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ABSTRACT

The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are
difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection.
In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting
therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile.
Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require
prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as
next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast
diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires
overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that
can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the
advantages and disadvantages of each methodology and discuss the most promising developments in their path from
bench to bedside.
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INTRODUCTION

Opportunistic yeast pathogens cause a wide range of superficial
to systemic infections, which can often be fatal (Kullberg and
Arendrup 2015). The incidence of these pathogens has increased
in recent years, becoming a major source of life-threatening
nosocomial infections. This is partly due to medical progress,
which results in increased survival of particularly suscepti-
ble patients, such as premature neonates, elderly people and
immunocompromised patients. In addition, the extensive use

of catheters, broad-spectrum antibiotics and abdominal surgery
favors the spread of opportunistic yeasts from their normal
commensal niches (Turner and Butler 2014). Among pathogenic
yeasts, Candida spp. are the most common cause of threaten-
ing invasive infections (Brown et al. 2012). Oral/esophageal, vul-
vovaginal, bloodstream and intra-abdominal infections caused
by Candida spp. (i.e. candidiasis) have an estimated annual inci-
dence of ∼2.3 million, ∼134 million, ∼650 000 and ∼80 000
cases, respectively (Levallois et al. 2012; Sipsas and Kontoyian-
nis 2012; Bassetti et al. 2013; Bongomin et al. 2017; Pieralli
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Figure 1. Overview approaches for the detection of fungal pathogens. Schematic representation of the different technologies used for the identification of fungal
organisms. These techniques can be based on mass spectrometry (blue background), nucleic acid (red background) or antibody (orange background). Techniques
based on more than one of these aspects are represented in the border of the respective divisions. ASP—allele-specific PCR; ARMS—amplification refractory muta-

tion system; AS-Droplet-PCR—combination of ASP with droplet PCR; AS-qRT-PCR—combination of ASP with quantitative PCR; MLPA—multiplex ligation-dependent
probe amplification; ddPCR—droplet digital PCR; FISH—fluorescent in situ hybridization; PNA-FISH—peptide nucleic acids-FISH; LNA—locked nucleic acids; RCA—
rolling-circle amplification; LAMP—loop-mediated isothermal amplification; NASBA—nucleic acid sequence-based amplification; RFLP—restriction fragment length
polymorphism; AFLP—amplified fragment length polymorphism; ELISA—enzyme-linked immunosorbent assay; MALDI-TOF MS—matrix-assisted laser desorption-

time of flight mass spectrometry; PCR-ESI-MS—electrospray ionization mass spectrometry coupled with broad-spectrum PCR; SERRS—surface-enhanced resonance
Raman spectroscopy; MCA—melting curve analysis; HRMA—high-resolution melting analysis.

et al. 2017). Despite recent advances, the mortality rates asso-
ciated with invasive candidiasis remain high at around 40%,
and their treatment is complicated by increasing resistance
to antifungals, as well as the appearance of novel pathogenic
species (Papon et al. 2013; Gabaldón, Naranjo-Ortı́z and Marcet-
Houben 2016). Although the most common cause of candidi-
asis is Candida albicans, the emergence of non-albicans Can-
dida species such as Candida dubliniensis, Candida glabrata, Pichia
kudriavzevii (syn. Candida krusei (Douglass et al. 2018)), Can-
dida parapsilosis and Candida tropicalis has increased over the
past decades (da Matta, Souza and Colombo 2017), and Can-
dida auris has recently been recognized as a globally emerg-
ing multidrug-resistant species (Geddes-McAlister and Shapiro
2018; Sekyere and Asante 2018). Currently, over 30 different Can-
dida spp. have been identified as causative agents of candidiasis
(Papon et al. 2013; Gabaldón, Naranjo-Ortı́z and Marcet-Houben
2016). Furthermore, hybridization among pathogenic and non-
pathogenic lineages can give rise to new virulent ones (Mixão
and Gabaldón 2018). Candida spp. do not belong to a single
genus in the phylogenetic sense, as different Candida species
are spread throughout the Saccharomycotina tree (Kurtzman,

Fell and Boekhout 2011; Gabaldón, Naranjo-Ortı́z and Marcet-
Houben 2016). Although for convenience the name Candida is
still widely used in the clinical setting, it is important to under-
stand that the term encompasses a wide diversity of species that
display important differences in terms of clinically relevant phe-
notypes. We anticipate that current efforts in the field of yeast
genomics and taxonomy will result in renaming of many of the
clinically relevant Candida species, and it would be advisable for
clinicians to be prepared for this change. From a diagnostics
perspective, providing resolution at the species level (or even
beyond) is important to guide therapy, because virulence and
antifungal resistance vary between species (Schmalreck et al.
2014), and even between strains of the same species (Farmaki-
otis and Kontoyiannis 2017). Therefore, specific, accurate and
fast diagnosis of the causative agent of infections is crucial in
order to rapidly start appropriate antifungal therapy, especially
in patients suffering from life-threatening candidiasis.

Classical diagnosis of candidiasis is based on microscopy,
selective culture and/or biochemical approaches (Ellepola and
Morrison 2005; Cuenca-Estrella et al. 2012; Arendrup et al. 2014a).
All these methods require isolation and cultivation of the infec-
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tive agent from clinical specimens, a process that takes around
48 h for most common pathogenic yeasts, and can require more
time for some samples or species. In addition, the identifica-
tion procedures require specific expertise, may provide ambigu-
ous results and are generally time-consuming, causing further
delay to an effective diagnosis. For this reason, there is a grow-
ing interest in the development of alternative methods, based
on direct detection of diagnostic molecules. These approaches,
collectively referred to as molecular diagnostics, have the poten-
tial to be directly applied to clinical specimens, and include
proteomics-based methods and the detection of specific DNA
sequences. Available methods and those currently under devel-
opment differ in the need for cultivation of the infectious agent,
the ability to directly use a clinical sample, sensitivity and accu-
racy, cost, time and expertise requirements, as well as in the
range of species that can be identified. In addition, some emerg-
ing methods hold the promise of being able to readily diag-
nose both the species and drug resistance profile of the infect-
ing agent. A common drawback of methods based on the detec-
tion of DNA is that the detection of the DNA may not necessarily
correlate with the presence of actively infecting cells (i.e. if the
species can also be a commensal), or even with the presence of
living cells (DNA from dead cells can also be detected). For this
reason, several recent approaches are based on the detection of
RNA from actively transcribed genes, which are a better proxy
for active cells, and which may also reveal signatures that dis-
tinguish invasive from commensal behaviors.

The field of diagnosis of yeast infections has advanced sig-
nificantly in the last decade and is currently experiencing a rev-
olution with the advent of novel sequencing and proteomics
technologies. Yet, there is a long way to go from the successful
proof of concept of a novel diagnostic method to its readiness
for routine clinical use. Ideally, diagnostic tools must be cheap,
fast, sensitive, accurate and easy to use. Moreover, they should
aim to identify a broad spectrum of species. Currently, several
molecular-based diagnostic tools for yeasts are commercially
available. However, they focus on the main pathogenic species,
while the detection of rare and emerging yeast pathogenic
species is lagging behind. This was emphasized by the unprece-
dented outbreaks of drug-resistant isolates of C. auris in hos-
pital environments that were initially misidentified by avail-
able commercial systems (Kathuria et al. 2015). In this review,
we provide a comprehensive survey of existing approaches that
are used in the identification of yeast pathogens and their
drug resistance profiles. Throughout the review, we particularly
emphasize the advantages and disadvantages of each approach
and highlight the most promising recent developments brought
about by emerging technologies. Figure 1 and Table 1 provide an
overall summary of the main available approaches and methods.

MOLECULAR IDENTIFICATION OF TARGETED
DNA REGIONS

Polymerase chain reaction (PCR) enables the selective amplifica-
tion of a targeted segment of DNA, generating millions of copies
of that sequence (amplicon) within a few hours (Mullis et al.
1986). The potential diagnostic use of this technique is obvious,
as it allows the selective detection of minute amounts of the
target DNA by using specific oligonucleotides. Diagnosis can be
based merely on the presence of the amplicon (if it is unique for
the targeted species), its particular size or its specific sequence,
which can be determined by sequencing or by hybridization to
a specific probe. The combination of specific PCR designs with

subsequent analysis has led to a plethora of alternative PCR-
based approaches that are increasingly used in the diagnosis
of yeasts infections (Fig. 2). In addition, specific patterns in the
DNA of infectious microorganisms can be detected without the
need for selective amplification by PCR, for instance by means of
direct hybridization with specific probes or by recognizing pat-
terns in the length of fragments produced by enzymatic diges-
tion of the DNA by specific endonucleases. These approaches
will also be discussed in this section.

End-point PCR-based amplification

End-point PCR is routinely used for the detection and identi-
fication of specific infectious agents from cultures or directly
from clinical specimens (Kourkoumpetis et al. 2012). Tradition-
ally, detection and identification of pathogens is based on the
development of primer sets, which selectively amplify a target
locus. The locus can be species-specific, rendering an amplicon
only if the target species is present, or have a broader spec-
trum, producing an amplicon from several species. In the lat-
ter case, differences in length, melting temperature or sequence
between the amplicons can allow a more specific identifica-
tion. The ribosomal RNA gene (rDNA), which is conserved and
present in multiple copies, has been largely used as a target
locus (Kurtzman and Robnett 1997). This locus presents a series
of features that makes it particularly suited for diagnostics, in
particular its presence in multiple copies, which allows ampli-
fication even from few cells, and its intrinsically high level of
variation present in some regions, which allows the develop-
ment of species-specific assays. The amplification and sequenc-
ing of the internal transcribed spacer (ITS) of the rDNA locus was
agreed to be the international gold standard for the identifica-
tion of fungal species (Schoch et al. 2012; Irinyi et al. 2016), and
several universal primers do exist that amplify this region (see
supplementary Fig. S1 available online). However, other regions
of the rDNA locus can be more informative for certain clades
or species, such as the Intergenic Spacer 1 (IGS1) region for Tri-
chosporum (Sugita et al. 2002). In addition, other markers such as
beta-tubulin or translation elongation factor genes can also be
used in other fungal species (Irinyi et al. 2016). Nowadays with
the vast development of bioinformatics and the availability of
whole-genome sequencing data, the identification of species-
specific or diagnostic regions is easier, faster and can provide
higher specificity (Bohle and Gabaldón 2012; Capella-Gutierrez,
Kauff and Gabaldón 2014).

Species-specific PCR primers for common fungal species
belonging to the major human pathogenic genera, such as
Candida, Aspergillus, Cryptococcus and Pneumocystis, are more
commonly used in routine laboratories than broad-spectrum
primers. However, a disadvantage is the lack of species-specific
commercial assays for less common species within those gen-
era, as well as for other emerging fungal genera that often
cause severe and fast-progressing infections (Lackner, Cara-
malho and Lass-Flörl 2014). The advantage of pan-fungal or
broad-spectrum PCR primers is that they allow the detection of
both common and rare fungi. However, disadvantages include
the fact that the results need to be interpreted by experts, since
commonly occurring, non-pathogenic, commensal or sapro-
trophic fungi can yield a positive result due to the sensitivity
of the assay (Lackner and Lass-Flörl 2017). A recently devel-
oped multiplex panel (YEASTpanel) is able to detect 21 clini-
cally important yeast species belonging to the genera Candida,
Trichosporon, Rhodotorula, Cryptococcus and Geotrichum, which col-
lectively represent 95% of yeast infections (Arastehfar et al.
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Figure 2. Scheme of commonly used PCR-based approaches used for fungal diagnostics. (A) Conventional PCR-based methods and (B) Real-time PCR-based methods

used in diagnostics. For every method the intermediate steps are shown in a vertical manner. Next to every method the turn-around time is estimated from hours
to minutes. RFLP—restriction fragment length polymorphism; AFLP—amplified fragment length polymorphism; HRMA—high-resolution melting analysis; MLPA—
multiplex ligation-dependent probe amplification.

