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A PROOF OF THE FIRST KAC–WEISFEILER CONJECTURE

IN LARGE CHARACTERISTICS

BENJAMIN MARTIN, DAVID STEWART AND LEWIS TOPLEY

Abstract. In 1971, Kac and Weisfeiler made two influential conjectures describing the dimensions
of simple modules of a restricted Lie algebra g. The first predicts the maximal dimension of simple g-
modules and in this paper we apply the Lefschetz principle and classical techniques from Lie theory
to prove this conjecture for all restricted Lie subalgebras of gl

n
pkq whenever k is an algebraically

closed field of characteristic p " n. As a consequence we deduce that the conjecture holds for the
the Lie algebra of a group scheme when specialised to an algebraically closed field of almost any
characteristic.

1. Introduction

Since the pioneering work of Zassenhaus [Zas54], it has been known that the dimensions of simple
modules of finite dimensional Lie algebras over a field k of characteristic p ą 0 are bounded, and
that the maximal dimension, which we denote Mpgq, is a power of p. Jacobson introduced the
notion of a restricted Lie algebra with a view to developing a Galois theory for purely inseparable
field extensions [Jac37]. Very briefly restricted Lie algebras are those which admit a p-power map
x ÞÑ xrps satisfying axioms which are modelled on the properties of the map DerkpAq Ñ DerkpAq
given by d ÞÑ dp where A is an associative k-algebra. Many of the modular Lie algebras arising in
nature are restricted, for example when g is the Lie algebra of an algebraic k-group G there is a
natural G-equivariant restricted structure on g.

Now let k be algebraically closed. In [VslK71] Kac and Weisfeiler carried out the first intensive
study of representations of restricted Lie algebras. The key property of the restricted structure on
g is that the elements xp ´ xrps are central in Upgq for x P g, and the subalgebra Zppgq Ď Upgq
generated these elements is known as the p-centre. One of the fundamental insights of [VslK71]
is that the maximal ideals of Zppgq are parametrised by g˚. Since Upgq is finite over its p-centre
it follows from Hilbert’s Nullstellensatz that every simple g-module is annihilated by a unique
maximal ideal of Zppgq, and so to every simple g-moduleM we may assign some linear form χ P g˚

known as the p-character of M . This situation is reminiscent of Kirillov’s orbit method, and so
it is natural to hope that global properties of the module category g -mod will be controlled by
geometric properties of the module g˚. These aspirations were formalised by Kac–Weisfeiler in the
form of two conjectures: the first of these predicts the maximal dimension of simple g-modules,
and in the current paper we apply techniques from model theory to confirm that conjecture for
all restricted Lie subalgebras of glnpkq when the characteristic of the field k is large. The second
conjecture proposes lower bounds on powers of p dividing the dimensions of g-modules with p-
character χ; for more detail see [PS99] and the references therein.

The coadjoint stabiliser of χ P g˚ is denoted gχ and the index of g is defined by

indpgq :“ min
χPg˚

dim gχ. (1.1)
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The first Kac–Weisfeiler conjecture (KW1) predicts that when g is any restricted Lie algebra the
maximal dimension of simple g-modules is

Mpgq “ p
1

2
pdim g´ind gq. (1.2)

Theorem 1.1. For all d P N there exists a p0 P N such that if k “ k is a field of characteristic
p ą p0 and g Ď gldpkq is a restricted Lie subalgebra, then the first Kac–Weisfeiler conjecture holds
for g.

We now outline the proof of the theorem. In [PS99] Premet and Skryabin studied deformations
of reduced enveloping algebras to spectacular effect: one of their many results states that Mpgq ě

p
1

2
pdim g´ind gq for any restricted Lie algebra g and so it remains to prove the opposite inequality.

