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Abstract 
In this paper, the consistent second-order plate theory for isotropic plates is validated 
against the three-dimensional elasticity theory using a well-known benchmark problem of a 
simply-supported rectangular plate subjected to symmetric transverse sinusoidal loading. 
The choice of the benchmark problem is based on the fact that it allows for an exact three-
dimensional elasticity solution to be derived in closed form. In the paper, two equivalent 
closed-form solutions are employed for validation purposes, one of which is specifically 
derived for this study. Once the equivalence of the two closed-form analytical solutions is 
established, they are expanded into a power-law series with respect to the non-
dimensionalised plate thickness. This enables a direct term-by-term comparison with the 
consistent second-order plate theory solution and provides a valuable mechanism to 
validate the consistent plate theory in purely analytical form. The term-by term comparison 
reveals that the first terms of the above power-law series coincide exactly with the 
expressions of the consistent second-order plate theory. In addition to the analytical 
validation, a parametric study is carried out with a view to establish the range of 
applicability of the consistent second-order plate theory in terms of the thickness-to-length 
ratio. It is demonstrated that the consistent plate theory can predict displacements and 
stresses in thick plates with very high degree of accuracy, such that even for very thick 
plates with thickness-to-length ratio of 1/2, the deviation from the three-dimensional 
elasticity solution is less than 1%. 
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1. Introduction 
Thin, moderately thin, and thick plate-like components are widely used in many engineering 
applications. For design and analysis of such components, two-dimensional theoretical 
constructions known as plate theories are usually employed which take advantage of the 
plate geometry and the fact that its thickness is (much) smaller than its in-plane dimensions. 
While exact three-dimensional elasticity solutions provide valuable benchmarks for 
validating specific plate theories, two-dimensional plate theories have a much wider range 
of applicability as they can be employed to analyse a greater variety of static and dynamic 
phenomena, plate geometries, loadings, and boundary conditions. Given that the 
development of plate theories began in the 19th century, the literature in this research area 
is incredibly rich and it still continues to grow, as evidenced by the recent publications 
(Brischetto, 2017; Candiotti et al. 2017; Karttunen et al., 2017; Repka et al., 2018; Wang et 
al., 2019), to name but a few. 
 
Plate theories are inherently approximate in that they attempt to describe the actual three-
dimensional solid by quantities that are defined on a surface. Derivation of a two-
dimensional plate theory from a three-dimensional theory of elasticity generally follows one 
of three approaches. The first, classical or engineering approach starts with a set of 
kinematical a priori assumptions for the displacement distribution in thickness direction 
accompanied by additional assumptions concerning the stress distribution. Either transverse 
shear strains are neglected, or their influence is considered by the introduction of shear-
correction factors. A historical survey on classical plate theories may be found in, e.g., 
Szabo, (1987). The mathematical justifications of the classical theories were provided only 
quite recently (cf., e.g., Friesecke et al., 2002 a, b) that state them to arise as a limit of the 
three-dimensional theory of elasticity when the thickness goes to zero. The proofs use the 
comparatively young method of Γ-convergence, which was developed by Giorgi (1975).  
 
Following the second, direct approach, all quantities “live” on a Cosserat-type surface 
endowed with a set of deformable directors attached to each point of the plane. Despite of 
the mathematical elegance, the main drawback of this approach lies in the problem of 
establishing constitutive relations. Material parameters are identified by comparisons with a 
set of solutions of known test problems. The choice of the test problems has a crucial 
influence on the resulting theory. An excellent overview of the theories relying on the direct 
approach is given in Altenbach et al., (2010). 
 
The third approach develops lower-dimensional theories from the three-dimensional theory 
of elasticity by means of series expansion. Here, we only mention three lines of work, which 
we consider as the most rigorous ones. At first, the school initiated by Vekua (1955, 1985) is 
mentioned, which is based on a displacement ansatz with truncated series expansions with 
respect to a basis of Legendre polynomials. Taking more series coefficients into account 
leads to more complex theories, so that a hierarchy of increasing complexity is established. 
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An estimate of the approximation error, however, is not available. Secondly, the so-called 
restricted-type theory for mixed plate-membrane problems was introduced by Steigmann 
(2008, 2012) and recently extended by Pruchnicki (2014). It combines established modelling 
approaches of Koiter (1966, 1970a) by arguments taken from contributions based on Γ-
convergence. In general, the method of Γ-convergence, which is successfully applied for the 
mathematical justification of classical theories, is unlikely to be able to justify refined 
theories, since, as a limit analysis, it always derives the leading-order approximation 
whereas refined theories have to consider effects of different scales. Finally, we mention 
the so called consistent approach (or uniform-approximation approach), which originates 
from treatises by Naghdi (1963), Koiter (1970 b), Krätzig (1980) and Kienzler (1982) and will 
be used further within this paper. The refined theories are derived from the Euler-Lagrange 
equations of the truncated energy. It has been shown (Schneider et al., 2014) that the 
infinite two-dimensional PDE system corresponding to the untruncated elastic potential is 
equivalent to the three-dimensional equilibrium equations of linear elasticity and, secondly, 
(Schneider and Kienzler, 2015a, 2019) an a priori estimate of the approximation error is 
given that results from the truncated energy series. 
 
