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Abstract. Within multi-agent systems, some agents may delegate tasks to other
agents for execution. Recursive delegation designates situations where delegated
tasks may, in turn, be delegated onwards. In unconstrained environments, recur-
sive delegation policies based on quitting games are known to outperform poli-
cies based on multi-armed bandits. In this work, we incorporate allocation rules
and rewarding schemes when considering recursive delegation, and reinterpret
the quitting-game approach in terms of coalitions, employing the Shapley and
Myerson values to guide delegation decisions. We empirically evaluate our ex-
tensions and demonstrate that they outperform the traditional multi-armed bandit
based approach, while offering a resource efficient alternative to the quitting-
game heuristic.

1 Introduction

Delegation within multi-agent systems involves a delegator handing over a task to a
delegatee. While a single delegation event is often considered in works dealing with
trust, [4, 2], we address situations where agents are allowed to pass the task onwards
until it is eventually executed —a process termed recursive delegation. In [1], it has be
shown that existing trust mechanisms can be improved within such recursive settings
through a game theoretic treatment of the problem. Here, we extend the basic recur-
sive delegation scenario to include an explicit reward rule associated with successful
delegation, subject to an equally explicit resource constraint.

To exemplify the applications our approach may capture, consider a distributed net-
work composed of heterogeneous sensors with distinct capabilities [7, 5]. These sensors
can repeatedly delegate a task across the network, but must do so mindful of their en-
ergy consumption (and timeliness of response), as well as the quality of the information
returned (with the latter serving as a reward in this context). Upon receiving a task,
a sensor must decide whether to delegate the task onwards or execute it (by sensing),
attentive to the constraints and rewards attached to its decision.

Non-cooperative games in the form of quitting games have already been applied to
the study of recursive delegation [1]. Compared to nested multi-armed bandits, the for-
mer display greater efficiency, producing higher probabilities of successful delegation
with lower levels of regret [1]. These techniques, however, do not take explicit resource
constraints and rewards into account, whereas in our work, we not only introduce such
additional aspects, but also formulate a coalitional alternative to non-cooperative deci-
sion making in recursive delegation domains.

The remainder of this paper is structured as follows. In the next section we de-
scribe the non-cooperative approach to recursive delegation. In Section 3, we present
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Fig. 1: Quitting Game in Extensive Form

our implementation of the Shapley and Myerson values as coalitional algorithms for
recursive delegation. Section 4 empirically compares the different approaches, Section
5 discusses our results alongside directions for future work, and Section 6 gathers our
main conclusions.

2 Recursive Delegation as a Quitting Game

Adversarial techniques to reason about recursive delegation are built on an adaptation
of quitting games; a class of stochastic games [15]. Players of a quitting game have
two available actions, either choosing to continue the game (action d), or quitting the
game altogether (action e). The former action allows the game to repeat, while the other
brings the game to an end. After each game, all players receive whatever rewards they
have earned.

A two-player game in extensive form is illustrated in Figure 1. Here, either player
selecting action e leads to the realisation of their respective rewards. Both players play-
ing d leads to the continuation of the same game (denoted by 	).

In an n-player game, the strategy of player i is a probability measure xi(t) : R+
0 →

[0, 1] representing the likelihood of playing d at iteration t. A profile or vector of strate-
gies xt, would then produce a stream of rewards rSt

, contributed by the subset of players
S who have chosen not to quit the game by iteration t. The expected reward of player
i at iteration t thus becomes wi(t)(xt) := Ex[rSt

]. Let us note in passing that the sub-
script i(t) := i ◦ t : {0, . . . ,T − 1} → {0, . . . ,n− 1} indicates the value of a variable
associated with player i at iteration t, and that it is attached to said variable whenever
the index’s omission, or its simplification, seems ambiguous.

For ε � b0/c0, a0 > 0, a1 < c1, c0 < b0, a1 ≥ b1 and x0 � 1 the stationary
profile z ≡ 〈x0, d1〉—whereAgent0 delegates the task with very low probability, while
Agent1 systematically chooses to delegate— is produced [16]. That is, the expected
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reward of z plus an overhead ε > 0, is at least that of any other strategy yi(t) for every
player i, or equivalently wi(t)(z) ≥ wi(t)(x−i(t), yi(t))− ε. Thus, the profile z describes
an ε-equilibrium [9].