In Kirillov’s thesis he introduced the notion of a polarisation of a linear form χ, which is a Lie
subalgebra s Ď g satisfying χrs, ss “ 0 and dim s “ 1

2
pdim g`dim gχq. These turn out to be central

to the classification of primitive ideals in enveloping algebras of complex solvable Lie algebras
[Dix96, Ch. 6], as well as the classification of simple modules over restricted solvable Lie algebras
[VslK71, §2]. We say that s is a weak polarisation of χ P g˚ if s Ď g is a Lie subalgebra of dimension
1
2
pdim g ` ind gq satisfying χrs, ss “ 0. Solvable weak polarisations are known to exist for every

linear form on every finite dimensional complex Lie algebra, and we deduce that the same holds for
all modular Lie algebras in large characteristics. In order to make the aforementioned deduction
we employ the Lefschetz principle in a rather novel way: we simultaneously quantify over all Lie
algebras of a fixed dimension. Modulo some technical hurdles showing that the derived subalgebra
of a weak polarisation is restricted, the proof concludes by observing that every simple module is
a quotient of a module induced from a restricted Lie subalgebra containing a solvable polarisation
(Theorem 3.3). This places the required upper bound on the dimension of simple modules. After
providing an elementary introduction to the Lefschetz principle and the representation theory of
restricted Lie algebras in §2, the proof of the main theorem is given in §3.

It is worth comparing the proof sketched above to the situation for Lie algebras of reductive
groups. When g is such a Lie algebra it is known that for every χ P g˚ there exists a Borel
subalgebra b Ď g such that χrb, bs “ 0, dim b “ 1

2
pdim g` ind gq and rb, bs is unipotent. It follows

quickly that every simple g-module of p-character χ is a quotient of some baby Verma module.
These are defined to be the Uχpgq-modules induced from one dimensional Uχpbq-modules. Hence
the Borel subalgebras play the role of solvable weak polarisations in the reductive case.

Until recently it was considered to be possible that (1.2) might hold for non-restricted Lie
algebras, however counterexamples to this hope were found by the third author, by presenting
pairs of Lie algebras with isomorphic enveloping algebras and distinct indexes [Top17].

Let R be a commutative unital ring and say that k is an R-field if k is a field with an R-algebra
structure. If G is an R-group scheme and k is an R-field then we write Gk for the base change of
G from R to k. In our next theorem we describe a fruitful source of examples to which our main
theorem can be applied.

Theorem 1.2. Let G be a group scheme over R. There exists a p0 P N such that when p ą p0 is
prime and k “ k is an R-field of characteristic p, the first Kac–Weisfeiler conjecture holds for the
Lie algebra LiepGkq.

Thus for a fixed group scheme, the KW1 conjecture holds in almost all characteristics. The
proof, which is presented in §3.1, demonstrates that the Lie algebra LiepGkq admits a faithful
restricted representation of dimension d independent of the choice of characteristic p ą 0 of the
field k, which allows us to apply the first main theorem. Finally we consider an interesting family
of Lie algebras parameterised by the primes such that gp is restricted if and only if (1.2) holds,
which is if and only if p ” 1 modulo 4.
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2. Preliminaries

2.1. Model theory and the Lefschetz principle. Since the main results and motivations of
this paper come from representation theory, we expect that some of the readers will be unfamiliar
with the model-theoretic methods which we use at several points. As such we include here a short
recap of some of the elements of model theory; a more detailed introduction to the theory may be
read in [Mar02]. Since our goal is to explain the Lefschetz principle, we work exclusively with the
language of rings.

The language of rings Lring is the collection of first-order formulas which can be built from the
symbols t@, D,_,^, ,`,´,ˆ, 0, 1,“u along with arbitrary choice of variables. For example, for
n ą 0 fixed the following are formulas in Lring:

p@xqp@yqpxn ` yn ‰ znq; (2.1)

p@xqpDyq ppxy “ 1qq _ px “ 0qq ; (2.2)

p@x0qp@x1q ¨ ¨ ¨ p@xn´1qpDyqpy
n ` xn´1y

n´1 ` ¨ ¨ ¨ ` x0 “ 0q. (2.3)

We say that a formula is a sentence if every variable is bound to a quantifier; for example for
formula (2.1) is not a sentence because z is a free variable, whilst (2.2) and (2.3) are both sentences
in Lring. If φ is a formula with free variables x1, ..., xn then we might indicate this by writing
φ “ φpx1, ..., xnq. In this case we can obtain a sentence from φ by binding the free variables to
quantifiers. For example, if φ “ φpzq is the formula from (2.1) then p@zqφpzq is a sentence in the
language of rings. In this way we may use formulas to build sentences.