In a series of papers (Kienzler, 2002; Kienzler, 2004; Kienzler and Schneider, 2012; Schneider 
et al., 2014), a hierarchy of consistent plate theories has been developed. The advantage of 
a consistent plate theory of any order of approximation is that ALL terms related to that 
approximation are retained in a consistent and logical manner, which leads to the most 
accurate representation of stresses and displacements within the chosen approximation and 
facilitates a better understanding of the underlying mechanical phenomena. It can be shown 
that in static problems, it is sufficient to use a second-order approximation because the 
characteristic in-plane measure of the plate coincides with the plate in-plane dimensions. In 
dynamic problems, a higher-order approximation might be required as the characteristic in-
plane measure (e.g., the wavelength) might be much smaller than the plate dimensions. 
 
Comparison of existing second-order plate theories with a consistent plate theory reveals 
for example that Reissner’s plate theory (Reissner 1944, 1945) is consistent within a second-
order approximation, while some theories, which claim to improve this theory by a so-called 
third-order shear theory (Reddy, 1984; Wang et al., 2000), are not (c.f., Schneider and 
Kienzler, 2015b; Kienzler and Schneider, 2017). 
 
A consistent plate theory is the most rigorous way of constructing a two-dimensional 
approximation of a three-dimensional state of stress and displacement field in a solid. 
Assessing a consistent plate theory from the perspective of three-dimensional elasticity 
theory can provide a unique insight into its workings, however, such assessment has not 
been performed until now. A direct comparison of the consistent plate theory and the 
three-dimensional elasticity theory becomes possible thanks to recent development of a 
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method to construct the displacement and stress fields within a second-order consistent 
theory (Kienzler and Schneider, 2017). 
 
In this paper, the consistent second-order plate theory for isotropic plates is validated 
against the three-dimensional elasticity theory using a well-known benchmark problem of a 
simply-supported rectangular plate subjected to symmetric transverse sinusoidal loading. 
The choice of the benchmark problem is based on the fact that this problem allows for an 
exact three-dimensional elasticity solution to be derived in closed form. In the paper, two 
equivalent closed-form solutions are used for validation purposes. The first closed-form 
exact analytical solution is adapted from the work of Saidi et al (2009), who reformulated 
Navier’s equations for solving three-dimensional elasticity problems to make them 
applicable to thick plate analysis. In the work of Saidi et al (2009), the plate was subjected to 
transverse loading on the top face, with bottom face being free, therefore the solution had 
to be modified for the case of symmetric loading (and some misprints corrected along the 
way). The second closed-form exact analytical solution is developed specifically for 
validation purposes of this study using the displacement potential method and employing 
Youngdahl’s displacement potentials (Youngdahl, 1969) for representation of stresses and 
displacements in the plate. Once the equivalence of the two closed-form analytical solutions 
is established, they are expanded into a power-law series with respect to the non-
dimensionalised plate thickness. This enables a direct term-by-term comparison with the 
consistent second-order plate theory solution and provides a valuable mechanism to 
validate this theory in purely analytical form. The term-by term comparison reveals that the 
first terms of the above power-law series coincide exactly with the expressions of the 
consistent second-order plate theory. In addition to such analytical validation, a parametric 
study is also carried out to establish the range of applicability of the consistent second-order 
plate theory in terms of the thickness-to-length ratio. It is demonstrated that the consistent 
plate theory can predict displacements and stresses in thick plates with very high accuracy, 
such that even for very thick plates with h/a = 1/2 the deviation from a three-dimensional 
solution is less than 1%. 
 
The remainder of the paper is organised as follows. In Section 2, we formulate the problem 
statement and specify the necessary boundary conditions. In Section 3, we solve the 
boundary-value problem of Section 2 in the framework of the consistent second-order plate 
theory. In Section 4, we present two exact closed-form three-dimensional elasticity 
solutions – one adapted from the work of Saidi et al. (2009), another derived specifically for 
this study using the displacement potential method. We establish that the two solutions are 
equivalent and satisfy the uniqueness of solution requirement. In Section 5, the exact 
closed-form three-dimensional elasticity solution is expanded into a power series with 
respect to the normalised thickness parameter h/a. This is followed by a direct term-by-
term comparison with the consistent plate theory solution of Section 3. In Section 6, a 
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parametric study is performed over a range of thickness-to-length ratios with the view to 
establish the range of applicability of the consistent second-order plate theory. 
 
 
2. Problem statement 
It is assumed that the mid-plane of the plate occupies a bounded domain 2A⊂   of the 
Cartesian 1 2( , )x x -plane, whereas the plate continuum extends by 2h±  in 3x -direction. 

The loads q−  and q+  are applied at the upper and lower faces, respectively, and point in 

3 -x direction as indicated in Fig. 1. 
 

 
 
 Fig. 1. Plate continuum 
 
Volume forces in 3x -direction, e.g., due to gravity, may also be applied, but will not be 
considered in the following. It may be mentioned that also in-plane loads with special 
symmetry properties may drive plate bending (Schneider & Kienzler, 2015a). 
 
For the following, it is important that the applied forces q+  at the lower face 3 2x h= +  and 

the applied force q−  at the upper face 3 2x h= −  are decomposed in symmetric and 
antisymmetric parts as depicted in Fig. 2 
 

 
 

Fig. 2. Splitting of the loads applied to the plate faces 3 2x h= ±  into symmetric and  
antisymmetric parts 
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1 ( ),
2
1 ( ).
2

S S

A A

q q q q

q q q q

+ − + −

+ − + −

= + = +

= − = −
       (2.1) 

 
We combine the symmetric parts to the plate load q  as 
 
 ,S Sq q q+ −= +          (2.2) 
 
whereas the antisymmetric part belongs to the in-plane disk problem (“squeezing” of the 
disk) not to be considered here. 
 