2019). A list of selected examples of commercially available pan-
microbial, pan-fungal and Candida-specific kits is provided in
Table 1. In many cases, sequencing of the amplicon is required to
provide a specific diagnosis. The potential of PCR can go beyond
determination at the species level and can be used to detect
more subtle genetic differences such as those leading to a par-
ticular resistance profile (see section ”Antifungal Susceptibility
Testing).

Due to current limitations in sensitivity, and lack of stan-
dardized procedures and commercial assays for many rare and
emerging fungal pathogens, end-point PCR is generally not
included in routine tests of fungal pathogen detection on clini-
cal specimens (Arendrup et al. 2014b). However, efforts are being
made to develop new approaches that increase the sensitivity

in order to use this powerful technique for direct diagnosis with
patient samples. The high sensitivity and specificity that can
theoretically be provided by PCR is an incentive, given the gen-
erally low amounts of infectious cells present in test specimens.
However, several additional limitations may hinder the use of
PCR when the DNA template(s) is derived from clinical samples
(Schrader et al. 2012). For instance, the presence of hemoglobin
and anticoagulants in blood samples that are co-extracted with
the DNA inhibit amplification (Zhang, Kermekchiev and Barnes
2010). Certain DNA extraction kits solve this issue by includ-
ing treatment steps to remove potential inhibitors, which can
also be potentially problematic in other approaches. In addition,
modified PCR techniques are being developed to overcome lim-
itations, such as low specificity. For example, nested PCR can
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increase both specificity and sensitivity by making use of two
nested primer pairs (Taira et al. 2014).

Analysis of fragment length polymorphisms

Restriction fragment length polymorphism (RFLP) exploits the
fact that sequence differences can be identified after diges-
tion with sequence-specific restriction endonucleases. This
approach is usually applied in combination with PCR after
amplification of the desired DNA fragments. PCR-RFLP has been
successfully used to identify different Candida species such as
Candida palmioleophila, Candida fermentati, C. albicans, C. dublinien-
sis, Candida thermophila and C. glabrata (Dendis et al. 2003; Chen
et al. 2013; Feng et al. 2014). RFLP analysis requires extensive
databases, which impairs its routine use in the clinic. A simi-
lar approach, amplified fragment length polymorphism (AFLP),
reverses the order of PCR and restriction cleavage (Vos et al.
1995). This technique has been broadly used to evaluate intra-
species variation and identify different fungi such as Crypto-
coccus neoformans/gattii species complex, and Candida species
in clinical isolates (Tavanti et al. 2007; Hagen et al. 2015; Calvo
et al. 2016; Prakash et al. 2016). Although AFLP is more labori-
ous and expensive than RFLP, it has been shown to be robust,
rapid and highly reproducible under standardized experimen-
tal conditions (Nyazika et al. 2016). At present, these approaches
are predominantly used for the assessment of genetic variation
within a species in epidemiological studies.

Real-time PCR

Quantitative PCR (qPCR), formerly designated as real-time PCR,
monitors the amount of PCR product by using either fluores-
cent probes or intercalating dyes (Arya et al. 2005). Dyes (e.g.
SYBR Green) are less expensive than probes, but have the dis-
advantage of binding non-specifically to double-stranded DNA
(dsDNA), including primer dimers and non-target DNA (Navarro
et al. 2015). To overcome this, melting curve analysis (MCA) can
be performed to verify the specificity of a given primer pair.
Probes provide intrinsic specificity as they directly bind comple-
mentary sequences. Currently, there are several different classes
of probes available: primer-probes hairpins (such as Scorpion
probes), hybridization probes (e.g. Molecular Beacons), hydrol-
ysis probes (e.g. TaqMan), non-natural bases (Plexor

TM
primer),

as well as probes based on synthetic molecules, such as pep-
tide nucleic acids (PNAs) and locked nucleic acids (LNAs) (Faltin,
Zengerle and von Stetten 2013; Navarro et al. 2015). Nowadays,
hydrolysis and hybridization probes are extensively used in clin-
ical diagnostics (Wang, Peng and Wang 2014). qPCR-based diag-
nostic kits for detection of fungal infections are commercially
available and provide enhanced specificity and sensitivity com-
pared with traditional identification methods (Table 1). Several
kits include identification of the main Candida species. Guide-
lines such as the minimum information required for the publi-
cation of qPCR experiments (Bustin et al. 2009) have facilitated
the standardization of these approaches. The main advantage
of qPCR over conventional PCR is its ability to provide quantifi-
cation of the infecting pathogen load, albeit at a higher cost.
Although very often a simple positive or negative test for the
presence of the pathogen is required in the clinic, knowing the
load can be useful in monitoring the effect of the treatment,
or when overgrowth rather than simple presence is required to
determine infection in a non-sterile human niche. Another diag-
nostic application of qPCR in the clinic is the monitoring of level

of azole resistance in Candida spp. when the main mode of resis-
tance is up-regulation of the gene encoding the target of the
drug, or of drug efflux pumps (Sanglard, Ischer and Bille 2001;
Torelli et al. 2008; Gohar et al. 2017; Pourakbari et al. 2017), since
high levels of transcription of these are associated to azole resis-
tance (Ksiezopolska and Gabaldón 2018).

MCA

MCA aims to discriminate PCR amplicons based on the disso-
ciation kinetics of dsDNA as temperature increases. The melt-
ing point (Tm) of dsDNA molecules is defined as the tempera-
ture whereby 50% of the molecules have separated into single-
stranded DNA. This Tm is sequence-dependent because G-C base
pairs form three hydrogen bonds as compared with two in A-T
base pairs, and thus the former require more energy to disso-
ciate. Thus, higher Tm is attributed to a higher G/C content. By
adding intercalating fluorescent dyes that only exhibit fluores-
cence when bound to dsDNA, the dissociation process during
gradual heating can be recorded as a decrease in fluorescence
(Tong and Giffard 2012; Bezdicek et al. 2016). High-resolution
melting analysis (HRMA) is considered as the next-generation
application of classical MCA (Erdem et al. 2016). HRMA uses
brighter dyes at higher concentrations, combined with advanced
software and more sophisticated fluorescence-detection sys-
tems. HRMA is able to detect and monitor minimal fluores-
cence variations caused by a change in Tm of less than 0.5◦C,
which enables detection of sequence differences at a single base
pair resolution. The Tm change corresponding to a single G-C
replaced by A-T is 41/sequence length ◦C (Tong and Giffard 2012).
Therefore, the length of the amplicon is an important consider-
ation when designing HRMA studies. Short fragments (50–300
bp) will generally result in a well-defined single distinct melt-
ing domain and provide straightforward profiles, while longer
fragments may depict multiple peaks and reduce the discrimi-
natory power (Wittwer 2003). In addition, the selection of a suit-
able fluorescent dye is also relevant. Traditional, non-saturating
dyes (e.g. SYBR Green) inhibit the polymerase at concentrations
that produce maximum fluorescence. A new generation of sat-
urating dyes (e.g. SYTO9, ResoLight) do not have this inhibition
effect and therefore can be used at saturation. Another impor-
tant difference is that non-saturating dyes can re-bind on free
sites during the melting procedure, resulting in fuzzier profiles
(Duyvejonck et al. 2015). For this reason, saturating dyes are usu-
ally preferred over non-saturating ones.

Using MCA of the ITS2 region, Decat et al. succeeded in
distinguishing cultured strains of 16 Candida species within 6
h, among them the main pathogenic Candida species (Decat
et al. 2013). The commercial multiplex qPCR kit, kiAsperGenius R©

(Pathonostics B.V., The Netherlands), also makes use of MCA.
Besides detecting and differentiating between Aspergillus fumi-
gatus, Aspergillus terreus and Aspergillus spp., this kit provides
resistance data about A. fumigatus by detecting resistant-related
mutations in the cyp51a gene (White et al. 2015). HRMA has been
also used to identify several Candida species (Mandviwala et al.
2010; Arancia et al. 2011; Alnuaimi et al. 2014; Duyvejonck et al.
2015; Nemcova et al. 2015; Bezdicek et al. 2016).

HRMA has been validated by comparison with other tech-
niques such as culture on differential media (Candida ID, CHRO-
Magar), matrix-assisted laser desorption-time of flight mass
spectrometry (MALDI-TOF) and nucleic acid sequencing (Alnu-
aimi et al. 2014; Duyvejonck et al. 2015). Limitations of MCA and
HRMA stem from the fact that they use G/C content to dis-
criminate between two different DNA fragments, and therefore
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do not identify all the sequence variations of the amplicons.
For this reason, the pairs of species Candida orthopsilosis and
Candida metapsilosis (Decat et al. 2012), and Candida fabianii and
Meyerozyma guilliermondii (syn. Candida guilliermondii) (Nemcova
et al. 2015) could not be differentiated from each other because
of their similar G/C content and overlapping Tm.

The advantages of HRMA technology are a low cost, the
use of generic instruments, a low handling time, simplic-
ity and a closed tube format, which minimizes the risk for
PCR contamination (Tong and Giffard 2012). Accordingly, HRMA
offers a quick and cost-effective method for the simultane-
ous quantification and identification of the most relevant clin-
ical species of Candida, and for detection of co-infections with
these species, directly from clinical samples (Duyvejonck
et al. 2015).

Isothermal amplification methods

Isothermal amplification refers to a set of alternative
approaches to standard PCR that allows amplification of
specific targets without temperature cycles (Qi et al. 2018).
Some common advantages of these techniques are their
short turnaround time and that they do not require ther-
mocyclers, which make them suitable for clinical settings
in low-resource environments (Borst et al. 2002; Zhao and
Perlin 2013; Trabasso et al. 2015; Furuie et al. 2016). Isother-
mal amplification techniques include, among others, nucleic
acid sequence-based amplification (NASBA), rolling-circle
amplification (RCA), loop-mediated isothermal amplification
(LAMP), strand displacement amplification, primer-generation
RCA, helicase-dependent amplification, recombinase poly-
merase amplification, exponential amplification reaction, and
whole-genome amplification (Zhao et al. 2015).

Here, we limit our discussion to three of the most promis-
ing approaches for fungal diagnostics: RCA, LAMP and NASBA.
RCA is a technique based on rolling-circle replication, which
occurs naturally for certain types of DNA molecules, e.g. plas-
mids and viruses with circular genetic material (Novick 1998;
Zhao et al. 2015). The resulting product consists of multiple
repeats complementary to the template (Ali et al. 2014). This
method has already been successfully used for the detection
of Candida, Aspergillus and Scedosporium spp. from clinical iso-
lates by targeting species-specific padlock probes to the ITS2
region (Zhou et al. 2008). RCA is fast (2 h) and very specific,
but initial set-up costs for probes are high (Wang et al. 2009).
LAMP is a DNA amplification technique that facilitates the syn-
thesis of large amounts of DNA using a DNA polymerase with
strand-displacement activity that provides high specificity and
speed (Mori et al. 2001; Nagamine, Hase and Notomi 2002).
LAMP-mediated DNA amplification can be monitored by turbid-
ity since magnesium pyrophosphate is produced proportionally
as a result of base incorporation into the newly synthesized DNA
strands (Mori et al. 2004). LAMP has already been applied to the
detection of pathogenic fungi such as Paracoccidioides brasiliensis
(Endo et al. 2004), Pneumocystis spp. (Uemura et al. 2008), C. para-
psilosis (Trabasso et al. 2015) and C. albicans (Noguchi et al. 2017).
The limit of detection of this technique (1 pg of DNA) (Noguchi
et al. 2017) is lower than that of qPCR. However, its lower cost,
together with its high specificity and speed, make it a promis-
ing tool for the detection of fungal species in clinical samples.
Finally, NASBA is a technique that uses continuous amplification
of RNA in a single mixture at constant temperature (Compton
1991). It has also been tested for the detection of Candida yeasts
(Widjojoatmodjo et al. 1999). An automated system combining

NASBA with real-time detection (NucliSENS easyQ R© bioMérieux
SA) is already in use for bacteria and viruses (Lam et al. 2007;
McEwan et al. 2013).