For p ě 0 we record one more first-order sentence ψp in Lring:

ψp : 1` ¨ ¨ ¨ ` 1
looooomooooon

p times

“ 0. (2.4)

An Lring-structure is a set R together with elements 0R, 1R P R, binary operations `R,´R,ˆR :
R ˆ R Ñ R, and the binary relation “R which is always taken to be the diagonal embedding
R Ď R ˆR. For example, every ring R gives rise to an Lring-structure in the obvious way.

Later in this paper we will need to express some statements about elements of vector spaces as
formulas and sentences in the language Lring. To prepare for those arguments we now record a few
examples which illustrate this procedure.

Lemma 2.1. Let k be a field. The following statements can be formulated as sentences and
formulas in Lring:

(1) there exist elements x1, ..., xm P k
n which are linearly independent in kn;

(2) a given linear map f : kn ‘ kn Ñ kn defines a Lie bracket r¨, ¨sf on kn;
(3) the Lie algebra pkn, r¨, ¨sfq is solvable.

Proof. We view kn as a set of tuples pa1, ..., anq of elements of k. Then (1) is equivalent to the
following first-order sentence:

p@pi, jq P t1, . . . nu ˆ t1, . . . , muqpDai,j P kqp@b1, ..., bm P kq

pp
m
ÿ

j“1

bja1,j “
m
ÿ

j“1

“ bja2,j “ ¨ ¨ ¨ “
m
ÿ

j“1

bjam,j “ 0q ñ pb1 “ b2 “ ¨ ¨ ¨ “ bm “ 0qq.

Let v1, ..., vn P k
n denote the standard basis. A linear map f : kn ‘ kn Ñ kn satisfies fpvi, vjq “

řn

l“1 fi,j;lvk for some scalars fi,j;l and we identify f with the array pfi,j;lq1ďi,j,lďn P k
n3

. Now the
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claim that f defines a Lie bracket can be encoded as a collection of linear and quadratic polynomial
relations with integral coefficients in the variables

pfi,j;lq1ďi,j,lďn. (2.5)

These relations correspond to skew-symmetry and the Jacobi identity. Since all integers can be
defined using only the symbols t`,´, 1, 0u it follows that f defines a Lie bracket is a first-order
formula in Lring with free variables (2.5). Similarly the statement the Lie algebra pkn, r¨, ¨sfq is
solvable can be encoded in terms of the vanishing of all n-fold iterations of the Lie bracket, which
is equivalent to the vanishing of a collection of homogeneous polynomials of degree 2n´1 amongst
the variables (2.5). Again this is a first-order formula in Lring with free variables (2.5). �

An Lring-theory is a set T of first order sentences in Lring. If φ is a sentence and M :“
pR,`R,´R,ˆR, 0R, 1R,“Rq is an Lring-structure then we say that M is a model of φ, and write
M ( φ, if the sentence φ is true when interpreted in M . If T is an Lring-theory then we say that
M is a model of T and write M ( T if M ( φ for all φ P T .

A theory should be thought of as the collection of sentences which are true for every model of
a particular class of mathematical object. Since mathematical objects are usually determined by
axioms, we shall briefly explain (by way of an example) how to pass from a set of axioms to a
theory. Consider the set A of axioms of commutative rings, which are clearly first order sentences
in Lring. We may then consider the set CR Ď Lring of sentences which are true for every model of A,
ie. those which are true in every commutative ring. Thus CR denotes the theory of commutative
rings. To illustrate the notation introduced above, observe that pR,`R,´R,ˆR, 0R, 1R,“Rq ( CR

is equivalent to the statement that pR,`R,´R,ˆR, 0R, 1Rq is a commutative ring. As such we may
slightly abuse terminology and identify the class of models of CR with the class of commutative
rings.

In this paper we will be primarily interested in the theory of fields. The axioms of a field can
obviously be written as first-order sentences in Lring; for instance (2.2) expresses the existence of
multiplicative inverses. The axioms of the algebraically closed fields are obtained by including the
sentences (2.3) for all n ą 0. If p ą 0 is prime then we may include the sentence ψp, defined in (2.4),
to obtain the axioms of the algebraically closed fields of characteristic p ą 0; the corresponding
theory is denoted ACp. Alternatively we may include the sentences t ψp | p ą 0u to obtain the
axioms of the algebraically closed fields of characteristic zero, and we denote their theory by AC0.
Since it will cause no confusion we identify the class of all models of ACp with the class of all
algebraically closed fields of characteristic p, whenever p ě 0 is fixed.