Quitting games share many facets of recursive delegation, effectively capturing self-
embedded instances of strategic interaction which resemble the replication of delega-
tion requests along a delegation chain, i.e., the sequence of delegatees who receive
delegation requests involving the same task. Unlike a standard quitting game, however,
delegation requires distinct strategic scenarios, where players alternate between the del-
egator and delegatee roles. The adjustment to this scenario is conducive to the definition
of a Delegation Game [1].

Definition 1 (Delegation Game). The tuple Γd = 〈N ,A, (ui, ri)i∈N , x〉 encodes a
delegation game among |N | players, where every player has the following attributes:

Actions: A := {d, e} and Ai = A,∀i ∈ N . ∆(A) is the collection of all probability
distributions over the set of available actions.

Rewards: ri : ×j∈D⊂N∆(Aj) → R,∀i ∈ N is a Lebesgue measurable function
representing the gains of player i when a group of agents D ⊂ N have been
delegated to.

Strategy: xi : Ai → [0, 1],∀i ∈ N is the probability of player i playing action d.
Profile: xt := 〈xi(t)〉i∈N . Profiles induce a probability distribution Px ∈ ∆(A) over

the set of actions, which permits the computation of the expected rewardswi(t)(xt) :=
Ex[ri(t)].

Updating Rule: ui(t) : ×j∈Dt−1
Aj ×R→ ∆(A) is a measurable set-valued function

that dictates the transition from one state of the system to a potentially different
profile.

When rewards are subject to a stochastic process, the selection of an action has
to be expressed in terms of strategic profiles (xt). The probability distribution these
profiles induce is then used to calculate the expected rewards (wi(t)). By contrasting
expected rewards in the manner of an ε-equilibrium, delegators and delegatees select
their strategies, which once played provoke the respective information states to update
(ui(t)).

The entire delegation and learning process based on delegation games, is captured
by the DIG algorithm presented in [1]. As may be apparent, neither quitting games
nor the algorithm take explicit account of the costs associated with exploration or the
rewarding mechanism motivating the decision to delegate; we introduce these consid-
erations in the next section.

3 Recursive Delegation as a Coalitional Game

Our approach construes delegation as a recursive and collective process where delega-
tees form coalitions by playing a delegate action, in accordance with their individual ca-
pacity to generate and retrieve value amid restrictions and incentives that condition such
capacity. We proceed to describe how coalitions are formed, and state the allocation and
distribution rules devised to reflect the delegation structure contained in Definition 1.
To illustrate our ideas, let us revisit the opening example on sensor networks.
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For the efficient design of one such network, the main aspects typically considered
are 1) the features of the sensors as mobile nodes; 2) the limitations these nodes may
face in terms of energy consumption, memory size to buffer data, or wireless trans-
mission capacity [17]; and 3) the metrics used to assess the impact of their individual
contributions on the overall data-gathering performance of the system [12]. We account
for 1) by introducing explicit value allocation rules stating each node’s potential to gen-
erate sensing data. The idea being that in, e.g., event-driven applications, nodes near
active locations may have higher sensing rates, thus inducing delegation.

Constraints in the form of fixed amounts of a productive resource enabling delega-
tion —electrical energy, most notably— reflect 2). Although wireless charging allows
nodes to transmit energy across the network, thereby internalising these budgetary re-
strictions into the functioning of the sensors themselves [8], we opt to deal with re-
source constraints as extrinsic to the system. The reason for this is that, in a single-task
environment, indefinite delegation is undesirable, and self-sustainability in regards to
the productive resource becomes subsidiary. In multi-objective applications, however,
these considerations might be relevant, as multiple tasks may compete for the same
productive resources involved in delegation.

The criteria used to model the selection of delegatees respond to 3). As presented
in Section 2, mixed strategies serve as metrics to compute ε-equilibria for the quitting-
game approach. Alternatively, as shown in [1], the largest Gittins Index can be used to
select a suitable delegatee in multi-armed bandit (MAB) models. As will be introduced
in Section 3.2, the Shapley and Myerson values serve the same purpose in our coali-
tional game. We now proceed to outline the design features associated with aspects 1)
and 2).