Magnetic resonance and nanoparticles

One of the few currently commercially available methods for
diagnosis of Candida infections that does not require cultur-
ing is the T2Candida system (T2 Biosystems, USA), which is
based on T2 magnetic resonance (Neely et al. 2013). Blood sam-
ples are lysed to release DNA, which is then amplified by PCR.
Oligonucleotide probes covalently conjugated to superparam-
agnetic nanoparticles capture the amplified DNA, causing clus-
tering of the nanoparticles. The clustering results in changes
to the T2 relaxation time, which is detected by magnetic reso-
nance. This device has achieved 1 colony-forming unit (cfu)/mL
sensitivity with time to results of less than 3 h. The T2Candida
system can identify C. albicans, C. tropicalis, C. parapsilosis, C.
glabrata and P. kudriavzevii. T2Candida is currently undergoing
large-scale testing in hospital settings, and several studies have
suggested that it is superior to culture and serum methods with
regard to sensitivity, specificity and speed (Clancy and Nguyen
2018a). More nanoparticle-based methods are likely to be devel-
oped in the future, possibly conjugated to antibodies (Jain et al.
2018).

Large-scale parallel amplification

The broadening spectrum of opportunistic fungal pathogens
implies the need to test for the presence of a battery of species,
rather than of an individual organism. Combining the paral-
lel amplification of multiple potential targets in a single reac-
tion (multiplexing) has the obvious advantage of saving time,
energy and cost, and it is particularly suited for reference labo-
ratories processing huge numbers of clinical samples. Although
manual optimization of primers and conditions can success-
fully result in a combined test for a few potential targets, some
specific technologies allow the number of combined targets to
be raised to high-throughput scales. Luminex xMAP technology
consists of dyed latex microspheres covered with bio-molecular
reporters able to hybridize with the targets. A combination of dif-
ferent dyes facilitates 500 simultaneous PCR amplifications from
a single sample (Dunbar 2006). Upon completion of the reac-
tions, microspheres are passed through a flowing fluid stream
where they are excited by two lasers with wavelengths specific
to the internal microsphere dyes and to the reporter molecule
attached to the surface. Applications of this technology include
single nucleotide polymorphism (SNP) discrimination, screen-
ing of genetic diseases, gene expression profiling and microbial
diagnostics (Fulton et al. 1997; Colinas, Bellisario and Pass 2000;
Spiro, Lowe and Brown 2000; Yang, Tran and Wang 2001; Lee
et al. 2004). Successful implementations of this technology for
a diverse range of yeast genera including Candida, Cryptococcus
and Malassezia have been reported (Diaz et al. 2006; Bovers et al.
2007; Balada-Llasat et al. 2012). Landlinger et al. highlighted the
ability of the Luminex system to identify 29 species from 9 fun-
gal genera (Candida, Cryptococcus, Trichosporon, Aspergillus, Mucor,
Rhizopus, Penicillium, Absidia and Acremonium) using probes tar-
geting the ITS2 region (Landlinger et al. 2009).

Multiplex ligation-dependent probe amplification (MLPA) is
a technique that indicates the presence of multiple DNA target
sequences by specific probe amplifications using only a single
primer pair (Schouten et al. 2002). Amplification of specific tar-
get probes depends on a ligation event that in turn depends on
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correct hybridization to target DNA. This is achieved by split-
ting each DNA probe into two oligonucleotides containing either
the forward or reverse primer sequences at their ends. These
oligonucleotides only ligate to each other after they have fully
hybridized to the target DNA sequence, followed by the forma-
tion of a PCR product. The same primer pair can be used with
multiple probes, allowing the amplification/detection of several
targets simultaneously (Dunbar 2006). In multiplexing, specific
amplicons are distinguished by size, therefore it is common to
adjust the size of the probe forming oligonucleotides with irrel-
evant sequences (Schouten et al. 2002). MLPA has great potential
for species identification and intraspecies differentiation (Pham
Thanh et al. 2013).

Droplet digital PCR performs multiple independent PCRs
using water-oil emulsion droplets (Vogelstein and Kinzler 1999).
A sample is fractionated into thousands (e.g. ∼20 000) of
droplets, each containing all necessary PCR reagents. Droplets
are passed through a flow cytometer where a positive or neg-
ative result is recorded (Roberts et al. 2013). Some of the bene-
fits include multiplexing, speed, cost-effectiveness, high preci-
sion and accuracy, as well as the ability to use lower amounts
of sample. This platform has been exploited in various fields
ranging from detection of ocular infection agents to oncology
(Roberts et al. 2013; Chaudhuri et al. 2016; Shembekar et al. 2016).
In addition, this approach has been successfully used to identify
Aspergillus species in non-clinical contexts (Hua et al. 2018).

DNA hybridization

Hybridization of fluorescent probes to target specific DNA
sequences can be applied for molecular diagnostics. Probes
can be used directly on clinical specimens and observed by
microscopy or in combination with other techniques, such as
PCR, and measured with a fluorimeter (DeLong, Wickham and
Pace 1989). Fluorescent in situ hybridization (FISH) is based on
hybridization of fluorescent probes with taxon-specific regions
of the DNA of microorganisms and subsequent detection by fluo-
rescence microscopy or flow cytometry (FC) (Amann, Krumholz
and Stahl 1990; Wallner, Amann and Beisker 1993). Probes can
be based on natural nucleotides, but an increasing number of
approaches exploit the use of nucleic acids analogs. These are
artificial nucleic acids chemically modified at the nucleobase,
the sugar ring or the phosphodiester backbone. Different forms
of modified nucleic acid are available, such as PNA, which con-
tain an uncharged pseudopeptide backbone replacing the sugar
phosphate backbone of DNA (Nielsen et al. 1991; Egholm et al.
1993). They can be used in the diagnosis of infectious diseases
and detection of resistance-related mutations as they possess
unique traits missing from traditional probes such as resistance
to nucleases, high temperatures and changes in ionic strength
(Chen et al. 2011). PNA probes are commonly used as therapeutic
agents that act by altering gene expression but can also be used
in the diagnosis of infections. Their suitability for detecting Can-
dida species from blood samples has been tested, showing that
they enable identification from blood cultures in about 5 h (Heil
et al. 2012). Commercially available kits based on PNA-FISH tar-
geting the rRNA gene are available for the identification of Can-
dida spp., some of which have shown more than 92% sensitiv-
ity and specificity with turnaround times of 90 min (Stone et al.
2013; Radic et al. 2016). LNAs are synthetic RNA molecules with
a modified ribose ring that increases affinity to complementary
DNA or RNA sequences. Consequently, LNA-based probes can
provide high specificity and sensitivity. Although they are still

not widely used in the clinic, there have been promising devel-
opments with respect to their use in detecting diverse fungal
species (Ruthig and Deridder 2012; Montone 2014; Ikenaga et al.
2016).

An alternative hybridization-based approach is the
hybridization of extracted DNA (or RNA) of a sample to
probes fixed on a solid surface (arrays). The advantage of this
approach is that the presence of several targets can be inter-
rogated in parallel, allowing the simultaneous identification
of a panel of pathogens. Several panels have been developed
that focus on invasive or superficial mycoses (Leinberger et al.
2005; Spiess et al. 2007; Sato et al. 2010), and those that combine
the detection of both fungal and bacterial pathogens (Cao et al.
2018).

Detection of SNPs

Detecting variants at a single nucleotide can have a high clin-
ical value, particularly if the variant is associated with drug
resistance. PCR-based methods can be adapted to detect SNPs
with high specificity. These approaches generally rely on one
of the following strategies: (i) using specific primers matched
to the particular nucleotide variation, or using oligonucleotides
to block or clamp the non-targeted template; (ii) using MCA,
which is combined with real-time PCR using hydrolysis probes,
hybridization probes or dsDNA-binding fluorescent dye; or (iii)
design of specific endonuclease digestions of amplified frag-
ments that are able to distinguish the targeted variation. Allele-
specific PCR (ASP) makes use of the preferential amplification
of desired alleles using Taq DNA polymerase with primers con-
taining allele-specific 3′ ends (Bottema and Sommer 1993). ASP
can identify single base changes, as well as small insertions
and deletions. Similar techniques include amplification-specific
PCR, and the amplification refractory mutation system (ARMS)
(Bottema and Sommer 1993). A combination of ASP with quan-
titative PCR (AS-qRT-PCR) and droplet PCR (AS-Droplet-PCR) may
improve the genotyping and quantitation of chimerism in recip-
ients (Taira et al. 2015) compared with regular short tandem
repeat PCR. In addition, hybridization with SNP-specific probes
can also be used. DNA array systems, which combine parallel
hybridization with multiple probes, could provide a fast and easy
platform in diagnostic settings. However, a common limitation
of all these methods is that they require comprehensive knowl-
edge of key SNPs.

All these techniques have been used to screen for resistance
mutations in several fungal pathogens, including array-based
systems (De Backer et al. 2001; Garaizar et al. 2006). MCA was used
to discriminate C. albicans isolates with and without hotspot
mutations in ERG11 that are known to confer azole resistance
(Loeffler et al. 2000; Caban et al. 2016). Several PCR-based meth-
ods were adapted for SNP detection from clinical samples. For
instance, PCR assays were developed to detect echinocandin
resistance mutations in the FKS1 and FKS2 genes in C. glabrata
(Dudiuk et al. 2014), and in FKS1 in C. albicans (Balashov, Park
and Perlin 2006). In addition, mutations in FKS1 and FKS2 in C.
glabrata have been identified using MCA (Zhao et al. 2016) and
Luminex technology (Pham et al. 2014). HRMA has been used
to discriminate among five polymorphic variants in the ERG11
gene of C. albicans (Ge et al. 2010; Caban et al. 2016). Finally, other
approaches that are able to detect SNPs have the potential to
be used to detect resistance-conferring mutations (Berard et al.
2004).

In summary, molecular approaches that are able to detect
resistance directly in clinical specimens require substantial
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further development. The few assays commercially available
lack clinical evaluation. However, resistance screening of clin-
ical specimens is becoming increasingly important as resis-
tance rates are on the rise. Additionally, molecular approaches
only provide evidence for the presence of known resistance
mutations, but cannot rule out resistance established through
unknown mutations or involving other types of biological mech-
anisms, such as biofilm formation. Therefore, conventional sus-
ceptibility testing (see section ”Antifungal Susceptibility Test-
ing”) will remain an important approach to profiling resistant
phenotypes.

SPECTROSCOPY-BASED METHODS

Spectroscopy techniques exploit and detect the interaction
of radiation with matter. Currently, different spectrometric
approaches are used in microbial diagnostics, including MALDI-
TOF MS, Fourrier-transformed infrared spectroscopy (FT-IR),
Raman spectroscopy and magnetic resonance spectroscopy
(Maquelin et al. 2002; Himmelreich et al. 2003; Wenning and
Scherer 2013; De Carolis et al. 2014).

