 0·003).
† Differences calculated using Kruskal–Wallis with post hoc Dunn-Bonferroni correction; all other differences calculated using ANOVA with post hoc Bonferroni correction.

Table 4. Water from difference sources and association with plain water (PW) intake and glycated Hb (HbA1c)
(Medians and interquartile ranges (IQR))

Men (n 456) Women (n 579)

Beverage types
Consumers

(%)†
Median
intake† IQR

Correlation with
PW

Correlation with
HbA1c

Consumers
(%)†

Median
intake† IQR

Correlation with
PW

Correlation with
HbA1c

PW (cups/d) 76 1·4 0·5, 2·6 – −0·25** 88 1·5 0·7, 2·8 – −0·05
Alcoholic drinks (cups/d) 60 1·7 0·5, 3·1 −0·02 −0·08 55 0·5 0·2, 1·0 0·04 −0·14*
ASB (cups/d) 32 0·7 0·3, 1·9 −0·09 −0·05 38 0·8 0·3, 1·7 −0·04 −0·06
Fruit juice (cups/d) 41 0·4 0·2, 0·7 −0·06 0·06 41 0·3 0·1, 0·6 −0·04 0·04
Milk (cups/d) 93 0·6 0·3, 1·0 −0·06 0·14** 95 0·5 0·3, 0·8 −0·09* 0·11*
SSB (cups/d) 52 0·9 0·4, 1·6 0·03 0·01 50 0·5 0·3, 1·0 0·00 0·21**
Tea/coffee (cups/d) 88 3·0 1·7, 4·1 −0·15** 0·21** 93 3·0 1·9, 4·2 −0·12** 0·26**
Miscellaneous beverages

(cups/d)
16 0·3 0·2, 0·8 −0·12 −0·07 21 0·5 0·2, 0·8 0·02 0·13

Total beverages (cups/d)‡ 100 5·8 4·1, 7·7 −0·17** 0·06 100 4·9 3·5, 6·4 −0·12** 0·17**
Water from food (g/d) 100 579 458, 739 0·20*** 0·05§ 100 528 410, 654 0·22*** 0·12**§
Total water (g/d)‡ 100 2015 1571, 2546 −0·09 0·02§ 100 1729 1329, 2147 −0·04 0·18**§

ASB, artificially sweetened beverages; SSB, sugar-sweetened beverages.1 cup=240ml.
* P< 0·05, ** P<0·01, *** P<0·001.
† Percentage of the sample who reported consuming each beverage type; median intakes are of consumers only.
‡ Total minus PW.
§ Pearson’s correlation used; all other correlations used Spearman’s ρ.
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The unadjusted logistic regression model showed that
1 cup/d plain water significantly reduced the odds of
HbA1c≥ 5·5% by 22% (OR 0·78; 95% CI 0·69, 0·87) in men,

which did not meaningfully change after subsequent adjustment
for age, ethnicity, BMI, smoking status, qualification status, total
drinks, EI, reporter category and fibre intake (Table 6). No
association was found for women, including after adjusting for
covariates (in the most adjusted model OR 0·98; 95% CI 0·88,
1·08). After including PA and systolic blood pressure into the
model (thus reducing the sample size), the OR altered, with
the most notable difference resulting in no significant change in
odds of HbA1c≥ 5·5%/cup per d plain water in men (online
Supplementary Table S4). Finally, substituting SSB, fruit juice or
ASB for plain water did not significantly reduce the odds of
having HbA1c≥ 5·5% in men or women, nor did substituting SSB
for ASB (online Supplementary Table S5).

Missing data analysis (online Supplementary Table S6 and S7)
showed that the sample analysed in this study was more
physically active and had a higher EI compared with excluded
respondents, but with no significant difference in BMI
compared with those who were excluded. In addition, included
women were more likely to have a degree and less likely to
currently smoke than excluded women. Despite this, overall
beverage consumption trends were fairly consistent between
included and excluded respondents (online Supplementary
Table S8). Differences were that more included than excluded
women consumed alcohol, tea/coffee and milk, leading to
higher overall beverage consumption and total water intake.
Included men consumed more tea/coffee than excluded men,
although there were no significant differences in total beverages
or total water intake.