3.1 Delegation and Allocation Rules

Given a set of allocation rules, resource constraints and the definition of a solution
concept, we present a general framework for reasoning about delegation under these
conditions. To do so, consider the tree in Figure 2 which describes a delegation network
of agents N ≡ {a, b, c, f , g, . . . ,m} whose decisions consume a limiting resource C.

To capture task execution, we introduce dummy agents into our representation of
the network. These dummy agents appear as solid unlabeled nodes in Figure 2. A task
reaching a dummy agent must be executed (as it cannot be further delegated), and is
recorded as carried out by the agent who generates the delegation request.

Consider agent a, the originator of the delegation process, also termed the root. This
agent can play ea and perform the task itself, i.e., delegate to the dummy agent. It can
also delegate the task to b, in which case b might accept the task by playing eb, or reject
it by playing db, thus returning the task to a and forcing a to perform the task itself (via
action ea). Alternatively, a could delegate to c, whence the task may reach f who could,
in turn, proceed as b. The task may also be further delegated to g who, had decided not
to play eg , could pass on the task via df until a terminal node appears, some other
node plays an execute action, or the constraints are no longer satisfied. In this context,
coalitions, i.e., groups of players treated as strategic units, amount to delegation chains;
we refer to this process of formation of coalitions as the quitting structure of the game.
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Fig. 2: Delegation Game in Extensive Form

Now let us turn to the nature of the rewards underpinning the assessment of a de-
cision’s profitability. The delegation game in [1] did not make direct reference to the
way in which rewards were formed. Agents reached out to one another unconcerned
with allocation and distribution rules, inasmuch as the only interactions affecting the
calculation of their expected rewards were those with their immediate neighbours. Our
proposal, on the contrary, is said to be coalitional because agents acknowledge the con-
tributions of all delegatees in the same delegation chain. We, therefore, assign a (global)
value V for playing the game, and introduce extrinsic rules for its allocation and the dis-
tribution of rewards emanating from it.

To see this, let V be the largest value delegatees are capable of achieving as termi-
nal nodes of a delegation chain. Since globally known from the beginning, the value
of the game is initially apportioned among delegators and potential delegatees follow-
ing a directly proportional distribution rule. The further away from the root, the larger
the value an agent can generate, thus incentivising delegation. In the sensors case, this
accounts for flexible and diverse architectures of sparsely distributed nodes with high
sensing rates, other nodes with lower rates but capable of picking up data from the for-
mer sensors while roaming the network, and yet another group of sensor nodes acting
as data centres or base stations (c.f., [18, 12]).

In contrast, the distribution of the final outcome of delegation, that is, the actual
set of rewards, obeys an inversely proportional rule. The closer to the root, the larger
the share of the game’s value, implying that the task is more profitable the sooner it
is executed. In terms of the sensor network, this rule reflects problems of data latency
and long delivery delay. If the time elapsed between data being buffered and uploaded
to base stations is too long, it might be preferable to generate a greater number of
delegation queries to proximate sensors [17].

To detail our approach, we now provide an example of the operation of these two
rules which substantiates our approach w.l.o.g. Let us, first, designate the initial allo-
cations of V over all n ≡ |N | agents by {vi}i∈N . These values are realised by the
terminal node of any delegation chain as outcomes {oi}i∈N —bear in mind that delega-
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tion chains may contain a single player, or, equivalently, every agent is a potential task-
executioner. The rewards {ri}i∈N accrued to the members of any chain are obtained
from the outcome associated with the chain’s terminal node. That is, each player’s po-
tential to produce the value of the game is conveyed through their respective outcomes,
which propagate across the delegation chain in the form of rewards. The following steps
illustrate the calculation of rewards in the subgraph spanned by {a, b, c, f , g}, up to a
hypothetical third level of delegation for a game with value V = 100:

1. Distribute V proportionately among all agents, depending on their position along
the tree:

va
1

=
vb
2

= · · · = vg
5

=
V

1 + 2 + · · ·+ 5
,

i.e., va = 6.67, vb = 13.33, vc = 20,

vf = 26.67, vg = 33.33

2. Sample the outcomes from a uniform distribution between vi (computed above)
and V :

oi ∼ Ui(vi,V ),∀i ∈ {a, b, c, f , g},
e.g., oa = 57.89, ob = 75.31, oc = 68.22,

of = 66.63, og = 80.77

3. Once a potential coalition/delegation chain forms, e.g., {a, c, f}, distribute the out-
come yielded by the agent executing the task in an inversely proportional manner:

ra,c
1

=
rc,f
1/2

=
rf
1/3

=
of

1 + 1/2 + 1/3
,

i.e., ra = 36.34, rc = 18.17, rf = 12.11

More generally, our proportional rule implies that the value of the game is allocated
according to the relation vi

i+1 = V
Tn

, where Tk :=
∑k

j=1 j =
k(k+1)

2 . The inversely pro-

portional rule requires individual rewards to satisfy ri,j
i = ok

Hk
, where Hk :=

∑k
i=1

1
i

and ri ≡ ri,j for every i = j ∈ N . Insofar as these two rules depict the structure
of incentives behind delegation, they will frame the evaluation of our coalitional algo-
rithm against the corresponding benchmarks; namely, the original quitting-game based
approach in [1], and the MAB model also presented in [1] which extends the numerical
approximation to the Gittins Index introduced in [3].

Thus, aspect 1) is encapsulated in the interplay of equations vi
i+1 = V

Tk
and ri,j

i =
ok
Hk

, i.e., the value allocation and reward generation rules, respectively. Aspect 2), for
its part, is incorporated into our framework via the explicit recognition of the value of
the game V , and the straightforward imposition of a numerical parameter K ∈ R+

0

constraining the generation of delegation requests and the production of rewards out
of V . Having established the relational characteristics of the agents in our delegation
networks, and the rules or conditions that mediate their interactions —as per design
aspects 1) and 2) outlined at the outset of this section— we go on to present the criterion
and computational procedures delegators use to select a delegatee among its neighbours
—thus reflecting aspect 3).
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3.2 Recursive Delegation as a Coalitional Game

The initial allocation of values and the definition of rewards may circumscribe the del-
egator’s decision, but the guiding principle behind delegation is given by the solution
concept used to select one or another delegatee. We employ the Shapely and Myer-
son values to this effect. Computing these values allows us to map potential rewards
to groups of agents, so the advantages of forming a particular delegation chain can be
assessed.

In a coalitional setting, potential delegation chains are treated as coalitions, i.e.,
groups of agents who evaluate the collective aspect of task completion/delegation. In
spite of the individual nature of the rewarding scheme, the completion of the task is con-
sidered a common objective, and the network-wide impact of the resources expended in
achieving the task is acknowledged by delegators. Hence, in the form of neighbouring
conditions, preexisting valuations of available coalitions, and an internal mechanism
for extracting individual contributions, these elements provide the basis of a delegation
game of coalitions (DEC):

Definition 2 (Delegation Game of Coalitions). A Delegation Game of Coalitions is a
tuple Γc = 〈N ,V ;B, ν〉, characterised by the following elements:

Value of the game: V ∈ R+
0 , gives the maximum value delegation can yield.

Coalitional Structure: A partition B of the set of agents N = {1, . . . ,n} conforming
to the quitting structure of delegation .

Outcomes: oi : ∆({wi}i∈N ) → R+
0 for every i ∈ N , are obtained from the stochas-

tic process dictating the allocation of the value of the game. ∆({wi}i∈N ) is the
collection of potential distributions over the set of admissible distributions of V .

Characteristic Function: ν : 2n → R+, associates every coalition D ⊂ B with the
expected value of its aggregated reward, i.e., ν(D) =

∑
i∈D E[oi].

The coalitional structure of DEC encompasses those combinations of agents com-
patible with the quitting structure of delegation described in 3.1. The characteristic
function links the expected rewards to the corresponding coalition(s) in the set of all
permutations of agents, mapping invalid ones (e.g., those where a delegator comes last)
to zero. The rewarding rule ψ : {oi}i∈D⊂B → R+

0 , assigns rewards to the members
of coalitions D belonging to the partition of the game B. In the abstract, the solution
concept is but a mapping φ : U → Rn with U := {Γc : n ⊆ R+}, while in our
experiments it takes the form of the Shapley and the Myerson values.

Definition 3 (Shapley Value [13]). The Shapley Value of a coalitional game Γ =
〈N ; ν〉 –such as DEC– is a solution concept that retrieves the individual contribution of
any player, subject to the coalitional structure of the game given by all subsets D ⊆ N .
It can be computed as follows for every player i ∈ N .