Since we further restrict ourselves to isotropic materials, the plate and the disk problems 
are uncoupled (Schneider & Kienzler, 2017). 
 
Within this paper, simply-supported rectangular ( )a b×  plates are treated under a 
sinusoidal distribution of transverse loads 
 

 1 2sin sinmn
m x n xq q

a b
π π

= ,       (2.3) 

i.e., 
 

 1 21 sin sin .
2

S S
mn

m x n xq q q
a b
π π+ −= =       (2.4) 

 
The “wave numbers” m  and n  are positive integers and may be chosen arbitrarily. Thus 
(2.3) can be regarded as Fourier coefficient of a series expansion of a more general, even 
non-continuous load distribution. Since the governing equations are linear, the final solution 
of a specific loading case may be obtained by superposition. 
 
For this restricted load and boundary conditions, not only closed form solutions of the 
partial differential equation (PDE) for various plate theories exist, but also a closed form 
solution of the PDE of the three-dimensional theory of linear elasticity is available. We 
elaborate both solutions and compare the results with each other. 
 
To this end, we introduce dimensionless coordinates and notations 
 

1
1

2 2
2 2

3

,

, ,

,

x
a
x x
a b

x
a

ξ

ξ αξ

ζ

=

= =

=

       (2.5) 
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2 2, ( ) ( ) ,mn
a m n
b

α γ π πα= = +  

 
and define displacements, rotations, stresses and stress resultants in the usual way, cf. Fig. 
3-5. 
 

 
 
 Fig. 3. Displacements and rotations 
 

 
 
 Fig. 4. Stresses at the plate continuum 
 

 
 
 Fig. 5. Stress resultants and loads at the plate 
 
In what follows, we will use the summation convention over repeated indices. Latin indices 
(i, j, k,…) have the range 1, 2, 3, whereas Greek indices ( , , ,...α β γ ) range over 1, 2. 
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The in-plane displacements are denoted by [ ]muα  and the transverse displacement by 

[ ]3 mu . A symbol in square brackets after a variable indicates the dimension of the variable, 

e.g., meter (m), Newton (N); non-dimensiolized variable: [1] In non-dimensionalised form, 
we introduce 
 
 ( ) ( )3 1 2 1 2, ,0 , ,u awξ ξ ξ ξ=        (2.6) 

 
where [ ]1w  is not the non-dimensionalised transverse displacement of the middle surface 

but an energetic mean in Reissner’s sense as 
 

 
2

3 3

2

h
a

h
a

aQ w u d
hα ασ ζ

+

−

= ∫ .        (2.7) 

 
For details, cf., e.g., Kienzler and Schneider (2017) ( w  is denoted by Kw  in that paper). Also 
the rotations [ ]1αψ  are not understood as the linear part of uα  in thickness direction 

( )u aα αψ ζ≠  but are, again, energetic averages defined as 
 

 
2

2

1
h
a

h
a

aM n u n d
a nαβ α β αβ β αψ σ ζ

+

−

= ∫ .       (2.8) 

 
[ ]MPaαβσ  are in-plane normal and shear stresses, [ ]3 MPaασ  are transverse shear stresses 

and [ ]33 MPaσ  is the normal stress in thickness direction. N
m

Qα
 
  

 are the transverse shear 

stress resultants (forces per unit of length each), 11M  and 22
Nm
m

M  
  

 are bending 

moments, 12 21
Nm
m

M M  =   
 are twisting moments (moments per unit of length each) and 

2

N
m

q  
  

 is the applied transverse load per unit of area. 

 
For simply supported plates, the boundary conditions read 
 

 

1 11 2 3

2 22 1 3

33 31 32

0,1 : 0, 0, 0;

0,1 : 0, 0, 0;
1: , 0, 0.

2 2

M u

M u
h q
a

ξ ψ

αξ ψ

ζ σ σ σ

= = = =

= = = =

= ± = ± = =

    (2.9) 



9 
 

 
These boundary conditions are sometimes called “constraint” simply supported or 
“Klemmschneidenlagerung” in order to distinguish from the “unconstrained” simply 
supported or “free” supported, where instead of 2ψ , 12 0M =  is prescribed at 1 0,1ξ =  and 

instead of 1 21, 0Mψ =  is prescribed at 2 0,1αξ = . 
 
Correspondently, when treating the problem within the framework of linear three-
dimensional elasticity, we employ the boundary conditions 
 

1 11 2 3

2 22 1 3

33 31 32

0,1 : 0, 0, 0;

0,1 : 0, 0, 0;
1: , 0, 0.

2 2

u u

u u
h q
a

ξ σ

αξ σ

ζ σ σ σ

= = = =

= = = =

= ± = ± = =

    (2.10) 

 
Within any second-order plate theory, a quantity ψ  appears  
 
 3 , 2,1 1,2αβ β αψ ε ψ ψ ψ= = −        (2.11) 

 
( 3αβε  is the completely skew-symmetric permutation tensor, an index following a comma 

indicates differentiation with respect to the indicated non-dimensionalised variable, i.e., 

,( ) ( )α αξ= ∂ ∂ ), which measures the deviation from the classical Kirchhoff-Love normal 

hypothesis ,wα αψ = −  and may therefore be regarded as a measure of the transverse-shear 

deformation. From Reissner’s theory (Reissner 1944, 1945) we know that ψ  is a fast 
decaying function and describes edge effects, cf. Schneider et al. (2014), Kienzler and 
Schneider (2017), Schneider and Kienzler (2017). Due to the prescribed boundary conditions 
(2.6) it can be shown easily that ψ  vanishes at all boundaries 1 2, 0,1ξ αξ = , and it may be 
concluded that ψ  vanishes identically also within the plate 
 
 ( )1 2, 0.ψ ξ ξ ≡          (2.11) 

 
 
3. Consistent plate theory solution 
In this section, we present all necessary equations of the consistent second-order 
approximation from Kienzler and Schneider (2017). Note that all quantities used here are 
indexed in Kienzler and Schneider (2017) by a capital K on the upper right-hand side of the 
generic symbol. 
 