MALDI-TOF MS

MS is a semi-quantitative to quantitative method using ioniza-
tion of matter and subsequent separation of the ions based on
their mass-to-charge ratio. In MALDI-TOF MS analyte molecules
are embedded in a (commonly solid) matrix, where they are ion-
ized by a pulsed laser. The resulting ions are separated in the gas
phase according to their mass-to-charge ratio, and measured,
which results in specific spectra. Over the last two decades, this
technique has become a routine tool for the rapid, accurate and
sensitive identification of microorganisms in clinical laborato-
ries (Mellmann et al. 2009; Giebel et al. 2010; Seng et al. 2010;
De Carolis et al. 2014; Vlek et al. 2014; Kostrzewa 2016). Most
of such procedures detect differences in ribosomal proteins, as
they are the most abundant in the cells (Suarez et al. 2013). Gen-
erally, the use of MALDI-TOF MS for microorganism identifica-
tion requires culturing and some preparation to embed the bio-
logical material into the matrix. Starting from positive blood cul-
tures the whole identification process, including sample prepa-
ration and measurement, can be completed in only 1 h (Fraser
et al. 2016). To identify microorganisms the profile spectra are
compared with a reference database. Such databases are com-
mercially available, e.g. MALDI Biotyper system (Bruker Daltonik
GmbH, Germany) (Seng et al. 2010; De Carolis et al. 2014) or Vitek
MS (BioMeriéux, Marcy l’Etoile, France). Several studies suggest
that MALDI-TOF MS is one of the most accurate and rapid tools
for identifying many different yeasts as well as important fil-
amentous fungi (Marklein et al. 2009; Emonet et al. 2010; San-
tos et al. 2010; Vlek et al. 2014; Taj-Aldeen et al. 2014a). A study
comparing the MALDI-TOF MS with standard procedures for 267
clinical isolates including Candida species showed that MALDI-
TOF MS correctly identified 92.5% of them (Marklein et al. 2009).
Of note, the 20 unidentified species were absent from the ref-
erence database, which could be resolved by adding the corre-
sponding spectra. Hitherto, numerous studies have shown the
potential of MALDI-TOF MS in identification of different Can-
dida spp. including C. albicans, C. glabrata, P. kudriavzevii, C. para-
psilosis, C. tropicalis, C. dubliniensis, C. metapsilosis, C. orthopsilo-
sis, Kluyveromyces marxianus and Candida nivariensis (Qian et al.
2008; Taj-Aldeen et al. 2014a; Angeletti et al. 2015; Galán et al.
2015). Updating the reference database with spectra from dif-
ferent isolates of the target species is relatively easy and could

be the fastest solution to diagnose emerging pathogens. This
has been demonstrated for C. auris and related species, whereby
MALDI-TOF MS has been shown to have a high accuracy in dis-
tinguishing between Candida haemulonii and C. auris (Cendejas-
Bueno et al. 2012; Kathuria et al. 2015), and even in detecting
variation within a single species, allowing epidemiological stud-
ies in C. auris (Girard et al. 2016; Prakash et al. 2016). Other
studies have shown the potential of MALDI-TOF MS to identify
isolates at the species and subspecies levels in the Cr. neofor-
mans/gattii complex (Posteraro et al. 2012; Hagen et al. 2015), for
Trichosporon, Geotrichum and related genera (Kolecka et al. 2013),
and for Malassezia spp. (Kolecka et al. 2014; Denis et al. 2017).
Moreover, using this technique Taj-Aldeen et al. have achieved
100% accuracy for identification of more than 200 clinical iso-
lates, including 11 belonging to uncommon yeast species (Taj-
Aldeen et al. 2014b). Overall, these studies illustrate that MALDI-
TOF MS is a rapid, accurate and reliable method for identi-
fication of microorganisms, including yeasts. The technology
is now being developed for detection of antifungal resistance
(Kostrzewa and Pranada 2016) (see section ”Antifungal Suscep-
tibility Testing”).

Other MS methods, FT-IR spectroscopy and Raman
spectroscopy

Electrospray ionization MS coupled with broad-spectrum PCR
(PCR/ESI-MS) is a promising technique for microbial diagnosis
(Jordana-Lluch et al. 2013). In this approach amplicons derived
from a PCR are analyzed by MS and the results are matched to
a database, which enables the detection of several microbes in
parallel. It displays a high sensitivity (lower limit of detection = 1
microbial genome/sample) and thus may be used to detect
microorganisms directly from patients’ samples (Jordana-Lluch
et al. 2013). Benchmarking performance using blood culture as
gold standard gave an overall agreement of 94.2% (Jordana-Lluch
et al. 2013). However, the complexity of this technique renders it
difficult to integrate into the standard laboratory workflow (Flo-
rio 2015).

Rapid evaporative ionization MS (REIMS) has also been suc-
cessfully applied to identify yeasts (Strittmatter et al. 2013; Bolt
et al. 2016). This approach performs mass spectrometric analy-
sis of aerosols originated from heating up cells in the sample,
forming gas-phase ions of metabolites and lipids. In contrast to
other mass spectrometry methods, REIMS is able to perform the
analysis directly from a culture plate, without any extraction or
pre-treatment. Published assessments show a 100% accuracy in
the identification of 153 clinical Candida isolates, fully agreeing
with MALDI-TOF MS and sequencing of the ITS region (Cameron
et al. 2016).

Other options for future development of a valid method for
rapid and accurate identification of fungal infections are based
on vibrational spectroscopy. FT-IR spectroscopy is based on the
fingerprint generated by the absorption profile in the infrared
light spectrum by microbial cells and can be applied to micro-
bial identification and typing (Quintelas et al. 2018). The tech-
nique has been used in some studies to identify Candida species
(Timmins et al. 1998; Taha et al. 2013). While the complex infor-
mation enables typing at even intra-species level of microorgan-
isms (Dinkelacker et al. 2018), it also requires strict standardiza-
tion of cultivation conditions.

Another method based on vibrational spectroscopy, Raman
spectroscopy, is used to investigate the molecular composition
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of a sample, leading to the formation of spectroscopic finger-
prints that can be used to differentiate microbial species and
strains (Almarashi et al. 2012; Stöckel et al. 2016). This approach
offers several advantages, as it requires minimal biomass and
sample handling while enabling a rapid and accurate analy-
sis (Ibelings et al. 2005). The laser irradiates the microbial sam-
ple and generates an infinitesimal amount of Raman scattered
light, which is detected as a Raman spectrum. A clinical study
on intensive care unit (ICU) patients with peritonitis showed
a high accuracy (90%) for Raman-based identification of yeasts
with only a single misidentification of one C. albicans isolate as
the closely related C. dubliniensis (Ibelings et al. 2005). A vari-
ation of Raman spectroscopy is surface-enhanced resonance
Raman spectroscopy (SERRS) (Faulds, Smith and Graham 2005).
This technique consists of PCR-based amplification with mul-
tiple DNA probes, each specific for a different fungal pathogen
and tagged with specific dyes, followed by exonuclease diges-
tion of dsDNA. This results in the digestion of the bound probes,
and the undigested probes are detected by the specific sensors,
thereby revealing the pathogens present in the sample. This
method reached 100% accuracy when compared with culture-
based methods (Yoo et al. 2011).

ANTIBODY-BASED TECHNIQUES

In response to infection, the adaptive immune system of ver-
tebrates can produce tailored defense proteins (antibodies, Ab)
that recognize specific molecules of the invading agent (i.e. anti-
gen). Antigen binding may lead to immobilization or neutraliza-
tion of the antigen and flags it for attack by other components of
the immune system. Hence, antibodies provide high specificity
and sensitivity that can be exploited for diagnostic purposes.
Additionally, there have been efforts to develop therapeutic or
protective antibodies for yeast infections (Casadevall and Pirof-
ski 2012; Elluru, Kaveri and Bayry 2015).

Enzyme-linked immunosorbent assay

This approach is based on the detection of low amounts of
antigens (down to pico-nanograms/mL) by linking the binding
with an antibody with a measurable enzymatic reaction. The
technology can be used directly with various clinical samples.
Most formats used consist of direct or indirect enzyme-linked
immunosorbent assay (ELISA), depending on whether the mea-
surable signal is directly produced by a primary antibody or indi-
rectly by a polyclonal secondary antibody, respectively. Indirect
ELISA provides higher sensitivity due to multiple binding of the
polyclonal secondary antibody leading to signal amplification.
Additionally, sandwich ELISA first captures the antigen by an
antibody that is immobilized on a microtiter plate. Capture of
the antigen from a complex sample can increase the sensitiv-
ity, and might be even necessary if direct coating efficiency of
the target antigen is very low (Yolken 1985). The disadvantage of
sandwich formats is the need for two antigen-specific antibod-
ies that recognize different areas (epitopes) of the target antigen
and that do not compete for antigen binding. In addition to anti-
gen detection, ELISA is used for detection of (invasive) disease-
related antibodies in serum samples. In this case, antigen coated
to a microtiter plate is used to capture antibodies from human
blood serum samples (Clancy et al. 2008).

Currently, sandwich ELISA kits for detection of Candida man-
nan antigen, a non-covalently attached immune-dominant cell
wall protein, in serum samples are commercially available for
diagnosis of invasive candidiasis (e.g. Platelia Candida Ag Plus,

Bio-Rad). However, evaluations have shown that the Candida
mannan ELISA alone has a low sensitivity for predicting inva-
sive candidiasis. The sensitivity of the diagnostic procedure can
be significantly increased by additionally testing the sample
for presence of host anti-Candida mannan antibodies by ELISA
(Mikulska et al. 2010; Held et al. 2013; León et al. 2016). Sensi-
tivity of both ELISAs depends on the species, and was shown
to be highest for C. albicans, followed by C. glabrata and C. trop-
icalis (Mikulska et al. 2010; Held et al. 2013). For detection of the
polysaccharide galactomannan as a biomarker of invasive infec-
tion with filamentous Aspergillus species, a similar antigen ELISA
assay (Platelia Aspergillus Ag, BioRad) is commercially available
and recommended for testing serum or bronchoalveolar lavage
fluid of high-risk patients. (Ullmann et al. 2018). 1,3-β-d-glucan,
a major polysaccharide component of the cell wall of many
fungal species, can be detected in serum samples by exploit-
ing an enzyme cascade of horseshoe crab amebocyte extract
(not Ab-based) and assays are commercially available (e.g. Fun-
gitell, Associates of Cape Cod) (Onishi et al. 2012). The pres-
ence of 1,3-β-d-glucan in serum can indicate invasive disease
caused by a fungal species with significant amounts of 1,3-β-
d-glucan in their cell walls (e.g. Candida spp., Pneumocystis spp.,
Aspergillus spp. but not Cryptococcus spp. or Mucorales) (Miyazaki
et al. 1995a, 1995b). In addition, 1,3-β-d-glucan levels in patients
can be elevated, for instance, due to administration of antibiotics
or other biopharmaceuticals used during hemodialysis or incor-
porated into surgical gauze (Otto et al. 2013). Therefore, false-
positive test results are common in high-risk groups such as ICU
patients (Clancy and Nguyen 2013). Recently, a bispecific mono-
clonal antibody with specificities for 1,3-β-d-glucan and Candida
mannan has been developed, although it lacks validation using
clinical samples (Zito et al. 2016). Antigen or antibody detection
ELISAs have been developed for other invasive yeast infections
such as cryptococcosis (Pfaller 2015), histoplasmosis (Azar and
Hage 2017), blastomycosis (McBride, Gauthier and Klein 2017),
coccidioidomycosis (Galgiani et al. 2016), paracoccidioidomyco-
sis (Mendes et al. 2017), talaromycosis/penicilliosis (Ning et al.
2018) and sporotrichosis (Bonifaz and Tirado-Sánchez 2017).

Immunofluorescence

In immunofluorescence assays, antibodies conjugated to fluo-
rophores are used to detect antigen at low concentrations (down
to pico-nanograms/mL). The fluorescent signal from the con-
jugates can be visualized with a fluorescence microscope or
detected with a fluorimeter. In fungal diagnostics, immunoflu-
orescence is relevant for the detection and identification of
invasive pathogens by fluorescence microscopy of fixed tis-
sue samples. A major issue in this area is the lack of highly
species-specific antibodies, which would enable an unequivo-
cal pathogen identification (Guarner and Brandt 2011). An indi-
rect immunofluorescence assay intended for the diagnosis of
invasive candidiasis by antibodies that are specific for mycelial
phase antigens has been developed and commercialized by Vir-
cell (Invasive Candidiasis (CAGTA) IFA IgG) (Strauer 1990). How-
ever, the clinical relevance of this assay remains to be evaluated
(Clancy and Nguyen 2018b).