Shi(N ; ν) :=
∑
D⊆N

gD[ν(D)− ν(D\{i})]; gD :=
(|D| − 1)!(n− |D|)!

n!
. (1)

That is, players foreign to a coalition D can be arranged in as many as (n − |D|)!
ways. In turn, within D all those players different from player i can be sorted in
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(|D| − 1)! ways. The contribution of player i to the coalition is given by the differ-
ence between the aggregated value of D and that of the subsets (coalitions) excluding
player i. The total number of such subsets amounts to (|D| − 1)!(n − |D|)!. To obtain
the corresponding average contribution, the sum over all possible coalitions is divided
by the number of all admissible combinations of players, i.e., n!.

The Myerson Value is a refinement of the Shapley Value. The Myerson Value exclu-
sively targets graph-restricted games, i.e., coalitional games whose coalitions can only
reflect specific subgraphs of the underlying general graph of interactions [10]. The idea
being that coalitions are highly dependent on their context. This means that the charac-
teristic function should only be defined over connected components S(N), as given by
the topology of the network enabling delegation. Connectedness, in this sense, refers to
the existence of a path connecting any pair of non-adjacent nodes, such as a and g in
Figure 2.

Definition 4 (The Myerson Value [10]). Let Γ = 〈N , ν〉 be a coalitional game. The
Myerson Value (Myi) of Γ , corresponds to the Shapley Value for the characteristic
function defined over connected coalitions i.e., My i(N ; ν) = Shi(N ; νM ) such that

νM (D) =

{
ν(D) ifD ∈ S(N)∑

Ki∈K(D) ν(Ki) otherwise

The Shapely Value provides a means of differentiating individual contributions to a
delegation chain within multi-agent systems, while incorporating the quitting structure
of delegation outlined in Section 3.1. The Myerson Value implements the same proce-
dure over a subset of players which not only conform to the quitting structure, but also
respond to a particular configuration of the system laid out before the first delegation
request had been issued.

Algorithm 1 Coalition Formation
Input: i: Index of the agent seeking coalitions, path: Length of the last delegation chain.
Output: coalition: Sequence of agents receiving a delegation request.
1: function CFORM(i)
2: k ← i .delegatee
3: coalition ← {j, k}
4: max length ← U(2, 3)
5: path length ← len(coalition)
6: while path length < max length do
7: if k .out neighbours 6= ∅ then
8: m← sample(k .out neighbours)
9: coalition ← coalition ∪ {m}

10: k ← m
11: path length ← len(coalition)

return coalition

Our implementation of the Shapley and Myerson values requires a procedure to
obtain the quitting structure of the game. Such procedure is given by Algorithm 1. It
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stipulates the formation of coalitions as a retrospective endeavour which looks into past
delegation chains, permitting agents to recursively select new coalition members among
their neighbours’ neighbours (lines 6-11). Every agent foresees a coalition/delegation
chain of length at most three (line 4); that is, itself, its immediate neighbour, and its
neighbour’s neighbour, intending to reflect myopic behaviour on the part of delegators.

Algorithm 2 implements DEC with the Myerson Value. Its Shapley version would
only see the solution concept changed to Equation (1) (in line 4 of the function DEL).
The computation of both the Myerson and Shapley values follow the divide-and-conquer
approach of [14], which performs a recursive backtrack in a depth-first search for the
delegation chains rooted at delegator j.

Our algorithm strives to find the largest contributions among all the delegation
chains allowed by the quitting structure, subject to a resource constraint (line 3) and
the allocation rules introduced before. Its inputs correspond to said resource constraint
(K), the value of the game (V ), and the set of probabilities of successful execution
describing each delegatee’s ability to perform the delegated task ({si}i∈[n]).

As our algorithm requires the initialisation of individual outcomes (oi), rewards (ri)
and neighbourhoods (Pi ≡ {ai, adi}, where adi represents the neighbours of agent ai),
we have grouped those procedures under Init DEC. After intialising counters of suc-
cessful and failed execution (line 5), as well as the sets containing potential coalitions
and actual delegatees (line 6), we apply the value allocation rule in line 7 to every agent
in the system, followed by the sampling of outcomes as indicated in our opening exam-
ple (line 8), so the distribution rule in line 9 enables the initialisation of the rewards on
the basis of each agent’s outcome.