Discussion

In this cross-sectional analysis of 1035 adults in the UK NDNS,
we found that higher plain water intake was associated with
lower HbA1c in men, but not in women, independent of a
range of confounders. Of note is that the inclusion of PA and
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systolic blood pressure in the logistic regression model resulted
in no significant change in odds of HbA1c≥ 5·5%/cup per d
plain water in men. The lack of statistical significance
compared with the models excluding PA and systolic blood
pressure is likely a result of the reduction in sample size
compromising the power to detect the small effect size found.
A 0·04% lower in HbA1c was found per cup per day of plain

water consumed in men. The Food and Drug Administration(34)

and the European Medicines Agency(35) class a reduction
of 0·3% as clinically meaningful. These analyses therefore
show that 1 cup/d of water did not contribute to clinically
meaningfully lower HbA1c, despite reaching statistical
significance. In saying this, on a population level, small changes
can notably improve public health. Thus, if these results
are confirmed in causal research, increasing water intake
may be a viable intervention to improve population-level
cardiometabolic health.
Due to the imperfect measure of dietary data, the potential

for reverse causation in the cross-sectional study design and the
inability to fully control for residual confounding factors, these
results should be interpreted cautiously. However, our findings
are in accordance with previous epidemiological studies.
Roussel et al.(4) found a 32% lower risk of hyperglycaemia in
those consuming 0·5–1 litres/d plain water compared with
<0·5 litres/d. Risk was non-significantly lower at higher intake
(>1 litres/d). The non-linear trend found in this study may be

indicative of polydipsia experienced with poor (yet
undiagnosed) glycaemic control. As we excluded those with
T2D, this effect may not have been present in our analysis,
providing a clearer linear trend, supporting the findings of
Carroll et al.(12), who also found a linear association between
lower plain water intake and higher T2D risk. Pan et al.(11)

specifically studied women and found no association, which is
also in agreement with our sex-stratified analyses.

It is unclear why a sex difference may occur. A potential
explanation of these results is changes during the menstrual
cycle as hormones can promote fluid retention during the luteal
phase(36). Speculatively, if fluid is being retained, blood volume
may not increase to the same extent as it does in men,
leading to a higher blood glucose concentration (Fig. 1). In
addition, increases in oestradiol during the menstrual cycle
lowers the osmoregulation operating point of AVP(37). As AVP is
a key mechanism in which hydration status may impact
glycaemia, changes to its homoeostatic set-points throughout
the menstrual cycle should be further investigated, particularly
in relation to how plain water intake may impact these fluc-
tuations. However, it is worth noting that approximately 40% of
females in these analyses were aged >50 years, and therefore
may be (post-) menopausal. Other theories should therefore
also be explored in future studies in order to understand the
underlying mechanism or establish whether the finding is
spurious.

Our substitution analyses of SSB and fruit juice do not
support longitudinal analyses from the USA (NHS-II)(11) or the
UK (European Prospective Investigation into Cancer (EPIC)
Norfolk)(10). The discordant findings may be due to several
factors. Differences in dietary assessment may provide an
explanation; however, both the EPIC study and the NDNS
analysed in this study used the diet diary method. Intakes of
SSB may also explain the differences in findings; estimated
intakes (mean or median cups/d) were lower in the NHS-II
(approximate mean 0·5 cups/d)(11) and EPIC-Norfolk (0·3; IQR
0·2, 0·7)(10) compared with the NDNS (men: 0·9; IQR 0·4, 1·6;
women: 0·5; IQR 0·3, 1·0; total sample: 0·6; IQR 0·3, 1·3).
However, these comparisons should be considered cautiously
because of some methodological differences, such as sample
size differences and data presentation differences (e.g. Pan
et al.(11) presented their data using mean intakes, which are
likely to be higher than medians).