Latex agglutination assay

Latex agglutination assays are antibody-based diagnostic meth-
ods that can be performed without the use of advanced equip-
ment. In this approach, latex beads coated with specific antibod-
ies are mixed with the test sample. The presence of the antigen
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leads, within minutes, to cross-linking and visible agglutination
of the beads. Testing a dilution series of the sample can pro-
vide quantitative information. Conversely, beads can be coated
with an antigen to detect antigen-specific antibodies (Molina-
Bolı́var and Galisteo-González 2005). Rapid latex agglutination
assays with high sensitivity and specificity have been developed
for species identification from colony samples of C. albicans, C.
glabrata, P. kudriavzevii and C. dubliniensis, as well as for diagno-
sis of cryptococcosis directly from serum or cerebrospinal fluid
of patients with suspected cryptococcal meningitis (Tanner et al.
1994; Freydiere et al. 1997; Quindos et al. 1997; Marot-Leblond
et al. 2006; Wang, Yuan and Zhang 2015).

Lateral flow assays

Lateral flow assays are immunochromatographic antigen detec-
tion tests. The liquid test sample is applied through a lateral
flow device (LFD), consisting of a series of capillary beds that
transport the sample liquid by capillary action. The most com-
mon formats are the sandwich and the competitive lateral-flow
assays. For antigen detection a liquid test sample is applied
to a sample pad, or a dipstick is put into the sample liquid.
In the sandwich format the sample liquid flows through cap-
illary action to a conjugate pad that contains the first antigen-
specific antibodies conjugated to colored particles, most com-
monly latex micro- or gold nanoparticles. If the antigen is
present in the test sample, immune complexes of antigen and
antibody–particle conjugate are formed. Then the liquid passes
a detection membrane that has a test-line containing the second
antigen-specific antibody. Antibody–antigen conjugates are cap-
tured at the test-line leading to visible accumulation of the color,
indicating a positive result. Usually a control line is embedded
into the detection membrane containing a third antibody spe-
cific for the first antibody–particle conjugate (not the antigen)
(Bahadır and Sezgintürk 2016).

Ideally, LFDs are rapid, affordable, robust and designed for
stand-alone detection of biomarkers in clinical samples, without
the need for further equipment or sample pre-treatment, which
may qualify them for point-of-care use by untrained person-
nel, or in resource-limited environments. A lateral flow device
that fulfills these criteria has been developed and commercial-
ized for the diagnosis of cryptococcosis (CrAg LFA, IMMY). The
sandwich lateral flow assay has high sensitivity (98–100%) and
specificity (97–100%) in detection of glucuronoxylomannan of all
major serotypes in serum, plasma, cerebrospinal fluid and urine
as a biomarker for cryptococcosis (Vidal and Boulware 2015).
This LFD has been extensively evaluated and approved and is
recommended by the World Health Organization for screen-
ing and diagnosis of patients at risk (WHO 2015). Recently, an
LFD for detection of human host antibodies against C. albi-
cans enolase as a surrogate marker for invasive candidiasis
in serum samples has been described. The LFD assay results
were in agreement with indirect ELISA detection of anti-enolase
antibodies in clinical samples, but larger scale evaluations
are necessary before its clinical value can be determined (He
et al. 2016).

The use of antibody-based approaches for the diagnostics of
yeast infections is promising, but there is a lack of recent devel-
opments in this field. A major drawback of antibody-based diag-
nostics can be low sensitivity, particularly when compared with
PCR-based approaches. The sensitivity of antibody-based meth-
ods highly depends on the properties of the antibodies available
as well as on the actual presence of surrogate biomarkers in a
patient sample, where timing of sampling can be critical. While

much progress has been made in targeted generation and selec-
tion of antibodies, the identification of suitable biomarkers of
active infection (as opposed to past infection or colonization)
remains problematic. Relevant biomarkers might be present in
very low concentrations, or be unstable, rapidly degraded and/or
cleared from the circulation. There is also the risk that antibod-
ies cross-react with irrelevant antigens or that antigenic sites are
blocked by formation of immune complexes with human host
antibodies.

On the other hand, detection of an appropriate biomarker
can yield information about the state of disease while detection
of pathogen DNA by PCR is no indication for pathogenic activ-
ity of a commensal or presence of viable pathogens (see sec-
tion ”Diagnosis of Infection Type and Stage”). Currently avail-
able assays for cryptococcosis diagnostics demonstrate that
antibody-based detection methods can be extremely sensitive
and specific if an appropriate biomarker is available (Pfaller 2015;
Vidal and Boulware 2015; Wang, Yuan and Zhang 2015).

While reviewing the literature it became apparent that the
efforts for development of antibody-based diagnostics of inva-
sive yeast infections have been very limited. This might also be
due to the fact that clinical evaluation is costly and time con-
suming. Methods that combine the advantages of biomarker
detection by antibodies with the sensitivity of PCR (immuno-
PCR) were developed in the early 1990s (Sano, Smith and Cantor
1992), but to our knowledge no applications for fungal diagnos-
tics have been published.

Due to their unique structure, single-domain antibodies
(Muyldermans 2013) represent an attractive and largely unex-
plored area for development of fungal diagnostics. Single-
domain antibodies can recognize epitopes that are unavail-
able for common antibodies and therefore can have extraordi-
nary specificities and affinities and might be able to overcome
immune complex formation problems. Antibody-functionalized
sensors (e.g. surface acoustic wave sensors) represent attractive
platforms that are being developed for application in diagnostics
and may provide an incentive to pursue entirely new approaches
(Turbé et al. 2017).

ANTIFUNGAL SUSCEPTIBILITY TESTING

The growing prevalence of fungal infections is accompanied
by an increased use of antifungal drugs (Pfaller and Diekema
2010; Lockhart et al. 2012). Antimycotic agents in clinical use
belong to one of a few drug classes including polyenes (i.e.
amphotericin B), azole derivatives (i.e. voriconazole, flucona-
zole, posaconazole and itraconazole), echinocandins (i.e. anidu-
lafungin, caspofungin and micafungin) and flucytosine (Loef-
fler and Stevens 2003). Susceptibility towards different drugs
varies among pathogenic yeast species and, similar to the
situation with antibiotic resistance in bacteria, pathogenic
yeasts can acquire resistance due to adaptation to drug expo-
sure (Fairlamb et al. 2016; Ksiezopolska and Gabaldón 2018).
The emergence of azole- and echinocandin-resistance in Can-
dida spp. is of great concern, as they complicate therapeu-
tic management (Arendrup and Perlin 2014). Particularly, the
emergence of echinocandin-resistance in the intrinsically less
azole-susceptible species, such as C. glabrata (Grosset et al.
2016; Mccarty et al. 2016), limits treatment options. Hence,
assessment of the levels of susceptibility to different antimy-
cotics of the infecting strain is important to guide antifungal
therapy.
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Broth-based microdilution and plate cultivation
methods

The Clinical and Laboratory Standards Institute (CLSI, www.cl
si.org) and European Committee on Antimicrobial Susceptibil-
ity Testing (EUCAST, www.eucast.org) have developed reference
methods to perform antifungal susceptibility tests based on
broth microdilution of yeast cultures (Posteraro and Sanguinetti
2014; Song et al. 2015; European Committee on Antimicrobial
Susceptibility Testing 2018; Antifungal Susceptibility Testing
Files & Resources 2019). Both CLSI and EUCAST procedures serve
to define minimal inhibitory concentration values and clinical
breakpoints, which are the values that ideally predict treatment
success or failure (European Committee on Antimicrobial Sus-
ceptibility Testing 2018; CLSI 2019). Several commercial antifun-
gal susceptibility tests have been developed, with the fully auto-
mated Vitek 2 system being one of the most widely used (Poster-
aro and Sanguinetti 2014).

Agar-based cultivation methods to assess antifungal sus-
ceptibility are available. One of the classical agar-based assays
is disc diffusion, in which a zone of growth inhibition is pro-
duced in a plate culture around a paper disk soaked with the
antifungal. The Epsilonmeter test (Etest) is commercially avail-
able to assess susceptibility of Candida spp. towards antifungal
drugs. These methods are cost effective and easy to set up, but
results are not always consistent with EUCAST/CLSI standard
approaches (Sewell, Pfaller and Barry 1994; Szekely, Johnson and
Warnock 1999; Rex et al. 2001; Dannaoui et al. 2010; Alastruey-
Izquierdo et al. 2015).

FC and MALDI-TOF approaches for antifungal
susceptibility testing

Over the last two decades, the use of FC approaches for rapid
antifungal susceptibility testing has been explored. FC measures
single cell fluorescence after exposition to a fluorescent dye, and
can be used to measure difference in fluorescence in Candida
spp. when exposed to different levels of a given antifungal drug.
Although this technique is faster than CLSI and EUCAST refer-
ence methods, reducing the time for detection from 24–48 h to
4–9 h, it is expensive, technically complicated and has not yet
been validated for clinical use. Nevertheless, it has successfully
been used to test susceptibility in species such as C. albicans, C.
glabrata, P. kudriavzevii and C. parapsilosis (Chaturvedi, Ramani
and Pfaller 2004; Mitchell, Hudspeth and Wright 2005; Pina-Vaz
et al. 2005; Vale-Silva and Buchta 2006; Benaducci et al. 2015).

MALDI-TOF MS (see section ”Spectroscopy-based Methods”)
has also been used for antibiotic resistance testing in bacteria
(Wolters et al. 2011), and there have been recent attempts to
extend this to susceptibility testing in yeasts (Marinach et al.
2009; De Carolis et al. 2012b; Vella et al. 2013; Saracli et al. 2015).
This approach is based on the detection of mass spectromet-
ric profile changes depending on the antifungal concentration,
and it was first applied to test fluconazole susceptibility in C.
albicans (Marinach et al. 2009). Other studies have shown a high
concordance between MALDI-TOF MS and the CLSI reference
method for measurements of susceptibility to echinocandins, or
the presence of resistance-conferring mutations in FKS1 (De Car-
olis et al. 2012a; Vella et al. 2013). More recently it has been used
to detect C. albicans, C. glabrata and C. tropicalis strains resistant
to various azoles (Saracli et al. 2015) and as a rapid method for
the detection of echinocandin susceptibility in C. albicans and C.
glabrata (Vatanshenassan et al. 2018) and C. auris (Vatanshenas-
san et al. 2019).

Nucleic acid-based methods to detect mutations
conferring resistance

Resistance can also be acquired through adaptation to drug
exposure by species that are naturally susceptible. This sec-
ondary resistance is generally conferred by point mutations in
the genes encoding proteins targeted by the drug, or by pro-
moter mutations leading to the overexpression of these pro-
teins or of drug efflux pumps (Ksiezopolska and Gabaldón 2018).
Amplification of these regions by PCR (see section 2) followed
by Sanger sequencing, as well as targeted or whole genome
sequencing (see section 7) can directly decode the sequence
of drug-resistance related genes and thus detect the existence
of mutations potentially conferring resistance in an isolate of
interest, even without previous knowledge of such mutations.
In addition, any PCR-based or hybridization-based method able
to discern single-point mutations (see section 2.8) can be poten-
tially applied to test the existence of a set of known resistance-
conferring mutations (De Backer et al. 2001; Frade, Warnock and
Arthington-Skaggs 2004; Kofla and Ruhnke 2007; Gygax et al.
2008; Monteiro et al. 2009; Tsai et al. 2010; Posteraro et al. 2017).
Probe-based approaches have a higher sensitivity, and require
less DNA and lower DNA quality. Therefore, these techniques
are promising for resistance screening of clinical specimens.
A drawback of all the probe approaches is that a catalog of
known resistance-conferring mutations is only partially avail-
able, even for the best-studied species, and therefore a neg-
ative result does not ensure the absence of resistance. Direct
sequencing approaches can discover novel mutations but gener-
ally need a fresh culture, therefore delaying the results. However,
emerging sequencing technologies may soon allow rapid, non-
targeted sequencing directly from patient samples. Approaches
for the direct detection of resistance using such next-generation
sequencing (NGS) approaches are discussed in section 7.