We enter the main procedure DEC through a “while” statement at line 3. This state-
ment guarantees that the game is played for as long as there is available productive
resource K to effect a delegation request. Delegators employ the function DEL to al-
locate the delegation request. First, they seek a fitting coalition of three players at the
most, by invoking the function CForm in line 2. Then, delegators compute the Myerson
value of the resulting coalition (line 4), and proceed to select the delegatee who makes
the largest contribution (line 5). If the selected delegatee is not its dummy agent, the
delegation request is replicated (line 8) and the rewards obtained via our distribution
rule in line 9.

We leave our core function at line 6, where the probability of successful execution
of the selected delegatee (am) is contrasted against the state of nature as given by the
probability 1− δ. Not unlike the Delegation Game of [1], in our algorithm a favourable
state of nature secures the execution of the task by the appointed delegatee, otherwise
defaulting to the delegator itself; triggering the α and β counters as well as those keep-
ing track of the fraction of the productive resource consumed throughout delegation,
which is equal to the ratio between the number of successful interactions and the total
number of visits to the chosen delegatee (lines 8 and 11 resp.). Past this stage, the out-
comes are once again sampled (line 12), and the characteristic function of the game is
learned (line 14). This process repeats until the limiting resource is depleted.
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Algorithm 2 Delegation Game of Coalitions Under Myerson
Input: V : Value of the game,K: A real number denoting the resource constraint, si: Probability

of successful execution of agent i.
Output: S: Sequence of agents receiving a delegation request. ν: Set of values of the character-

istic function.
1: function INIT DEC(K,V )
2: ν ← ∅
3: Constraint ← K, Consumption ← 0
4: for j = 1→ n do
5: αj ← 0, βj ← 0
6: Dj ← ∅, Sj ← ∅
7: vj ← (j + 1)V/

∑
i∈[n] i

8: oj ← U(0, vj)
9: rj ← joj/

∑
i∈[n] 1/i

10: Pj ← {aj , adj}

1: function DEL(Pk)
2: coalition← CFORM(k)
3: Dk ← Dk ∪ {coalition}
4: myk ←Myk(|Dk|;

∑
i∈Dk

ri)
5: m← argmaxi∈adk (myi)
6: Sk ← Sk ∪ {am}
7: if m 6= k then
8: return DEL(Pm,sm)
9: rm ← kom/

∑
i∈coalition 1/i

10: else
11: rm ← om
12: return (m, rm,Sk)

1: procedure DEC(K,V ; {sk}k∈[n])
2: INIT DEC(K,V )
3: while Constraint ≥ Consumption do
4: for j = 1→ n do
5: (m, rm,Sj)← DEL(Pj ,sj)
6: if sm > 1− δ then
7: αj ← αj + 1
8: Consumption ← Consumption + 1

αm+βm
9: else

10: βj ← βj + 1
11: Consumption ← Consumption + 1

αj+βj

12: Update outcomes
13: S ← Sj ∪ {Sj}
14: ν ← ν ∪ {

∑
k∈Dj

rk}

15: Constraint ← Constraint − Consumption
return (S, ν)
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4 Evaluation

4.1 Experimental Set-up

Our objective remains establishing whether the coalitional approach of Algorithm 2
can outperform DIG given the new constraints and rules. The evaluation of Algorithm 2
was carried out over Random Networks and Directed Trees extending up to 4 levels of
delegation, with a branching factor of 5 neighbours per delegator among a population of
156 agents; as such is the number of nodes in a tree-like layout including its root. The
levels of the limiting resource were allowed to range within 500 and 800 units, whereas
the value of the game varied from 800 to 1000 units. Our algorithm and contrasting
benchmarks were tested for the span of 100 runs, elapsing 1000 trials.