Table 5. Linear regression analysis of cups per day of plain water on glycated Hb (HbA1c) in men (n 456) and women (n 579)*
(B values and 95% confidence intervals)

Men Women

Models† B‡ 95% CI Pfor trend B‡ 95% CI Pfor trend

1 −0·05 −0·08, −0·02 <0·001 −0·15 −0·17, −0·13 0·111
2 −0·03 −0·06, −0·01 <0·001 −0·01 −0·02, 0·01 0·293
3 −0·04 −0·06, −0·01 <0·001 −0·01 −0·02, 0·01 0·346
4 −0·04 −0·07, −0·02 <0·001 −0·01 −0·02, 0·01 0·326
5 −0·04 −0·07, −0·02 <0·001 −0·01 −0·02, 0·01 0·313

* Pfor interaction=0·010 for HbA1c and water intake between sexes.
† Model 1=plain water; model 2=model 1 +age, ethnic group, BMI, smoking status, qualifications (degree or not); model 3=model 2 + total

drinks minus plain water (g); model 4=model 3 + energy intake, reporter category; model 5=model 4 + fibre (g/4184 kJ (g/1000 kcal)).
‡ B value represents the change in HbA1c per increase of 1 cup/d of water.

Table 6. Logistic regression of cups per day of water on glycated
Hb (HbA1c) ≥5·5% compared with <5·5% in men (n 456) and
women (n 579)*
(Odds ratios and 95% confidence intervals)

Men Women

Models† OR 95% CI OR 95% CI

1 0·78 0·69, 0·87 0·94 0·86, 1·03
2 0·79 0·70, 0·90 0·97 0·88, 1·08
3 0·78 0·68, 0·88 0·98 0·89, 1·09
4 0·76 0·67, 0·87 0·98 0·89, 1·09
5 0·78 0·68, 0·90 0·98 0·88, 1·08

* Pfor interaction=0·008 for HbA1c and water intake between sexes.
† Model 1=plain water; model 2=model 1 + age, ethnic group, BMI, smoking status,

qualifications (degree or not); model 3=model 2 + total drinks minus plain water
(g); model 4=model 3 +energy intake, reporter category; model 5=model 4 + fibre
(g/4184 kJ (g/1000 kcal)).
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Given the generally lower estimated SSB intakes and that
substitution effects were small (in Pan et al.(11): 7%; 95% CI 3,
11% for SSB; 8%; 95% CI 2, 13% for fruit juice; in O’Connor
et al.(10): 14%; 95% CI 1, 26% for SSB), the substantially larger
sample sizes in the NHS-II (n 82 902) and EPIC-Norfolk
(n 25 639) compared with this NDNS analysis (n 1035) were
likely the main reason for the differences in the results. This is
supported by our substitution analysis of substituting SSB for
plain water, which also showed a non-significant 14% reduc-
tion in the odds of HbA1c≥ 5·5% in men – an effect size that is
in accordance with O’Connor et al.
Although SSB, and to a lesser extent fruit juices, have been

associated with cardiometabolic risk(38–40), a recent review
concluded that there were inconsistent results with regard to
substituting SSB for zero/low-energy beverages in terms of T2D
risk and fasting plasma glucose concentrations(41). However,
the review also highlighted the paucity of evidence; thus,
further research should explore associations between glycaemic
control and specific beverage substitutions.
Nevertheless, our findings are supported by a randomised

controlled trial in which overweight and obese women
substituted SSB for water, with no effect found on cardio-
metabolic risk factors(42). Some health markers were reduced in
obese subjects; however, as these were not the focus of the
present study, further research should investigate differential
effects in predefined weight categories. Taken together with our
findings, these results suggest that adding, rather than
substituting, plain water may be the more pertinent factor to
consider, as potentially the increase in water intake improves
hydration status, whereas substituting beverages does not
change the net intake of fluid.
Our results may also offer a partial explanation regarding

findings from studies of other beverages. Generally, beverages
that contribute to euhydration(43,44) are associated with lower
T2D risk, for example, coffee(44,45), milk(46) and moderate
alcohol consumption(47). Studies that have found a positive
association between SSB and T2D often attribute the relation-
ship to the rapidly absorbed sugar load provided by the
beverages. However, depending on their solute concentration,
SSB may contribute to either hydration(43) or dehydration(48),
providing a further potential mechanism to consider when
exploring the relationship between SSB and T2D.
It is unclear from the study design whether the relationship