The following result is Gödel’s first completeness theorem in the context of Lring.

Lemma 2.2. Let φ be a first-order sentence and T be any theory in Lring. Then φ is true when
interpreted in every model of T if and only if φ can be deduced from T by means of a formal proof
in Lring.

We say that an Lring-theory T is complete if, for every first-order sentence φ in Lring, either φ
is true when interpreted in every model of T , or  φ is true when interpreted in every model of
T . By Lemma 2.2 this is equivalent to saying that for every sentence φ we can derive either φ or
 φ from T by means of a formal proof. The following well-known result is proven by quantifier
elimination [Mar02, Corollary 3.2.3].

Theorem 2.3. For p “ 0 or p prime, the theory ACp is complete.

As an immediate consequence we obtain:

Corollary 2.4. (Lefschetz principle) If φ is a sentence in Lring then:

(1) If φ is true in some model of ACp where p ě 0 then φ is true in every model of ACp.
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(2) If φ is true in some model of AC0 then there exists a p0 P N such that φ is true in any
model of ACp for p ą p0.

Proof. Part (1) is precisely Theorem 2.3. For part (2) suppose that φ is true over some field
satisfying the axioms of AC0. Then by part (1) it is true for every such field, and by Lemma 2.2
we conclude that there exists a formal proof for φ in Lring using only the axioms of AC0. Since the
proof of φ can be written as a finite sequence of sentences in Lring joined by logical connectives, it
follows that the set of primes

Pφ :“ tp |  ψp occurs in the proof of φu

is finite, where ψp is defined in (2.4). Hence for p ą maxpPφq there is a formal proof of φ using the
axioms of ACp. Using Lemma 2.2 once more we see that φ is true for Lring-structure satisfying the
axioms of ACp. �

2.2. Restricted Lie algebras and reduced enveloping algebras. Fix a field k of characteristic
p ą 0 and let g be a Lie algebra over k. As usual we write Upgq for the enveloping algebra and
Zpgq for the centre of Upgq. Then g is said to be a restricted Lie algebra over k if it comes equipped
with a p-map gÑ g, written x ÞÑ xrps, which satisfies two axioms: if we write ξ : gÑ Upgq for the
map x ÞÑ xp ´ xrps, then p´qrps must satisfy

(1) ξpgq Ď Zpgq;

(2) ξ is p-semilinear in the sense of [Jan98, Lemma 2.1].

It follows from the PBW theorem that the vector space ξpgq generates a polynomial algebra of
rank equal to dimpgq inside Upgq. This algebra is referred to as the p-centre of Upgq, and is
denoted Zppgq. If txi | i P Iu is a basis for g then the PBW theorem for Upgq implies that Zppgq
is isomorphic to a polynomial ring generated by tξpxiq | i P Iu. Hence Zppgq can be naturally
identified with the coordinate ring krpg˚qp1qs on the Frobenius twist of g˚.

When k is an algebraically closed field we have g˚ “ pg˚qp1q as sets and so for every χ P g˚ there
is a maximal ideal Iχ P SpecZppgq. Explicitly we have Iχ :“ pxp ´ xrps ´ χpxqp | x P gq and the
reduced enveloping algebra with p-character χ is defined to be

Uχpgq :“ Upgq{UpgqIχ.

If g0 Ď g is a restricted subalgebra and χ P g˚ then we might abuse notation by identifying
Uχ|g0

pg0q with the subalgebra of Uχpgq generated by g0, and denote this subalgebra by Uχpg0q. We
say that a g-module M has p-character χ if the corresponding representation Upgq Ñ EndkpMq
factors through the quotient Upgq Ñ Uχpgq. If g0 Ď g are restricted Lie algebras, χ P g˚ and M0

is a Uχpg0q-module then we may define the induced module

Indg,χ
g0
pM0q :“ Uχpgq bUχpg0q M0. (2.6)

We have

dim Indg,χ
g0
pM0q “ pdim g´dim g0 dimpM0q (2.7)

and this induced module is universal amongst Uχpgq-modules such that the restriction to Uχpg0q
contains a submodule isomorphic to M0.