The systems under consideration are made up of agents arranged in either 4-level
trees rooted at the first delegator in the network, or ad-hoc graphs whose edges are gen-
erated as delegation progress; their respective dynamics are dictated by the algorithms
used to make delegation decisions. Directed Trees offer a structured environment for
accommodating agents who establish a relation of precedence upon delegating. Ran-
dom Networks, instead, are discovered as agents delegate —the probability of delegat-
ing arising form each algorithm simultaneously dictates the probability of spanning an
edge from a delegator to a delegatee. The benchmarks used to compare our approach
include the DIG algorithm in [1] and the adaptation of the Gittins Index also proposed
in [1], but originally formulated in [3]. This selection circumscribes multi-armed ban-
dits and non-coalitional game theory models whenever recursive delegation takes place
in constrained environments.

4.2 Results

Figure 3 depicts the behaviour of the probabilities of successful delegation (PSD) and
the ratio between the amount of productive resource expended in delegating and the
value of the game generated through delegation (E/R). These two variables define our
criteria of performance. The curves they describe stop at different trials due to the re-
source constraints faced by all agents and the ways in which the algorithms make use of
it. Every delegate action consumes a productive resource; when this budget is depleted,
delegators cannot delegate the task onwards. That is, the delegation process effectively
comes to an end; a situation which coalitional games had to face at a much later point
in time than its benchmarking algorithms.

In Random Networks and Directed Trees, DIG displays superior performance com-
pared to the MAB approach (DID) and the coalitional alternatives. It attains larger re-
wards and higher probabilities of successful delegation. The great variability of this re-
sult, however, casts doubts on the efficiency of DIG. Directed Trees provide a structured
environment for all algorithms to explore. In situations like this, previous knowledge of
their neighbours’ connectivity allows agents to expend less resources while exploring
potential delegation chains. We find that the limiting resource not only lasts longer but
leads to more stable delegation chains where tasks are more likely to be successfully
executed (Figure 3 a).
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Figures 3a and 3b indicate that Myerson does not perform remarkably well on tree-
like structures, despite being designed to better cope with fixed delegation patterns. It
appears that in the early stages of delegation (T < 50 for Figure 3a) productive but
costly coalitions were formed, which on account of the functioning of the algorithm
would stifle exploration and trap delegators in chains with relatively poor capacity to
adapt to delegation under tightening resource constraints.
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Fig. 3: Comparative Performance Between Topologies

Myerson, Shapley and DIG make use of the limiting resource until roughly the same
trial. The difference being that DIG succeeds in generating at least one extra quarter of
the value attained by the best performing coalitional algorithm (Shapley). A difference
further reflected in the levels of regret associated with these results (Table 1).

Random Networks, on the other hand, allow agents to select their own neighbours,
and potential delegatees, based on an intrinsic property, i.e., the strategies and distri-
bution of the Gittins Index for DIG and DID, respectively; or an external one as in the
cases of Shapley and Myerson. Under these conditions agents rely more heavily on ex-
ploration, often incurring in greater costs, particularly for DIG. Delegators employing
DIG guarantee a higher PSD at the expense of lesser rewards, which also implies a
lower regret (Table 1).

Only the coalitional algorithms maintain the behaviour displayed over Directed
Trees. There is a considerable improvement in their levels of (cumulative) regret which
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Group Network
Structure PSD Rewards Regret

Directed
Trees

DIG 0.92± 0.008 435± 0.19 4.398± 5e−5

DID 0.827± 0.012 377± 0.62 12.996±2e−5

Shapley 0.889± 0.010 355± 0.33 10.361±3e−5

Myerson 0.858± 0.011 358± 0.04 10.27± 3e−5

Random
Networks

DIG 0.966± 0.006 387± 0.42 2.971± 2e−4

DID 0.794± 0.014 219± 0.69 8.810± 1e−4

Shapley 0.890± 0.010 330± 0.41 8.975± 3e−4

Myerson 0.889± 0.010 329± 0.31 9.702± 2e−4

Table 1: Minimum Credible Intervals of the Mean Posterior PSD, Reward and Regret

does not significantly reduce the reward obtained. Coalition formation as a criterion of
delegation seems to traverse in an equally exhaustive manner both types of topologies.

As DID operates exclusively on a learning-by-observing mechanism, contrary to
DIG agents who interact strategically, it struggles to traverse the delegation network
when subject to resource constraints, often being confined to local maxima. We believe
this is also the reason behind the high levels of the Expenditure-Reward ratio (E/R)
encountered in Figures 3 b and 3 c, as well as the insufficient performance of the MAB
heuristic compared to the levels of PSD reported in [1].