With the dimensionless plate parameter  
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2

2
212

hc
a

=          (3.1) 

 
the plate stiffness K  
 

 
3

212(1 )
EhK

v
=

−
,        (3.2) 

 
Poisson’s ratio v  and the two-dimensional Laplace operator ,( ) ( ) αα∆ = , the plate 

differential equations are given as  
 

 

3 2 6

2 2 6

6 21 ( ),
5 1

61 0 ( ).
5

vK w a c q O c
v

c c O cψ

− ∆∆ = − ∆ + − 
 − ∆ = + 
 

     (3.3) 

 
The discussion of these equations and the comparison with those of other authors are given 
in detail in Kienzler and Schneider (2017), where also further references can be found. An 
implication of the uniform-approximation technique is also the following equation 
 
 2 2 3 6( ),c K w c a q O c∆∆ = +        (3.4) 
 

which will be used in the following. It may merely be mentioned that 2, ,q cψ ψ∆  and 2

K
a h

 

are of order 2( )O c . 
 
After solving (3.3) for w  and ψ , the relation between the energetic means ,w βψ  and ψ  

follows to be  
 

 
2

2 2 2 6
, 3 ,

12 61 ( ),
5 1 5

cc c w c O c
vβ β βγ γψ ε ψ

  = − + ∆ + +  −  
   (3.5) 

 
the moments can be calculated from 
 

 

( )

( )

2
, ,

2
3 , 3 , ,

2 2 6

121 (1 )
5(1 )

3 (1 )
5
6 ( ),
5 1

KM c v w vw
a v

v c

v c a q O c
v

αβ αβ γγ αβ

αγ β βγ α γ

αβ

δ

ε ψ ε ψ

δ

 
= − + ∆ − + − 

+ − + 


+ +
−

   (3.6) 
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and two equivalent variants for the transverse-shear follow as  
 

 

2
, 3 ,2

2 6
,

2 6
, 3 , ,2

12 11 (1 )
5(1 ) 2

6 ( ),
5 1

1 6 2(1 ) ( ).
2 5 1

KQ c w v
a v

v c aq O c
v

K vQ w v c aq O c
a v

β β βγ γ

β

β β βγ γ β

ε ψ

ε ψ

  
= − + ∆ ∆ + −  −  

+ +
−

− = − ∆ + − − +  − 

   (3.7) 

 
The equilibrium equations written in stress resultants 
 

 
,

,

1 ,

1

Q q
a

M Q
a

β β

αβ α β

= −

=
         (3.8) 

 
are equivalent to (3.3), respectively. In addition, the boundary conditions are prescribed 
along the curve Γ  with unit outward normal vector nα  enclosing the plate middle surface as 
 

 
* *

* *

or ,

or ,

M n M n

Q n Q n w w
αβ α αβ α β β

α α α α

ψ ψΓ Γ

Γ Γ

= =

= =
     (3.9) 

 
where starred quantities are sufficiently smooth data given along Γ . 
 
The displacement field calculated a posteriori is obtained as 
 

2

, ,2

2
4 2

1 2 2

4

,4

2 2

3 ,2

4 2 4
6

3 ,2 4

1 9(10 ) 5(2 )
30 1

1 1 36(25 13 ) 6(15 12 )
120 (1 )

(3 )(1 )

9
6

9 6 ( ) ,
120

cu a w v v w
v c

c A v v v
v c

v v w
c

c
c

c O c
c c

α α α

α

γα γ

γα β

ζζ

ζ

ζ

ζ ε ψ

ζ ζ ε ψ

 = − − − − − ∆  −  
 

− + − − − + − 


+ − − ∆∆


 
+ − 

 
  + − + ∆ +  
  

 

          (3.10) 
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2 2

3 2

2 4
4 2 2

1 2 2 4

2 2
6

2 12 2 2

4 6
2 8

4 6

1 3 5
10 1

1 1 18(5 ) 5(1 )
120 (1 )

1 1 1 25 1354
2 1 720 (1 ) 1

9(10 ) (2 )(1 ) ( ) .

vcu a w w
v c

c A v v w
v c c

v vc A A
v c v v c

v v v v w O c
c c

ζ

ζ ζ

ζ ζ

ζ ζ

  
= − − ∆  −  

  
+ + − − − ∆∆  −   

  −
+ + +  − − − 

 − − − + + − ∆∆∆ + 
  

 

 
The two constants, which have no influence on the stress distribution within the consistent 
second-order theory, 1A  and 2A , remain undetermined. They will be evaluated later when 
the equations will be compared with the exact three-dimensional solution. From the 
displacements, the stresses can readily be calculated as 
 

 
( )

( )

,2

2
,

2

,2

2
2 4

3 , 3 , ,2

(1 )
1

1 59(10 ) 9
30 1

5 (2 )