The coadjoint g-module is the vector space g˚ with module structure given by px ¨ χqpyq :“
χpry, xsq where x, y P g and χ P g˚. The stabiliser of χ P g˚ is then defined to be

gχ :“ tx P g | x ¨ χ “ 0u “ tx P g | χrx, gs “ 0u

and the index of g is the minimal dimension of gχ as χ varies over all elements of g˚, commonly
denoted indpgq.
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3. The maximal dimensions of simple modules

In this section we prove the main theorem. In order to do so we recall a few pieces of terminology.
If g is a Lie algebra over a field k and χ P g˚ we say that a Lie subalgebra s Ď g is subordinate to
χ if s is an isotropic subspace with respect the skew-symmetric form

Bχ : g ˆ g Ñ k

px, yq ÞÑ χprx, ysq.
(3.1)

In other words, χprs, ssq “ 0. We say that a subalgebra s Ď g is a polarisation of χ if s is a
Lagrangian for Bχ, ie. s is a maximal isotropic subspace of g. Since the stabiliser gχ coincides
with the radical of Bχ it follows from [Dix96, 1.12.1] that

dimpsq ď
1

2
pdimpgq ` dimpgχqq (3.2)

if s is subordinate to χ. Furthermore equality holds if and only if s is a polarisation of χ. Finally
we say that a Lie subalgebra s Ď g is a weak polarisation of χ if s is isotropic for the form (3.1)
and

dimpsq “
1

2
pdimpgq ` indpgqq. (3.3)

The proof of the main theorem rests on the existence of solvable weak polarisations for linear
forms, and the following result is the key step.

Proposition 3.1. For all n, d P N, there exists p1 “ p1pn, dq P N such that if:

(1) k is an algebraically closed field of characteristic p ą p1;
(2) g is a Lie algebra of dimension n over k;
(3) there exists a faithful representation ρ : gÑ gldpkq.

Then for every χ P g˚ there is a solvable weak polarisation s Ď g, such that ρpsq is upper-
triangularisable in gldpkq.

Proof. Fix n, d P N, r P t0, ..., nu and let k be an algebraically closed field of characteristic p ě 0.
Let tv1, ..., vnu denote the standard basis for kn. If f P Homkpk

n ‘ kn, knq then fpvi, vjq “
řn

l“1 fi,j;lvk and so we identify Homkpk
n‘kn, knq with kn

3

and identify f with pfi,j;lq1ďi,j,lďn P k
n3

.

For i “ 1, ..., n we write Ai for an element of Matdpkq – kd
2

, so that the n-tuple A “ pA1, ..., Anq
is an element of knd

2

. Finally write χ “ pχ1, ..., χnq P k
n and we view χ as an element of pknq˚ “

Homkpk
n, kq via vi ÞÑ χi.

Fix r P t0, ..., nu and for any pf, A, χq P kn
3`nd2`n we consider the following four claims:

(i) f “ pfi,j;lq are the structure constants of a Lie bracket r¨, ¨sf on kn;
(ii) the Lie algebra pkn, r¨, ¨sfq has index equal to r;
(iii) the linear map kn Ñ Matdpkq given by vi ÞÑ Ai is a faithful Lie algebra representation

ρ : kn Ñ gldpkq;
(iv) There exist elements x1, ..., xs P k

n where s “ 1
2
pn ` rq which are linearly independent

and span a solvable Lie subalgebra s of pkn, r¨, ¨sfq such that χprs, ssfq “ 0 and ρpsq is
upper-triangularisable inside gldpkq.

Now consider the following statements indexed by r:

Φr : @pf, A, χq P kn
3`d2n`nppiq^ piiq^ piiiqq ñ pivqq (3.4)

Claim: Each statement Φr can be formulated as a first-order sentence in the
language Lring of rings (in the notation of §2.1).
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In Lemma 2.1(2) we showed that (i) is a formula in the language Lring with free variables pfi,j;lq. If
pfi,j;lq are the structure constants of a Lie bracket r¨, ¨sf then the structure constants of the coadjoint
representation ad˚

f : kn Ñ Matnpkq are p´fi,l;jq1ďi,j,lďn. It follows that for x “ pa1, ..., anq P k
n

the statement ad˚
fpxqχ “ 0 can be expressed by the vanishing of certain polynomial functions,

with integral coefficients, in the variables pfi,j;lq and a1, ..., an, χ1, ..., χn. The statement (ii) can
be phrased in the following way: there exists ψ “ pψ1, ..., ψnq P k

n – Homkpk
n, kq and linearly

independent elements x1, ..., xr P kn which satisfy ad˚
f pxiqψ “ 0, and there does not exist ϕ P

Homkpk
n, kq such that if x1, ..., xr P k

n satisfy ad˚
fpxiqϕ “ 0 then x1, ..., xr are linearly dependent.