DIAGNOSIS OF INFECTION TYPE AND STAGE

The identity of an infectious agent and its potential drug sus-
ceptibility are important pieces of information that help to guide
therapy (see above). In addition, knowledge about the progres-
sion of the infection and the physiological state of the microbe,
such as whether it is an invasive stage or forming biofilms,
could be very valuable for a more precise assessment of the
infection. Finally, many opportunistic yeast pathogens are nor-
mal components of the human microbiota or our close envi-
ronments (Gabaldón, Naranjo-Ortı́z and Marcet-Houben 2016).
Hence, opportunistic yeast pathogens naturally colonize human
tissues and can be detected in many samples that are not pri-
marily sterile (such as vaginal swab, urine or sputum). However,
species identification tests cannot discriminate between colo-
nizing and infecting strains, which leads to false-positive results
(Khot and Fredricks 2009).

Distinguishing colonization from infection

The ability to detect morphological or physiological features that
are specifically expressed during the infection stage is seen as an
opportunity to differentially diagnose colonizing versus infect-
ing yeasts in tissues that are not primarily sterile. This approach
requires finding suitable molecules (i.e. biomarkers) that are
only (or differentially) expressed during the infection stages
either by the pathogen or the host (Allert, Brunke and Hube
2016; Decker et al. 2017). Opportunistic yeast pathogens such
as Candida spp. display specialized physiological programs that
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are optimized for commensalism and/or pathogenesis in dif-
ferent niches (Neville, d’Enfert and Bougnoux 2015). The explo-
ration and description of such programs is more advanced for
C. albicans, where transcriptomic analysis of yeasts interacting
with the host have identified some specific genes such as EFH1,
SFU1, HOG1 or EFG1, with critical roles in either commensalism
or pathogenesis (Hube 2004; White et al. 2007; Neville, d’Enfert
and Bougnoux 2015). On the host side, several studies have been
performed focusing on how the immune system discriminates
between Candida colonization and infection. In the case of C. albi-
cans, differential recognition of yeast and hyphae could be the
key to understanding the immune response (Gow et al. 2011).
For example, it has been shown that C. albicans hyphae induce
inflammasome activation and the subsequent release of active
interleukin-1β in macrophages, which can be used to distin-
guish between colonization and tissue invasion by C. albicans
(Cheng et al. 2011).

Ex vivo staining of whole blood for CCR6+CXCR3– T helper
cells provides a mean of rapid identification of patients with
chronic mucocutaneous candidiasis due to Th17 deficiency, indi-
cating a potential diagnostic application (Dhalla et al. 2016). On
the other hand, in oral epithelial cells, hyphae cause damage
and induce a biphasic innate immune mitogen-activated protein
kinase response (the ‘danger response’), which was found to be
critical for identifying and responding to the switch of commen-
sal microbes to pathogenicity and which represents a sensor of
pathogenic C. albicans invasion (Moyes et al. 2010). The fungal
moiety responsible for the danger response was recently identi-
fied as candidalysin, a cytolytic peptide toxin that directly dam-
ages epithelial membranes and activates epithelial immunity
(Moyes et al. 2016). However, more studies are needed to investi-
gate the diagnostic potential of these findings.

Detection of biofilm formation

Yeasts can form biofilms, which are defined microbial commu-
nities, often adhering to a surface, in which cells are attached
to one another and embedded within an extracellular matrix
(Hall-Stoodley et al. 2012). This architecture provides protec-
tion from the environment, allowing survival in hostile con-
ditions, evasion of host immune mechanisms and reduction
of the competitive pressure from other microorganisms (Davey
and O’Toole 2000; Silva et al. 2009). Additionally, fungal biofilms
can minimize the action of drugs, which can be trapped in the
extracellular matrix. In some cases fungal biofilms have been
reported to be 1000-fold more resistant to antifungal treatments
than planktonic cells (Ramage et al. 2001; Di Bonaventura et al.
2006). Biofilms are also problematic because they can grow on
medical devices such as catheters, urethral stents or prosthetic
implants, adversely affecting the function of the device (Ram-
age, Martı́nez and López-Ribot 2006) and serving as a constant
source of microbial cells (Cornely et al. 2012). For all these rea-
sons, biofilms are generally associated with chronic infections
that persist despite adequate antimicrobial therapy and host
immune defenses (Cornely et al. 2012). Finally, biofilm-based
yeasts infections have been shown to increase mortality rate
(Tumbarello et al. 2012; Rajendran et al. 2016).

Currently available diagnostic tools to detect biofilms in clin-
ical samples are difficult and time consuming, and have high
risk of false negatives, mostly due to the difficulty of obtain-
ing a representative sample (Cornely et al. 2012). Thus, the
choice of the samples is important for a correct diagnosis (Lip-
sky et al. 2012; Percival et al. 2012; Høiby et al. 2015). Biofilms
can be detected by direct observation of cell aggregates under

the microscope, or through staining of cultures. The most com-
mon culture-based methodologies are Congo red agar, tube and
tissue culture plate (Mathur et al. 2006). The identification of
clinical symptoms typical for fungal infections, the recurrence
after antifungal therapies and the medical history of biofilm-
predisposing conditions are also important factors to assess the
presence of the biofilm (Ramage, Robertson and Williams 2014;
Høiby et al. 2015). Assessment of the level of biofilm-forming
ability of infection-causing strains can be achieved by means
of the tetrazolium salt (XTT) assay, a rapid and highly repro-
ducible method for the formation of fungal biofilms that is eas-
ily adaptable for antifungal susceptibility testing (Pierce et al.
2008). Advanced microscopy techniques such as confocal laser
microscopy and scanning electron microscopy are the most
recommended, but they are generally not available in clinical
microbiological laboratories (Malic et al. 2009). Another study
performed FISH with a universal Cy3-labeled rRNA probe fol-
lowed by staining with Calcofluor White for filamentous fungal
biofilm detection in water (Gonçalves et al. 2006). A rapid and
non-invasive method, using novel high-throughput technolo-
gies, would present many advantages over current methods.
Similar to the above-mentioned signatures of infection, biofilms
could be diagnosed by detecting biofilm-associated factors such
as expressed transcripts or enzymes (Winter et al. 2016).

TRENDS IN NGS

Recent advances in nucleic acid sequencing technologies have
revolutionized the way in which biological research is per-
formed (van Dijk et al. 2014; Goodwin, McPherson and McCombie
2016). Currently, a variety of NGS methods are available (supple-
mentary Table S1 available online, for additional information)
with ongoing developments to increase throughput, read length
and accuracy. Current technologies range from ‘sequencing-
by-synthesis’, implemented by Illumina, which produces short,
accurate reads at high throughput, to nanopore-based sequenc-
ing, which produces long reads (up to 1 Mb), but with less
throughput and accuracy (Goodwin, McPherson and McCombie
2016; supplementary Table S1 available online). The reduction of
sequencing cost and the development of novel approaches has
facilitated the implementation of NGS outside the research lab,
progressively entering the agronomic, forensic and clinical fields
(Berkman et al. 2012; Lecuit and Eloit 2014; Børsting and Morling
2015). Although most of NGS applications in clinical microbiol-
ogy focus on bacteria and viruses, fungi are equally amenable to
NGS. Thus, NGS holds the promise of offering novel diagnostics
tools for yeast infections (Fig. 3).

NGS applications in the clinics

The most common clinical applications of NGS are generally
based on the human genome, with whole-genome or exome
sequencing used in cancer prognosis (Luthra et al. 2015) and
diagnosis of Mendelian diseases (Jamuar and Tan 2015). Such
applications are increasingly being adopted as a routine proce-
dure in healthcare (Roychowdhury and Chinnaiyan 2014; Associ-
ation of Public Health Laboratories 2015; Hynes et al. 2017). More
recently, NGS is increasingly being used in clinical microbiol-
ogy laboratories (Deurenberg et al. 2017), as its precision out-
performs most of the traditional diagnostic approaches (Tura-
belidze et al. 2013). For instance, it was recently shown that NGS
provides more precise HIV diagnosis with a better discrimina-
tion between different genotypes (Shaw et al. 2016). Further-
more, it can provide very high sensitivity for the diagnostics of
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Figure 3. Schematic workflow for the implementation of NGS-based utilities in the clinics. From left to right, the scheme demonstrates the workflow of procedures for

NGS applications in clinical set-up, including sample isolation and preparation, NGS based on the addressed question, corresponding bioinformatics data analysis and
retrieval of the ultimate results. Green and red braces indicate the potential advantages and limitations of clinical NGS, respectively. WGS—whole-genome sequencing;
TAS—targeted amplicon sequencing.

rare pathogens, as shown with the identification of Leptospira as
the causative agent of encephalitis after the failure of 38 differ-
ent diagnostic tests (Wilson et al. 2014). Apart from diagnostics,
NGS can also be applied to epidemiological studies, and it has
been successfully used in studies of various outbreaks (Reuter
et al. 2013; Sherry et al. 2013). Finally, since NGS can provide
whole-genome information, it can be used to determine rel-
evant pathogen features such as antimicrobial resistance and
virulence characteristics (Wain and Mavrogiorgou 2013; Biswas
et al. 2017). Indeed, a previous study revealed that it is possible
to predict resistance to therapy with a specificity higher than
95% in Escherichia coli and Klebsiella pneumoniae using NGS tools
(Stoesser et al. 2013). Such advantages are particularly relevant
for organisms that are difficult to culture, as is the case for many
fungi.

This ability of NGS to detect organisms that otherwise would
never be found or studied is promoting a better understanding of
the human microbiome (Wang et al. 2015), allowing the study of
possible correlations between the microbiome composition and
disease states (Ji and Nielsen 2015). However, the detection of
an organism by NGS does not imply that this organism is alive,
or that it is the causative agent of disease. For example, as dis-
cussed in the previous section, the detection of an opportunistic
pathogen that can also occur as a commensal is not informa-
tive for an infection. Nevertheless, integrating such information
with the surrounding microbiome can lead to a probable answer
regarding its action. For instance, Bittinger et al. demonstrated
that relative abundances of bacteria and fungi in the lung are
different during fungal colonization and fungal infection, which
can be exploited for clinical diagnosis (Bittinger et al. 2014).

NGS applications for yeast infections

Considering the NGS applicabilities described in the previous
sub-section, and that yeast species able to cause diseases in
humans are diverse (Huffnagle and Noverr 2013; Taj-Aldeen et al.
2014b; Gabaldón, Naranjo-Ortı́z and Marcet-Houben 2016; Pande
et al. 2017), the extension of NGS technologies to yeast infections
is promising. Indeed, it was recently shown that for C. glabrata,
whole-genome sequencing allows the parallel detection of sev-
eral resistance markers at the same time, being a good alter-
native to several PCR/DNA sequencing reactions (Biswas et al.

2017). In addition, it is worth noting that some pathogenic yeast
clades frequently form hybrids (Pryszcz et al. 2014, 2015; Hagen
et al. 2015; Schröder et al. 2016), leading to the origin of new lin-
eages that can be neglected or misidentified with conventional
diagnostic tools. For instance, NGS allowed the identification of
different parental and hybrid lineages in C. orthopsilosis species
(Pryszcz et al. 2014; Schröder et al. 2016), which with conventional
tools were always considered the same agent of infection. This
is of particular concern, because these hybrid lineages present
high genomic plasticity that may allow unpredictable adapta-
tions to new environments or conditions (Mixão and Gabaldón
2018).