1 (1 ) 9 ( ) ,
12

E v w v w
v

vc v w v w
v

v w v w
c

c v O c
c

αβ αβ αβ

αβ αβ

αβ αβ

γα β γβ α γ

ζσ δ

δ

ζ δ

ζ ε ψ ε ψ


= − − − ∆− 

−− − ∆ + ∆∆ −


− − ∆ + ∆∆ 


  + − − + +  
  

 

           (3.11) 

 

2
2

33 2 2

2 4
4 6

2 4

1 9
1 6

1 25 13 5 39 6 ( ) ,
60 1 1

E c w
v c

v vc w O c
v c v c

ζ ζσ

ζ ζ

 = − ∆∆  −   
 − − + − + ∆∆∆ +  − −   

 

2
2

3 ,2 2

2
4

,2

2
2 2 6

3 ,2

1 3
1 2

1 25 133 5
30 1

1 (1 ) 60 3 5 ( ) .
120

E c w
v c

vc w
v c

c v c O c
c

α α

α

γα γ

ζσ

ζ

ζε ψ ψ

 
= − − ∆ −  

 −
− − ∆∆ − 

   + − + − ∆ +   
    

 

 
Within the consistent second-order theory, this stress distribution satisfies the boundary 
conditions along the plate faces (2 )h aζ = ±  
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6
3

2

6
33

2

0 ( ),

1 ( )
2

h
a

h
a

O c

q O c

ασ

σ

±

±

= +

= ± +
       (3.12) 

 
and the local homogeneous equilibrium conditions 
 

 
( )

( )

4
, 3 ,3 2

6
3, 33,3 2

0 ( ) ,
1

0 ( ) .
1

E O c
v

E O c
v

βα β α

α α

ζσ σ

σ σ

+ = +
−

+ = +
−

      (3.13) 

 
Of course, with the displacement fields (3.10), the in-plane stresses αβσ  can exactly be 

evaluated up to the order of 6( )O c , which will be done in the following for the special 
solution treated there. The in-plane equilibrium conditions (3.131), however, would not be 
approximated to the order 6( )O c . This would only be possible, if the transverse-shear 
stresses 3ασ  (3.113) would be approximated to the next higher order, what is not possible 
with the given displacement field. 
 
Now, we turn our attention to the solution of the boundary-value problem stated in Section 
2, i.e., the solution of (3.3) with (2.12), under the load (2.3) and the boundary conditions 
(2.9). 
 
Guided by the load distribution (2.3) we employ the obvious ansatz 
 
 1 2sin sin ,w C m nπξ παξ=        (3.14) 
 
and insert (3.14) and (2.3) into (3.3) leading with (2.56) to 
 

 
3

2 2
4

6 21 .
5 1

mn
mn

mn

a q vC c
K v

γ
γ

 −  = +   −  
      (3.15) 

 
Thus, the transverse displacement w  is given by 
 

3 2 2 6
1 24

6 21 sin sin ( ).
5 1

mn
mn

mn

q vKw a c m n O c
v

γ πξ παξ
γ

 −  = + +  −  
  (3.16) 

 
From (3.5), we calculate the rotations 
 

3
2 2 2 2 6

1 1 24

6( ) cos sin 1 ( ),
5 1

mn
mn

mn

a q vc c m m n c O c
K v

ψ π πξ παξ γ
γ

  = − − +  −  
 

(3.17) 
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3
2 2 2 2 6

2 1 24

6( )sin cos 1 ( )
5 1

mn
mn

mn

a q vc c n m n c O c
K v

ψ πα πξ παξ γ
γ

  = − − +  −  
 

 
(with 2,1 1,2 0ψ ψ ψ= − ≡ ). The stress resultants follow from (3.6) as 

 
2

2 2 2 2 2 6
11 1 24

6 6sin sin ( ) ( ) 1 ( ),
5 1 5 1

mn
mn

mn

q v vcM a m n m v n c O c
v v

πξ παξ π πα γ
γ

    = + − + +     − −   
 

 
2

2 2 2 2 2 6
22 1 24

6 6sin sin ( ) ( ) 1 ( ),
5 1 5 1

mn
mn

mn

q v vcM a m n n v m c O c
v v

πξ παξ πα π γ
γ

    = + − + +     − −   
 

           (3.18) 

2 2 2 6
12 1 24

6(1 )( )( ) cos cos 1 ( ),
5 1

mn
mn

mn

q vM a v m n m n c O c
v

π πα πξ παξ γ
γ

  = − − − +  −  
 

 
and from (3.7)  
 

1 1 22

2 1 22

( ) cos sin ,

( ) sin cos .

mn

mn

mn

mn

q a mQ m n

q a nQ m n

π πξ παξ
γ

πα πξ παξ
γ

=

=
     (3.19) 

 
The boundary conditions (2.9) and the equilibrium conditions (3.8) are satisfied identically. 
Thus (3.16) is the exact analytical solution of our plate boundary-value problem. 
 