This is a first-order formula in Lring with free variables pfi,j;lq thanks to part (1) of Lemma 2.1
and the previous remarks. The fact that (iii) is a first-order formula in Lring with free variables
pf, Aq follows similarly. Statement (iv) asserts the existence of x1, ..., xs spanning a solvable Lie
subalgebra of pkn, r¨, ¨sfq. The existence of elements which satisfy χprxi, xjsfq “ 0 and span a
solvable Lie algebra is a first-order formula, indeed this follows quickly from Lemma 2.1(3). The
fact that the solvable subalgebra can be upper-triangularised in gldpkq can be expressed by the
existence of a basis of kd satisfying special properties which can also be expressed as first-order
formulas in Lring. Since the last remark is proven in a manner almost identical to the previous
parts, we leave the details to the reader. The only free variables in (iv) are pf, A, χq and so we
have shown that all of the variables in the formulas (i), (ii), (iii), (iv) are bound to quantifiers in
Φr. Hence Φr is a first-order sentence in Lring, and this proves the claim.

Keep n, d P N, r P t0, ..., nu fixed, and now suppose that k is algebraically closed of characteristic
zero. By Lie’s theorem [Dix96, Theorem 1.3.12] we know that every solvable Lie subalgebra of
gldpkq is upper-triangularisable and thanks to [Dix96, Corollary 1.12.17] we know that when g is a
Lie algebra over k of dimension n and index r, for all χ P g˚ there exists a solvable subalgebra of
g subordinate to χ. Hence every algebraically closed field of characteristic zero is a model for Φr.
It follows by the Lefschetz principle (Corollary 2.4) that there is a number pr1 “ pr1pn, dq P N such
that Φr is also true when interpreted in any algebraically closed field of characteristic p ą pr1. If we
set p1 :“ maxtp01, p

1
1, ..., p

n
1u then it follows from the above remarks that for all for all r “ 0, ..., n,

Φr is true for every algebraically closed field of characteristic p ą p1. This completes the proof of
the current Proposition. �

Lemma 3.2. Let s be a restricted solvable Lie algebra over k with a faithful restricted representation
sÑ gldpkq. If charpkq ą d and s is upper-triangularisable then rs, ss is a restricted unipotent ideal
of s.

Proof. We may suppose that s Ď gldpkq is an upper-triangular restricted subalgebra. Then rs, ss
is strictly upper-triangular, and charpkq ą d forces the p-power map to vanish identically on rs, ss,
which implies the claim. �

Theorem 3.3. For all d P N there exists a p0 “ p0pdq P N such that if k “ k is a field of
characteristic p ą p0, if g Ď gldpkq and M is a simple g-module with p-character χ then M is
a quotient of a module of the form Indg,χ

s̄ pM0q where s̄ is a restricted Lie subalgebra of g which
contains a solvable weak polarisation of χ, and M0 is a one dimensional Uχps̄q-module.

Proof. Fix d P N, let p0 :“ maxtd, p1p1, dq, p1p2, dq, ..., p1pd
2, dqu where p1pn, dq was defined in

Proposition 3.1, and let k be an algebraically closed field of characteristic p ą p0. Let g Ď gldpkq
be restricted and let χ P g˚. Thanks to Proposition 3.1 we know that there exists a solvable weak
polarisation s Ď g of χ with s upper-triangularisable. Let s̄ denote the restricted closure of s in
gldpkq, which is the smallest restricted Lie subalgebra of gldpkq containing s. Evidently we have
s Ď s̄ Ď g. Since the upper-trinagular matrices form a restricted Lie subalgebra of gldpkq it follows
that s̄ is upper-triangularisable and solvable, and so rs̄, s̄s is a restricted unipotent ideal of s̄.
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It follows from [Jan98, Proposition 3.2] that Uχprs̄, s̄sq “ U0prs̄, s̄sq is a local ring with a unique
one dimensional simple module. If M is a simple g-module with p-character χ then we may
consider the restriction M |Uχprs̄,s̄sq of M to Uχprs̄, s̄sq. By our previous observation we may find a
one dimensional rs̄, s̄s-submoduleM0 in the socle ofM |Uχprs̄,s̄sq. Since rs̄, s̄s is an ideal of s̄ it follows
that M0 is a Uχps̄q-module. Now the existence of a surjection Indg,χ

s̄ pM0q ։ M follows from the
universal property of induced modules. � �

Now the proof of the main theorem follows from the previous theorem, combined with (2.7).