Even if fungi represent only a small portion of the micro-
biome, it is an important part, contributing to the equilibrium
between all the communities (Qin et al. 2010; Botschuijver et al.
2017). As reviewed by Zoll et al., changes in the mycobiome in
immunocompromised patients can lead to opportunistic fun-
gal infections (Badiee and Hashemizadeh 2014; Zoll et al. 2016).
NGS is an important tool to assess the emergent properties
of the diverse microbial communities (Nguyen, Viscogliosi and
Delhaes 2015; Zoll et al. 2016). Metagenomics approaches have
been used for monitoring the presence of pathogens and for
pathogen detection (Cuomo 2017); however, the complexity of
the procedure and the so far long times for diagnosis are pre-
venting its widespread use (Gu, Miller and Chiu 2019). In addi-
tion, when studying the complete microbiome through NGS, it
is necessary to take into account that fungi represent only 0.1–
1.0% of it (Qin et al. 2010; Huffnagle and Noverr 2013), which may
decrease their detectability by NGS (Zoll et al. 2016). Amplicon-
based approaches based on PCR-based amplification of specific
marker regions (such as ITS region of the rDNA locus discussed
in section 2) coupled to NGS-based sequencing of the amplicons
can be used to study the fungal component of a complex micro-
bial exosystem (Huseyin et al. 2017). However, this approach
generally lacks enough resolution to provide a diagnosis at the
species level.

Fungal transcriptomics and RNA sequencing

The potential applications of NGS in the clinics, and particularly
in yeast infections, go much further than the identification of
genomic characteristics of the pathogen. It also facilitates the
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study of RNA markers, which may be explored to identify the
presence of transcripts that, for example, are only expressed
during invasive growth (see section 6). In addition, global analy-
sis of gene expression at the RNA level will greatly contribute
to the investigation of interaction between the host and the
pathogen, and thus will further our understanding of patho-
genesis (Hovhannisyan and Gabaldón 2018). With RNA sequenc-
ing (RNA-seq), we can obtain tens of thousands of transcripts
from one sample, in an unbiased manner (Van Keuren-Jensen,
Keats and Craig 2014). This technology has been used to pro-
file the transcriptome of the host, the pathogen or even both (by
means of ‘dual RNA-seq’) during infection (Westermann, Gorski
and Vogel 2012). Transcripts originated from the host and the
pathogen can be distinguished by aligning to the corresponding
reference genomes (De Cremer et al. 2013; Enguita et al. 2016),
allowing the determination of RNA markers involved in the
infection from both sides. For instance, a recent study showed
that the expression of hypha-associated secreted enzymes is
greatly increased in the yeast C. albicans during mouse vaginal
infections, activating the inflammasome in the host (Bruno et al.
2015). Dual RNA-seq is an approach that enables not only the
detection of differentially expressed genes, but also the iden-
tification of transcriptional regulatory events such as alterna-
tive splicing (Van Keuren-Jensen, Keats and Craig 2014). Fur-
thermore, when performed at different time points, this tech-
nology serves to reconstruct the dynamics of the infection and
host–pathogen interactions (Tierney et al. 2012; Holcomb et al.
2017). A list of selected RNA-seq datasets generated during fun-
gal infection can be found in the supplementary Table S2 avail-
able online.

Limitations of NGS for clinical use

NGS technologies can be of high value for clinical laboratories.
However, despite the numerous possible applications for clin-
ical mycology, there are still several limiting factors preventing
these approaches from becoming routine laboratory techniques.
The cost of sequencing machines is still high, which makes this
technology affordable only for large medical institutions. The
alternative of outsourcing the sequencing of samples necessar-
ily implies delays and increased logistics. Even with the dra-
matic decrease of sequencing costs in the last decade, the price
of these technologies is still high for routine diagnostics pur-
poses (Weymann et al. 2017). In this regard, recent developments
are leading to cheaper and smaller devices, such as the portable
MinIon from Oxford Nanopore, a sequencing device that weighs
less than 100 g and can directly load sequencing results to a lap-
top. Applications of these technologies for the rapid and specific
detection of plant pathogens have been developed (Chalupowicz
et al. 2019), and similar approaches are certainly being developed
for human pathogens.

RNA-seq presents an additional limiting factor compared
with whole-genome sequencing. Although reproducible and
reliable data are obtained with this technology, some biases and
errors can be introduced during the experimental procedures
and data analysis, making it difficult to compare results from
different samples (Van Keuren-Jensen, Keats and Craig 2014).
This is an important aspect for clinical applications, and pos-
sibly, RNA-seq will not be routinely used in the clinical labora-
tories until it is solved. Current NGS machines produce massive
amounts of data, and the storage of the data also presents cost
and data privacy issues. Although cloud-based storage of data
is more cost-effective than local storage, the privacy of clinical
data might be at risk. Finally, the analysis of high-throughput

sequencing data is based on sophisticated and careful bioinfor-
matics processing, requiring specific expertise in NGS data anal-
ysis. Therefore, to overcome this challenging issue, automatic
pipelines and software for NGS data analysis have to be devel-
oped, so they can be easily used by clinical laboratories (see sec-
tion 8 for details). Another important issue is the availability
and completeness of specific reference databases for pathogen
identification and characterization. While in the scientific com-
munity the de novo approach for organism characterization is
frequently used, in clinical laboratories a reference-based strat-
egy is preferred (Loeffelholz and Fofanov 2015). For bacterial
pathogens, information in these databases is relatively rich,
whereas data for fungal pathogens are scarce, and the absence
of a high quality reference information can produce misleading
results (discussed in Stavrou et al. (2018)). Even in the presence
of a reference genome for a species, problems may arise when
the clinical strain has substantial genomic re-arrangements or
is a hybrid. Thus, in order to use NGS approaches for fungal
pathogen identification, the amount of reference data in these
databases has to be significantly increased (see section 8 for
details).

NGS technologies can have a broad application in the clinic,
ranging from diagnostics to outbreak studies and therapeu-
tic decisions. Moreover, with the advances that NGS is mak-
ing in the study of the human microbiome, it is probable that
the future of diagnostics and therapeutic approaches target the
study of the microbiome rather than of a single organism, trying
to understand the origin of disequilibrium and applying thera-
peutics to restore it. Therefore, despite the limitations described
here, attempts have been made to implement NGS facilities for
clinical usage (Goldberg et al. 2015).

BIOINFORMATICS TOOLS AND DATABASES
RELEVANT FOR DIAGNOSTICS OF YEAST
PATHOGENS

Many of the mentioned technologies such as proteomics or NGS
are high throughput and are able to generate large amounts of
data on a single run. Such data has to be managed and pro-
cessed computationally and there is a continuous need for new
and more efficient algorithms that are able to manage, ana-
lyze and integrate increasing amounts of disparate data. Con-
versely, the accumulation of such data entails a high poten-
tial for new discoveries by integrating accumulated knowledge
with newly obtained data. In the field of diagnostics of yeast
pathogens, these interconnected needs have driven important
developments in terms of bioinformatic tools and databases.
Here we will provide an overview of the most important ones.

Pipelines and workflows in fungal -omics

Advances in NGS and other high-throughput -omics technolo-
gies have triggered a bioinformatics revolution and the develop-
ment of tools to manage and mine immense amounts of bio-
logical information. These tools no longer consist of a single
piece of software coupled with a knowledge database, but rather
consist of a complex workflow referred to as a ‘pipeline’, where
different tools are sequentially used, including those consulting
existing databases. In the context of host–pathogen interactions,
pipelines have been designed to analyze NGS data from various
pathogens, including fungi, in both clinical and environmen-
tal settings. Genomes and transcriptomes of fungal pathogens,
and metagenomes (i.e. collective genetic material present in a
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microbial community) can be reconstructed from raw sequenc-
ing reads by graph-based algorithms that assemble the NGS
reads into contigs, scaffolds or chromosomes (Miller, Koren and
Sutton 2010). Features, like genes, are then predicted and anno-
tated, which can be used to infer the phenotypic potential of
the studied pathogen(s). Once an annotated reference genome
is available, it can be used as a reference sequence to map
newly obtained sequencing reads from genomes or transcrip-
tomes belonging to strains from the same related species. This
process is based on read alignment or mapping algorithms (Li
and Homer 2010).

The most common re-sequencing data analysis pipelines
are mainly oriented to genotyping and comparative transcrip-
tomic analyses by means of RNA-seq. The former is designed
to call and annotate mutations at the genome-wide level or
via gene panels and capture systems (e.g. the entire set of
known resistance genes or resistome) to elucidate potential
markers—mainly SNPs and INDELs (insertions and deletions)—
related to the evolution, population dynamics, transmissibility
and infectivity of fungal pathogens (Wilkening et al. 2013; Cor-
nish and Guda 2015). In RNA-seq analysis for gene expression
profiling, there are three main types of pipelines: mRNA-seq,
small RNA-seq and dual RNA-seq. The first two are designed
to quantify and compare the expression patterns of the mRNAs
(both coding and non-coding) and small RNAs expressed by fun-
gal pathogens under a particular condition. The dual RNA-seq
pipeline deals with data obtained by simultaneous sequencing
of host and pathogen RNA, and thus focuses on the crosstalk
between pathogens and their host at different stages of the
infection (Enguita et al. 2016; Wang et al. 2016). Other map-
ping pipelines in fungal research focus on processing reads
sequenced via 18S rRNA/ITS amplicons. These pipelines are
widely used to obtain diversity landscapes of fungal communi-
ties to investigate any plausible interrelation among the abun-
dance distribution of the species inhabiting the fungal com-
munity and the characteristics of the sampled environment
(White et al. 2013; Cole et al. 2014). In clinics it is necessary
to have a consensus on the best practices for NGS data analy-
sis, and therefore some guidelines were published recently (Roy
et al. 2018).

Proteomics and metabolomics are two other -omics fields
that require implementation of bioinformatics pipelines for
identification, functional analysis and quantification of proteins
and metabolites associated to fungal infections. The type of
data usually obtained are those coming from spectrometric and
spectroscopic techniques (see section 3). Together these two
techniques result in complex datasets intended to character-
ize the proteome and/or metabolome profile of the analyzed
sample (Kim, Nandakumar and Marten 2007; Winder, Dunn and
Goodacre 2011).

The implementation of bioinformatics pipelines in routine
application of fungal -omics is still a challenge for many clini-
cal and medical research centers. -Omics technologies generate
huge amounts of data, and most centers lack powerful compu-
tational infrastructure for these data analysis and storage. More-
over, management of the bioinformatics pipelines and Unix-
based command line environments require specific skills in pro-
gramming and IT systems. However, there are several initia-
tives (supplementary Table S3 available online), most of them
commercial, that aim to provide solutions for managing bioin-
formatics workflows based on Graphical User Interfaces (GUIs)
allowing non-skilled laboratory staff or researchers to quickly

and efficiently analyze -omics data and produce easily inter-
pretable results. On the other hand, with the increasing depen-
dence of clinical mycology on bioinformatics, it is clear that it
will be highly necessary to recruit specialized bioinformatics
personnel, or to subcontract/outsource bioinformatics services
to companies in every clinical or research center aiming to make
the most of fungal -omics data.

Databases and knowledge platforms devoted to fungal
organisms

Over the last decades, the increasingly frequent recourse to
-omics and bioinformatics to generate valuable knowledge
from the high-throughput data has resulted in a wide reper-
tory of resources that have improved and updated previously
existent reference databases. The most popular databases for
NGS data annotation are: the non-redundant (nr) and the
Reference Sequence (RefSeq) database of the National Cen-
ter for Biotechnology Information (NCBI Resource Coordina-
tors 2018), the UniProt Knowledgebase (Schneider et al. 2009)
and Ensembl (Kersey et al. 2016). For coding sequences, the
gene identifiers or accessions provided by the aforementioned
databases are correlated with other vocabularies like the Gene
Ontology (GO) vocabulary (The Gene Ontology Consortium
2014) or the system of Enzyme Commission (EC) numbers
(Bairoch 2000) (http://enzyme.expasy.org), both facilitating a
better understanding of the functional role of the annotated
gene.