Next, we calculate the displacements ju  from (3.10) and find 

 
4 2

2 2
1 1 24 2

2 2 4
4 4 6

1 2 2 4

3 2 3 1 2( ) cos sin 1
10 1 6 1

3 5 7 6 1 1 3 1 3 ( ) ,
50 (1 ) 20 1 120 1

mn
mn

mn

mn

a q v vu m m n c
K v v c

v v v vc A O c
v v c v c

ζπ ζ πξ παξ γ
γ

ζ ζγ

  + −= − + −  − −  
 + − − − − + + + +  − − −   

 

 
4 2

2 2
2 1 24 2

2 2 4
4 4 6

1 2 2 4

3 2 3 1 2( ) sin cos 1
10 1 6 1

3 5 7 6 1 1 3 1 3 ( ) ,
50 (1 ) 20 1 120 1

mn
mn

mn

mn

a q v vu n m n c
K v v c

v v v vc A O c
v v c v c

ζπα ζ πξ παξ γ
γ

ζ ζγ

  + −= − + −  − −  
 + − − − − + + + +  − − −   

 

           (3.20) 
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4 2
2 2

3 1 24 2

2 4
4 4

1 2 2 4

6 6
2 1

2 3 2

1 3 2

3 8 3 1sin sin 1
10 1 2 1

9 (2 ) 3 5 3 1 1
25 (1 ) 20 1 24 1

6 2
5 1

1 3 5 5 24 12
2 1 200 (1 )

1
80

mn
mn

mn

mn

mn

a q v vu m n c
K v v c

v v v vc A
v v c v c

vc A A
v

v v v vA
v v c

ζπξ παξ γ
γ

ζ ζγ

γ

ζ

  −= + −  − −  
 − − +

+ + + − − − − 
−+ − + −

 − + −
− + − − 

+
4 6

8
4 6

2 3 1 2 ( ) .
1 720 1

v v O c
v c v c
ζ ζ − + − + − −  

 

 
As mentioned above, the constants 1A  and 2A  are not determined by the consistent second 

order theory. Note, since 
h
a

ζ  , the in-plane displacements uα are one order of magnitude 

smaller than the transverse displacement 3u . 
 
We calculate the stresses αβσ  by taking in addition to (3.11) also the terms of order 4( )O c  

into account. This leads to 
 

11 1 22 4

2
2 2 2 2 2 2 2 2

2

sin sin

3 9 1( ) ( ) ( ) ( ) ( ) ( )
5 10 3 6

mn
mn

mn

a q m n
hc

vm v n c m v n m n
c

ζσ πξ παξ
γ

ζπ πα γ π πα π πα

= ⋅

    + + − + + +      

 

( )
2 2

4 4 2 2 2 2
1 2 2

3 10 9 7 5 19 12( ) ( ) ( ) ( )
100 (1 ) (1 )mn

v v v vc A m v n m v n
v v

γ π πα π πα
  + − + −

+ + + +  − − 
 

( ) ( )
2 4

2 2 2 2 6
2 4

1 1( ) 3 ( ) 3( ) ( ) ( ) ,
20 120

m v n m v n O c
c c
ζ ζπ πα π πα

 + + + + + 
 

 

 

( )

22 1 22 4

2
2 2 2 2 2 2 2 2

2

2 2
4 4 2 2 2 2

1 2 2

2

sin sin

3 9 1( ) ( ) ( ) ( ) ( ) ( )
5 10 3 6

3 10 9 7 5 19 12( ) ( ) ( ) ( )
100 (1 ) (1 )

1 ( )
20

mn
mn

mn

mn

a q m n
hc

vn v m c n v m n m
c

v v v vc A n v m n v m
v v

n

ζσ πξ παξ
γ

ζπα π γ πα π πα π

γ πα π πα π

πα

= ⋅

    + + − + + +      
  + − + −

+ + + +  − − 

+ +( ) ( )
2 4

2 2 2 6
2 4

13 ( ) 3( ) ( ) ( ) ,
120

v m n v m O c
c c
ζ ζπ πα π

 + + + 
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12 1 22 4

2
2 2

2

2 2 4
4 4 6

1 2 4

cos cos ( )( )

3 1(1 ) (2 3 ) (2 )
10 6

3 5 7 6 1 1(1 ) (1 3 ) (3 ) ( ) ,
50 1 20 120

mn
mn

mn

mn

a q m n m n
hc

v c v v
c

v vc A v v v O c
v c c

ζσ πξ πξ π πα
γ

ζγ

ζ ζγ

=

  − − + + − −  
  

 + − − − + + − + − +  −   

 

          (3.21) 

 

2

13 1 22 2

2
2 2 4

2

( ) cos sin 3
2

11 3 5 ( ) ,
30

mn
mn

mn

a q m m n
h c

c O c
c

ζσ π πξ παξ
γ

ζγ

 
= − ⋅ 

 
   − − +  
   

 

 

2

23 1 22 2

2
2 2 4

2

( )sin cos 3
2

11 3 5 ( ) ,
30

mn
mn

mn

a q n m n
h c

c O c
c

ζσ πα πξ παξ
γ

ζγ

 
= − ⋅ 

 
   − − +  
   

 

 
33 1 2

2 2 4
2 2 4

2 2 4

sin sin

1 19 9 6 ( ) .
6 60

mn

mn

a q m n
h

c O c
c c c

σ ζ πξ παξ

ζ ζ ζγ

= ⋅

     − − − + +    
     

 

 

Note that the stresses are of different order of magnitudes. Since
h
a

ζ  , the leading terms 

are 
 

 

2

2

3

33

,

,

.

mn

mn

mn

a q
h
a q
h
q

αβ

α

σ

σ

σ







         (3.22) 

 
Thus 
 

 3 33αβ ασ σ σ   for 1.h
a
        (3.23) 

 
Note further that the displacements and stresses satisfy the boundary conditions of the 
three-dimensional elasticity boundary-value problem (2.10) up to their respective order. 
Finally, the stresses satisfy the local equilibrium conditions (3.13). 
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4. Three-dimensional elasticity theory solutions 
 