Remark 3.4. It has been conjectured that for a restricted Lie algebra g the following are equivalent:

(i) g is Frobenius, meaning indpgq “ 0;
(ii) there exists a non-empty open subset O Ď g˚ such that Uχpgq is simple for all χ P O.

Our main theorem implies that the conjecture holds for Lie subalgebra of gldpkq provided charpkq ą
p0pdq. In fact (i) ñ (ii) holds in general thanks to [PS99, Theorem 4.4]. Conversely, supposing
Uχpgq is simple, there is a simple g-module of the maximal possible dimension

a

dimUχpgq “

p
1

2
dim g. If the KW1 conjecture holds for g then Mpgq “ p

1

2
dim g “ p

1

2
pdim g´ind gq and so g is

Frobenius.

3.1. Example: the Lie algebras of group schemes. In this final subsection we draw attention
to families of important Lie algebras to which our first theorem can be applied, proving the second
theorem from the introduction. We recall some of the elements of the theory of algebraic group
schemes, following [DG70], [Jan03]. Throughout the subsection we fix a commutative unital ring
R, we write R -alg for the category of R-algebras, and we say that k is an R-field if k is both a field
and an object of R -alg. An affine algebraic group scheme G over R is a functor from R-algebras to
groups, naturally equivalent to one of the form SpecRRrGs :“ HomR -algpRrGs,´q where RrGs is
some finitely presented R-algebra. The archetypal example of an algebraic group scheme is GLd.

When G is a group scheme and k is any R-algebra we can consider the base change Gk, which is a
group scheme over k obtained by viewing k-algebras as R-algebras. If G – SpecRRrXs is algebraic
and RrXs – Rrx1, ..., xns{pg1, ..., gmq then we obtain a map ω : Rrx1, ..., xns Ñ krx1, ..., xns and we
have

Gk – Speck krx1, ..., xns{pωpg1q, ..., ωpgmqq. (3.5)

and we write gk “ LiepGkq.

Lemma 3.5. Let G be an affine algebraic group scheme over R. There exists d P N depending
only on G such that for each R-field k there exists a representation ρ : Gk Ñ pGLdqk, with
dρ : gk Ñ pgldqk faithful.

Proof. Suppose that G corresponds to the Hopf algebra pRrGs,∆, σ, ǫq, with finite presentation

RrGs “ Rrx1, ..., xns{pg1, ..., gmq. Fix i P t1, ..., nu, write ∆pxiq “
řrpiq

j“1 f
p1q
i,j b f

p2q
i,j and define

d :“
řn

i“1 rpiq. Choose any R-field k and let M be the R-module generated by elements tf
p1q
i,j | i “

1, ..., n, j “ 1, ..., rpiqu. Write ω : RrGs Ñ krGks for the natural homomorphism.
Thanks to (3.5) there is a surjection M bR k ։ ωpMq and so ωpMq identifies with a subspace

of krGks of dimension ď d. We observe that the coproduct ∆pωpxiqq “
řrpiq

i“1 ωpf
p1q
i,j q b ωpf

p2q
i,j q can

be rewritten in the form ∆pωpxiqq “
řrkpiq

i“1 hi,jbωpf
p2q
i,j q for some rkpiq ď rpiq and certain elements

hi,j P ωpMq, such that ωpf
p2q
i,1 q, ..., ωpf

p2q
i,rkpiqq are k-linearly independent. According to [Jan03,

I.2.13(4)] the space Ni :“
řrkpiq

j“1 khi,j is a Gk-submodule of ωpMq containing xi. Furthermore it

follows from [Mil17, Proof of Prop. 4.7] that N “
řn

i“1Ni is a faithful Gk-submodule of krGks of
dimension ď d. Therefore N‘k‘pd´dimNq is a faithful module of dimension d. Finally observe that
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N is a faithful gk-module. To see this note, for example, that by faithfulness 1 Ñ Gpkrǫs{pǫ2qq Ñ
GLNpkrǫs{pǫ

2qq is exact; also LiepGq – kerpGpkrǫs{pǫ2qq Ñ Gpkqq for the map ǫ ÞÑ 0, and similarly
for GLN . Hence the claim follows from the commutative diagram:

0 ÝÝÝÑ gk ÝÝÝÑ Gkpkrǫs{pǫ
2qq

§

§

đ

§

§

đ

0 ÝÝÝÑ glN ÝÝÝÑ GLN pkrǫs{pǫ
2qq.