Despite DIG’s appropriateness for use in recursive delegation, the relative variabil-
ity of PSD noted at the beginning of this section and the decline in the levels of rewards,
motivate further analysis when transitioning from trees to unstructured environments.
For this reason, we opted to conduct a test of correlation between PSD and E/R.

Our test consists of a Bayesian reformulation of Pearson’s [11] for a Gaussian mix-
ture of the prior of the correlation coefficient, centered in accordance with the corre-
sponding distribution of the observations plotted in Figure 3. PSD and E/R were fitted
to a bivariate t-distribution with uninformative normal, uniform, and exponential priors
for their respective means, variances and normality parameters, as per the BEST model
put forward in [6]. All hyperparameters were obtained from the outputs of our original
simulations (unreported). Figure 4 provides direct access to the posterior distribution of
the correlation coefficient, in terms of the coefficient’s 95% credible intervals. The re-
sults of the No-U-Turn sampler (unreported) guarantee the convergence of distributions,
allowing for a direct interpretation of the mean posterior.

There exists a stronger correlation between efficient resource expenditure and in-
crements in the likelihood of a successful delegation, when coalitional algorithms are
used on Random Networks. Nonetheless, with a posterior probability of 86%, higher
correlation values (0.24 > 0.15) are likely to be encountered in the same structures
when agents use DIG (Figure 4).
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Fig. 4: Posterior Distributions of the Correlation Statistic for PSD and R/E
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Fig. 5: Posterior Distributions of the Differences of Means against DID

With respect to the same criterion, Shapley and Myerson can be considered more
efficient in the use of the limiting resource. DIG, however, secures desirable levels
of PSD while employing relatively concurrent levels of the resource at a rapid pace.
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Were the limiting resource apt for alternative uses, a coalitional approach to delegation
would be more appropriate than a non-cooperative one, but in any case more pertinent
than a MAB-based procedure. In this sense, the Shapley and Myerson algorithms are
considered approximate solutions to the (recursive) delegation problem .

Finally, to elaborate on our last claim let us examine Figure 5. It reports the differ-
ence between the mean rewards produced by DIG and those produced by DEC, using
the same statistical model of the modified Pearson’s test. Our results indicate that the
group means are not credibly different. Over both Directed Trees and Random Net-
works, approximately 50% of the posterior probability is greater than zero, suggesting
that the gap between the root’s mean reward under DIG and the coalitional alternatives
is not significantly different from zero. Furthermore, the means of the group distribu-
tions range between 41 and 79 units of value, which is less than a third of the average
reward earned by the root per trial. So, on grounds of efficiency and value generation
capacity, both implementations of DEC are on a par with DIG.

5 Discussion and Future Work

So far we have provided empirical evidence demonstrating that the quitting-game ap-
proach to recursive delegation retains all the desirable properties reported in [1], though
mediated by the intensive use of the limiting resource. Our algorithm, on the other hand,
guarantees the delegated task is carried out with a probability within reasonable limits
(PSD ≈ 0.9), while interactions can be sustained for longer periods of time (T > 200).

The resource-use efficiency of the Shapley and Myerson values is upheld by the
mechanism dictating the formation of coalitions. The time complexity of this sampling
process is quasilinear on restricted graphs and polynomial on random networks, due
to the linear structure of the coalitions formed by DEC, thus conforming to the neigh-
bour sampling complexity of DIG and DID [1]. The impact of more intricate coalitions
on the levels of PSD, within complex systems where agents not only delegate but en-
gage in multiple interactions dependent on the same productive resource, remain to be
determined in future work.

6 Conclusions

In this paper we introduce resource constraints, alongside allocation and rewarding
rules to recursive delegation. We further present a conceptual framework to cater for
collective responses to these conditions. Quitting-game and multi-armed bandit based
approaches are used as benchmarks for evaluating the performance of adaptations of
the Shapley and Myerson values to recursive delegation.

Our results indicate that over predefined networks of agents (Directed Trees) and
unstructured environments (Random Networks), the quitting game approach attains
greater rewards and higher probabilities of successful delegation. This is possible, how-
ever, only with the intensive use of the productive resource limiting delegation. In sce-
narios where constraints are decisive for the operation of multi-agent systems, coali-
tional games provide a second-best yet more resource-efficient alternative.
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