4.1 Solution of Saidi et al. (2009) 
Based on a reformulation of Navier’s equations of the three-dimensional theory of elasticity, 
Saidi et al. (2009) gave a closed form solution for the simply supported plate continuum. The 
loads applied at the faces (2 )h aζ = ±  are developed in Fourier series and so are the 
displacements ju . Since the trigonometric functions form an orthogonal function base, it is 

sufficient to consider only one arbitrary term. In our denotation we have  
 

 

1 2

1 1 1 2

2 2 1 2

3 3 1 2

sin sin ,
cos sin ,
sin cos ,
sin sin .

mn

mn

mn

mn

q q m n
u U m n
u U m n
u U m n

πξ παξ
πξ παξ
πξ παξ
πξ παξ

=
=
=
=

       (4.1) 

 
The Fourier coefficients jmnU  are functions of ζ  and depend on integration constants 

1 4, ,C C  as follows 
 

 
2 2 2 2

3 1 2

2 2 2 2
3 4

sinh ( ) ( ) cosh ( ) ( )

sinh ( ) ( ) cosh ( ) ( ) ,
mmU C m n C m n

C a m n C a m n

π πα ζ π πα ζ

ζ π πα ζ ζ π πα ζ

= + + +

+ + + +
 

 

 

2 2
1 2 32 2

2 2 2 2
4

1 ( ) ( ) (3 4 )
( ) ( )

( ) ( ) sinh ( ) ( )

mm
m aU m n C v C

m n a

m n C m n

π π πα
π πα

π πα ζ π πα ζ

= + + −+ 
+ + +

 

 2 2
1 4

2 2 2 2
3

2 1

1 ( ) ( ) (3 4 )

( ) ( ) cosh ( ) ( ) ,

.mn mn

m n C v C
a

m n C m n

nU U
m

π πα

π πα ζ π πα ζ

α

+ + + −
+ + +

=

   (4.2) 

 
The dependence of the solution on two further constants  5C  and 6C , which are introduced 
in Saidi et al (2009), have been omitted here, since they turn out to be zero for this 
boundary-value problem. It may be noted that in the equations (29.1) and (29.2) of Saidi et 

al. (2009), the minus signs before the terms 2 2sinh ( ) ( )m nζ π πα ζ+  and 
2 2cosh ( ) ( )m nζ π πα ζ+  have to be replaced by plus signs (misprint). The integration 

constants have to be evaluated from the boundary conditions at (2 )h aζ = ± . 
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In contrary to Saidi et al. (2009), we employ for 33σ  the symmetrized boundary conditions. 
Thus 
 

 
13 23

2 2

33
2

0,

1
2

h h
a a

h
a

q

ζ ζ

ζ

σ σ

σ

=± =±

=±

= =

= ±
       (4.3) 

 
and find with (2.56)  
 

 

1

2

3

4

0,
2(1 ) cosh  sinh

2 2 21 ,
sinh

2

cosh
1 2 ,

sinh
2

0.

mn mn
mn

mn

mn mn

mn

mn

mn mn

C
h h h
a a avC q a

h hE
a a

h
v aC q

h hE
a a

C

ν γ γ
γ

γ γ

γ

γ γ

=

−    +   +    =
  − 
 

 
 +  = −

  − 
 

=

   (4.4) 

 
With it, displacements and stresses can readily be evaluated as 
 

 ( )

( ) ( )

1 2
1 2

cos sin1

sinh
2

(1 2 )cosh sinh
2

sinh sinh cosh cosh ,
2 2 2

mn
mn

mn mn

mn mn

mn mn mn mn mn

m nv mu a q
h hE
a a

hv
a

h h h
a a a

πξ παξπ
γ γ γ

γ γ ζ

γ γ γ ζ ζ γ γ ζ

+
= ⋅

  − 
 

  − −  
 

    + −         

 

           (4.5) 
 

 ( )

( ) ( )

1 2
3

sin sin1

sinh 

2(1 ) cosh cosh
2

sinh cosh cosh sinh ;
2 2 2

mn

mn mn

mn mn
mn

mn mn mn mn

m nvu aq
h hE
a a

v h
a

h h h
a a a

πξ παξ

γ γ

γ γ ζ
γ

γ γ ζ ζ γ γ ζ

+
= ⋅

  − 
 

 −  
  

 
   + −    
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 ( )( )

( ) ( )

1 2
11 2

2 2

2

sin sin

sinh 

cosh sinh ( ) 2 ( )
2

( ) sinh sinh cosh cosh ,
2 2 2

mn

mn
mn mn

mn mn

mn mn mn mn mn

q m n
h h
a a

h m v n
a

h h hm
a a a

πξ παξσ
γ γ γ

γ γ ζ π πα

γ π γ γ ζ ζ γ γ ζ

= ⋅
  − 
 

   +  
 

    + − +         

 

 

 ( )

( ) ( )

2
1 2

12 2

cos cos

sinh 

(1 2 )cosh sinh
2

sinh sinh cosh cosh
2 2 2

mn

mn
mn mn

mn mn

mn mn mn mn mn

mn q m n
h h
a a

hv
a

h h h
a a a

π α πξ παξσ
γ γ γ

γ γ ζ

γ γ γ ζ ζ γ γ ζ

= ⋅
  − 
 

  − −  
 

    + −         

 

           (4.6) 

 

( ) ( )

1 2
13

cos sin1
2 sinh 

sinh cosh 2  cosh sinh
2 2

mn

mn mn

mn mn mn mn

m nm q
h h
a a

h h h
a a a

πξ παξσ π
γ γ

γ γ ζ ζ γ γ ζ

= ⋅
  − 
 

    −    
    

 

 