found between plain water intake and HbA1c is causal, and
therefore what (if any) mechanisms highlighted in Fig. 1
underlie the association. There was no evidence of mediating
effects from adding EI or fibre intake into the models, sug-
gesting that plain water intake is independent of these factors
and may act on HbA1c via other pathways. As AVP is a key
blood pressure-regulating hormone, the higher systolic blood
pressure in those with HbA1c≥ 5·5% compared with <5·5%
support the role of AVP in the association between plain water
intake and HbA1c (Fig. 1).
Plain water consumption was associated with other factors

that may benefit health. For example, higher plain water intake
was associated with lower water intake from other beverages,
and increased fibre (in men), potentially suggestive of a
healthier or less energy-dense diet. This is further supported by

men with HbA1c< 5·5% having a greater contribution of total
water from food sources, indicative of a lower energy-dense diet.
This may explain the sex differences found in these
analyses. Finally, missing data analysis showed some differences,
which may suggest that more health conscious participants were
more willing to provide a blood sample. Most notably,
participants included in these analyses were on average more
physically active than excluded respondents. Included women
were also less likely to smoke, have better education and have
higher total water intake than excluded women.

Strengths and limitations

This study analysed a large sample of adults in the UK using an
objective measure of long-term glycaemia and unweighed food
diaries in order to assess diet. Estimated food diaries were
chosen in order to reduce participant burden while still pro-
viding valid and reliable data (particularly compared with more
common measures such as FFQ). Food diaries have been
shown to more accurately record EI than questionnaires or 24-h
recalls(49), making the dietary data used in this study more
accurate than most previous studies investigating water intake
and T2D risk. Nonetheless, subjective measures always carry
some degree of error. In the present analyses, under-reporting
was controlled for by inclusion in the regression models. This
did not meaningfully alter the results, suggesting that reporting
of EI did not have a significant impact on the relationship
between plain water intake and HbA1c.

Causality cannot be inferred from observational data, but the
sample used (which included men and women from a range of
ages) improves the generalisability of our findings to the UK. To
our knowledge, this is the first analysis of UK data to directly
investigate the relationship between HbA1c and plain water
intake, building substantially on previous research in the UK(12),
while supporting findings from the USA(11) and France(4),
increasing the external validity of the research.

A key limitation of any cross-sectional study is the potential
for reverse causation. The exclusion of respondents with a T2D
diagnosis is likely to have somewhat reduced the possibility of
reverse causality (as this group may suffer from polydipsia
(excessive thirst) and/or they may have made positive lifestyle
changes after diagnosis), although this explanation cannot be
fully excluded. Furthermore, there are issues of residual
confounding. Although many variables were included in the
regression models, there was limited availability of some
covariates (namely PA and blood pressure), potentially affecting
the power to detect strong evidence of an association. It is also
unclear whether any unmeasured confounding factors would
have altered the associations found.

As there is a paucity of research in this area, it is important to
find plausible relationships between exposures and outcomes in
order to justify experimental research. We aimed to test whether
EI or fibre mediated any relationship found, as plain water intake
may attenuate EI, leading to lower or less-frequent rises in blood
glucose concentration(3,50), and as theoretically water bulks fibre,
which can lower the postprandial glycaemic response(51).
Although we found no evidence of these factors mediating
the relationship, the findings presented have provided some
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interesting results with potential sex differences, which should
be investigated further in randomised controlled trials.

Conclusions

This cross-sectional analysis of 1035 NDNS respondents’ data
found that plain water intake was associated with lower HbA1c
in men, but not women, after controlling for a wide range of
confounding factors. However, it should be noted that the
reduction in HbA1c found per cup/d of plain water was not
clinically meaningful. None of the substitutions modelled were
associated with a change of risk in HbA1c ≥5·5%, suggesting
that the addition of plain water may be more pertinent than
displacing other beverages. Longitudinal and experimental
studies should be conducted in order to determine the role of
plain water intake on cardiometabolic risk. Furthermore, ran-
domised control trials should elucidate on whether the sex
differences found in these analyses were genuine, as well as
develop an understanding of any underlying mechanisms.
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