In addition, the progression of fungal -omics and bioinfor-
matics has also promoted the emergence of a wide variety
of databases and repositories specifically dedicated to fungi,
including yeast pathogens (supplementary Table S4 available
online). For instance, the Saccharomyces Genome Database (SGD)
collects community resources about the budding yeast Sac-
charomyces cerevisiae aiming to integrate curated information
and experimental results. The Candida Genome Database (CGD)
(Skrzypek et al. 2017) is modeled after SGD but contains genomic
resources for C. albicans, C. glabrata, C. parapsilosis, C. dublin-
iensis and other Candida species. Candida Gene Order Browser
(CGOB) (Fitzpatrick et al. 2010; Maguire et al. 2013) and Yeast
Gene Order Browser (YGOB) (Byrne and Wolfe 2005) provide
manually curated homologous genes datasets in Candida species
and other yeast species, respectively. EnsemblFungi is more
general and contains many genomes for a wide range of fun-
gal organisms, and is a subset of Ensembl genomes (Kersey
et al. 2016). MycoCosm (Grigoriev et al. 2014) integrates fun-
gal genomics data and analytical tools to perform compara-
tive genomics. There are other databases that are specialized
in recording/storing information on host–pathogen interactions
to identify genes and proteins involved in host–pathogen inter-
action pathways, which could be used as possible targets for
new drug discovery. For example, FungiDB (Stajich et al. 2012;
Basenko et al. 2018) includes whole-genome sequences and
annotations, experimental and environmental isolate sequence
data, comparative genomics, analysis of gene expression, as
well as supplemental bioinformatics analyses and a web inter-
face for data mining. The Pathogen-Host Interaction database
(PHI-base) (Urban et al. 2015, 2017) is devoted to storing and
maintaining effectively the vast and growing number of proven
genes that have a role in pathogenicity. PHI-base includes a wide
variety of hosts and pathogens, and C. albicans and C. glabrata
are among them. PHI-base is highly dependent on domain
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experts to manually curate new gene entries provided by strong
experimental evidence (gene disruption experiments) and lit-
erature references. The Host-Pathogen Interaction Database
(HPIDB) (Kumar and Nanduri 2010; Ammari et al. 2016) stores
and maintains protein–protein interactions from diverse mam-
malian and plant hosts infected by fungi, bacteria and other
pathogens.

In addition, according to the International Code of Nomen-
clature for algae, fungi and plants (ICN) (Turland et al. 2018), it
is a mandatory requirement to register fungal names for valid
publications. MycoBank (Robert et al. 2013; Turland et al. 2018)
is a database to document mycological nomenclatural novel-
ties (new names and combinations) and its associated data.
The MycoBank registration system represents a coordination
channel between different databases, such as the Index Fungo-
rum and the Fungal Names (http://www.indexfungorum.org/),
and it eases the registration process for the scientific commu-
nity. StrainInfo (Dawyndt et al. 2005; Verslyppe et al. 2014) is
an open platform designed to contain all known information
about a particular microorganism at the strain level, giving a
unique passport to every strain, with a number that traces back
to the same isolate, thus providing a uniform overview for all
known equivalent strain numbers. The CBS strain database (ht
tp://www.westerdijkinstitute.nl/Collections/) and the American
Type Culture Collection (ATCC, https://www.lgcstandards-atcc.
org/) are another two examples of such repositories. Databases
and the integration of their information will certainly consti-
tute the cornerstone of future automated diagnostic applica-
tions (see below). Therefore, it is of capital importance to ensure
their correct maintenance and to minimize the amount of intro-
duced errors with the use of both manual curation and auto-
mated detection of potential errors (see Stavrou et al. (2018) as
an example).

Data integration and computationally assisted
diagnostics: the last frontier

In the emerging field of personalized and precision medicine,
bioinformatics and integrative biology have gained increased
attention for their promise to develop more efficient tools for
integration and analysis of multi-omics data of complex dis-
eases, including fungal infections and associated clinical data.
Integrative analysis of multi-omics data is motivated by the
basic idea that to fully understand any biological system, the
underlying molecular mechanisms should be considered in the
analysis (Kristensen et al. 2014; Rotroff and Motsinger-Reif 2016).
Fungal infections are characterized by an interaction between
the fungal pathogen and host cells. The integration and analysis
of genomic, proteomic and metabolomic data, as well as other
meta-data from the patient (i.e. medical record) represents an
excellent opportunity to model infection, to make clinically rele-
vant predictions, and to discover biomarkers and target-specific
drugs (Durmuş et al. 2015; Larsen et al. 2015; Culibrk, Croft and
Tebbutt 2016). Among all the different methodologies that could
be used for personalized and precise diagnosis based on multi-
omics, the most promising are Bayesian networks (BNs), deci-
sion trees, artificial neural networks, nature-inspired and evolu-
tionary algorithms (Larrañaga et al. 2013; Bersanelli et al. 2016).
One of the key features of BNs is their ability to propagate prob-
abilities through the network while incorporating uncertainty in
the inference process. Of course, a domain expert (e.g. biologist
or medical doctor) should be involved in the knowledge discov-
ery process to interpret and validate the final result (Holzinger

2014, 2016; Holzinger and Jurisica 2014; Obermeyer and Emanuel
2016). Some existing tools are BNOmics (Gogoshin, Boerwinkle
and Rodin 2017), a reconstruction and modeling framework able
to reverse engineer and model networks, and PARADIGM (Vaske
et al. 2010), which applies BNs to identify patient-specific path-
way activities by means of probabilistic inference (Larrañaga
et al. 2013).

Overall, bioinformatics data analysis and knowledge
database development are quickly evolving fields in fungal
research. Given the continuously dropping costs of NGS and
other -omics methods (see section 7), data accumulation,
storage, further analysis and interpretation will evidently
become more widespread in routine mycology labs. Moreover,
the integration of multi-omics data holds a great potential
towards understanding host–fungus interactions, potentially
allowing the translation of this knowledge into clinical practice,
including diagnosis and prognosis. However, today there are still
several important challenges, both technical and fundamental,
that will need to be overcome.

FUTURE PROSPECTS AND CONCLUDING
REMARKS

Ultimately, in the clinical context, the final goal of any of the
above mentioned methodologies is its translation into ‘ready-
to-use’ systems—also known as point-of-care testing—that can
be routinely used at the bedside, without the requirement of
sending samples away, and ready to be used and interpreted by
clinicians. In such systems the clinical specimen can be directly
inserted into a cartridge that contains all the needed chemi-
cals, and the user receives a fully automated report on the iden-
tified pathogens. The development of such point-of-care test-
ing has become a trend in diagnostics, including fungal infec-
tions. Although developments are still in their infancy, we have
here surveyed the most promising devices that can already be
found on the market (included in Table 1). The majority of cur-
rently commercially available molecular tests are developed to
detect the pathogens in whole blood, positive blood cultures,
sterile body fluids and tissue samples. Ideally, future develop-
ments should include the integration of resistance markers into
molecular routine tests, to support physicians in their therapeu-
tic decision.

Although still lagging behind the diagnosis of cancer or viral
and bacterial infections, the field of diagnosis of fungal infec-
tions is starting to harness recent developments in areas such
as proteomics or high-throughput generation sequencing. How-
ever, the need for expensive devices and specific expertise, or
high running costs are still challenges that need to be over-
come for many of the recently developed approaches. Never-
theless, the main players and technology developers have real-
ized the huge potential of the clinical sector and they strive to
develop smaller, simpler and cheaper devices. In this regard,
the entry into the market of palm-sized sequencing machines
and an increasing variety of point-of-care testing devices antic-
ipate a technological revolution in diagnostic devices com-
mercially available for clinical practitioners. Fast and accurate
recognition of the infecting agent, even if present in very low
amounts, remains the main objective of diagnostics of yeast
infections. However, it is important to realize the potential
of high-throughput, -omics technologies to go beyond species
identification, and provide other relevant information such as
potential resistance to antifungals, and the recognition of the
disease mode or stage. It would be a huge step forward if we
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could identify molecular biomarkers specific for colonization or
infection and integrate them into novel diagnostic tools that also
identify species and potential for resistance. It is unlikely that
we will be able to identify a single factor/gene that would sat-
isfy the requirement of such a biomarker, and rather a panel
of different genes/factors, potentially from both, pathogen and
host, would be required to create such a specific signature. Ide-
ally, such a signature should not only be specific for discriminat-
ing between commensalism and infection, but also for the type
of infection, infected tissue or fungal species causing the infec-
tion. Continuous monitoring of the presence of such biomarkers
could follow the progress of the infection and allow a fast reac-
tion to a potential failure of therapy. For this to happen, monitor-
ing should be possible with cheap bedside devices, which could
offer both versatility (i.e. serve to detect various biomarkers for
species identification, resistance and progress of infection) and
specificity. One could imagine that device directly connecting in
real time to a central database, whereby gathered information is
confronted with previously collected data, including the clinical
record of the patient as well as genomic, proteomic and epidemi-
ological information. Algorithms based on artificial intelligence,
continuously improved with the help of the doctors’ feedback,
will quickly process the data and will provide the doctor not
only the readout of the measurements, but also a possible diag-
nosis and suggested optimal treatment regime, as well as rel-
evant links to other information. These suggestions may seem
futuristic but current technologies exist that could perform each
of these steps. We need to fill in the gap that exists between
sophisticated technologies used at the frontier of research and
the needs at the bedside of patients. We need to understand bet-
ter the biology of infecting microbes, and the process of infection
itself, to find suitable biomarkers. We consider that the coming
years will witness important advances in these respects.
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Durmuş S, Çakır T, Özgür A et al. A review on computational
systems biology of pathogen-host interactions. Front Micro-
biol 2015;6:235.

Duyvejonck H, Cools P, Decruyenaere J et al. Validation of high
resolution melting analysis (HRM) of the amplified ITS2
region for the detection and identification of yeasts from
clinical samples: comparison with culture and MALDI-TOF
based identification. PLoS One 2015;10:e0132149.

Egholm M, Buchardt O, Christensen L et al. PNA hybridizes to
complementary oligonucleotides obeying the Watson-Crick
hydrogen-bonding rules. Nature 1993;365:566–8.

Ellepola ANB, Morrison CJ. Laboratory diagnosis of invasive can-
didiasis. J Microbiol 2005;43 Spec No:65–84.

Elluru SR, Kaveri SV, Bayry J. The protective role of immunoglob-
ulins in fungal infections and inflammation. Semin
Immunopathol 2015;37:187–97.

Emonet S, Shah HN, Cherkaoui A et al. Application and use of
various mass spectrometry methods in clinical microbiology.
Clin Microbiol Infect 2010;16:1604–13.

Endo S, Komori T, Ricci G et al. Detection of gp43 of Paracoccid-
ioides brasiliensis by the loop-mediated isothermal amplifica-
tion (LAMP) method. FEMS Microbiol Lett 2004;234:93–7.

Enguita FJ, Costa MC, Fusco-Almeida AM et al. Transcrip-
tomic crosstalk between fungal invasive pathogens and their
host cells: opportunities and challenges for next-generation
sequencing methods. J Fungi (Basel) 2016;2:E7.

Era Biology. Aspergillus, Candida albicans Molecular Detection Kit
(Real-time PCR). 2018. Available at: http://www.era-bio.com/
a/PRODUCTS/InvasiveFungalDiseaseDetection/20150626/1
06.html( March 2019 , date last accessed).
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