�

Remark 3.6. The question of when there is a faithful R-representation for G is rather subtle and
is not known even when R is the ring of dual numbers over a field k and G is flat of finite type
over R. However the existence of such a representation is known in the case where G is flat and
of finite type over a Dedekind domain R, such as Z, or indeed if R is any field.

As an immediate corollary we obtain the second main theorem from the first.

Corollary 3.7. If G is an affine algebraic group scheme over a commutative ring R then there
exists a p0 P N such that if k “ k̄ is an R-field of characteristic p ą p0 then the first Kac–Weisfeiler
conjecture holds for LiepGkq. �

For example, if G is a reductive group scheme then provided charpkq “ p " 0 the first Kac–
Weisfeiler conjecture holds for all parabolic subalgebras of LiepGkq, as well as for all centralisers
in LiepGkq.

3.2. Example: families of non-algebraic Lie algebras. In this final subsection we construct
a family of Lie algebras tgp | p primeu which exhibits a different kind of behaviour to that seen
for Lie algebras of groups. Since the example is elementary enough we can actually describe the
representation theory without recourse to our main theorem, but the example is illustrative of
some interesting phenomena and so we have included it anyway. For each p ą 0 prime pick an
algebraically closed field kp of characteristic p, and pick an element i P kp satisfying i2 ` 1 “ 0.
Let gp be the Lie algebra spanned by th, x, yu over kp and with Lie brackets rh, xs “ x, rh, ys “
iy, rx, ys “ 0.

Proposition 3.8. Suppose that p ą 2. The following are equivalent:

(1) Mpgpq “ p
1

2
pdimpgpq´indpgpqq;

(2) gp is a restricted Lie algebra;
(3) p ” 1 modulo 4.

Proof. By Gauss’ law of quadratic reciprocity we know that i P Fp Ď kp if and only if p ” 1 modulo
4. If this is the case then adphqp “ adphq and it follows quickly that adphqp, adpxqp, adpyqp P adpgq.
By Jacobson’s theorem [SF88, Theorem 2.2.3] we deduce that gp is restricted. Conversely, if p ” 3
modulo 4 then i R Fp and so adphqp R adpgq. Therefore by loc. cit. the algebra gp is not restricted.
Thus we see (2) ô (3).

Since dimpgq ´ indpgpq is even we conclude that indpgpq P t1, 3u. Clearly χrz, gs “ 0 for some
0 ‰ z P gp implies χ “ 0, and so indpgpq “ 1 for all p ą 0. Let Dp denote the division ring of
fractions of Upgpq and let Qp denote the division ring of the centre Zpgpq of Upgpq. Then Dp is a
Qp-vector space and, thanks to [Zas54], we have Mpgq2 “ rDp : Qps. Supposing p ” 1 modulo 4, so
that i P Fp we have central elements thp´h, xkyj | k` ij P pZ, 1 ď j, k ď p´1u and it follows that
Upgpq is generated as a Zpgpq-module by ď p2 elements. We deduce that Mpgpq

2 “ rDp : Qps ď p2

and so Mpgpq ď p. By [PS99, Remark 5.4, (1)] it follows that Mpgpq “ p, since gp is restricted.
From 1

2
pdimpgpq ´ indpgpqq “ 1 it follows that (3) ñ (1). Now suppose that p ” 3 modulo 4. A

very explicit calculation will show that Zpgpq is a polynomial algebra generated by txp, yp, hp
2

´hu
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and so Upgpq is a free Zpgpq-module of rank p4. It follows that Mpgpq
2 “ rDp : Qps “ p4 and so

Mpgpq ‰ p
1

2
pdimpgpq´indpgpqq “ p in this case, whence (1) ñ (3). This concludes the proof. �

References
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