 

( )

( ) ( )

1 2
33

sin sin cosh sinh 
2sinh 

sinh sinh  cosh cosh .
2 2 2

mn mn mn

mn mn

mn mn mn mn mn

m n hq
h h a
a a

h h h
a a a

πξ παξσ γ γ ζ
γ γ

γ γ γ ζ ζ γ γ ζ

  = ⋅     − 
 

    + −         

 

 
The displacement 2u  follows from 1u  by replacing 1 2cos sinm m nπξ παξ  in the first row of 

(4.51) by 1sin cosn m nα πξ πα . The stress 22σ  follows from 11σ  by replacing 
2 2( ) 2 ( )m v nπ πα+  by 2 2( ) 2 ( )n v mπα π+  in the second and 2( )mπ  by 2( )nπα  in the third 

line of (4.61). The stress 23σ  is obtained by replacing 1 2cos sinmnm q m nπ πξ παξ  by

1 2sin cosmnn q m nπα πξ παξ  in the first line of (4.63). It is seen immediately that 

2 2
13 23 0h h

a aζ ζσ σ=± =±= =  and 
2

33
1
2h

a
qζσ =± = ± , i.e., the boundary conditions along the plate 

faces are satisfied. The boundary conditions (2.10) along 1 0,1ξ =  and 2 0,1αξ =  are satisfied 
likewise. 
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4.2 Solution using displacement potentials of Youngdahl (1969) 
Following Youngdahl (1969), the displacements in a homogeneous isotropic solid can be 
represented in terms of three harmonic functions 1 2 3, ,φ φ φ  in the form 

 
2

3 31 2
1

1 1 3 24(1 )
xu

x x x x
φφ φ

ν
∂∂ ∂

= − +
∂ − ∂ ∂ ∂

, 

2
3 31 2

2
2 2 3 14(1 )

xu
x x x x

φφ φ
ν

∂∂ ∂
= − −
∂ − ∂ ∂ ∂

,      (4.7) 

2
31 2 2

3 2
3 3 3

3 4
4(1 ) 4(1 )

xu
x x x
φ φ φν

ν ν
∂ ∂ ∂−

= − +
∂ − ∂ − ∂

 

 
Substituting the above representation (4.7) into the stress-displacement relations, the 
representation for stresses can be derived as 
 

22 3 2
3 31 2 2

11 2 2 2
1 1 3 3 1 2

2 2
2(1 ) (1 )

xG
x x x x x x

φφ φ φνσ
ν ν

 ∂∂ ∂ ∂
= − + + ∂ − ∂ ∂ − ∂ ∂ ∂ 

, 

22 3 2
3 31 2 2

22 2 2 2
2 2 3 3 1 2

2 2
2(1 ) (1 )

xG
x x x x x x

φφ φ φνσ
ν ν

 ∂∂ ∂ ∂
= − + − ∂ − ∂ ∂ − ∂ ∂ ∂ 

, 

2 3 2
31 2 2

33 2 3 2
3 3 3

2
2(1 )

xG
x x x
φ φ φσ

ν
 ∂ ∂ ∂

= − + ∂ − ∂ ∂ 
, 

(4.8) 
22 3 2

3 31 2 2
23 2

2 3 2 3 2 3 1 3

1 22
2(1 ) 2(1 )

xG
x x x x x x x x

φφ φ φνσ
ν ν

 ∂∂ ∂ ∂−
= − + − ∂ ∂ − ∂ ∂ − ∂ ∂ ∂ ∂ 

, 

22 3 2
3 31 2 2

13 2
1 3 1 3 1 3 2 3

1 22
2(1 ) 2(1 )

xG
x x x x x x x x

φφ φ φνσ
ν ν

 ∂∂ ∂ ∂−
= − + + ∂ ∂ − ∂ ∂ − ∂ ∂ ∂ ∂ 

, 

2 22 3
3 3 31 2

12 2 2
1 2 1 2 3 2 1

2
2(1 )

xG
x x x x x x x

φ φφ φσ
ν

  ∂ ∂∂ ∂
= − + −  ∂ ∂ − ∂ ∂ ∂ ∂ ∂  

 

(shear modulus ( )2(1 )E vG += ). 

 
Guided by the loading distribution (2.3) and boundary conditions (2.10), the three harmonic 
functions can be chosen in the form 
 

( ) 1 2
1 1 3 2 3cosh sinh sin sinmx nxA x A x

a b
π πφ λ λ= + , 

( ) 1 2
2 3 3 4 3cosh sinh sin sinmx nxA x A x

a b
π πφ λ λ= + ,    (4.9) 

( ) 1 2
3 5 3 6 3cosh sinh cos cosmx nxA x A x

a b
π πφ λ λ= + , 
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2 2m n
a b
π πλ

    = +    
     

. 

 
The form (4.9) allows for the boundary conditions (2.10) at the edges of the plate to be 
satisfied identically. The six unknown constants )6,1( =kAk  can be determined from the 

boundary conditions (2.4) at the top and bottom faces of the plate. In the problem 
formulated in Section 2, they are found to be 
 

2
1 2 3 4 5 6

10, , 0, , 0, 0mn mnq qA A A A A A
G G

α
β β

= = = = = =    (4.10) 

where 

2

2 2
2

1 1 2sinh cosh
2(1 ) 2 1 24cosh

2

2 (2 1)sinh cosh ,
2 2(1 ) 2

h h h
h

h h h

λ να λ λ
ν νλ

λβ λ α λ λ λ
ν

 −   = −    − −       
 

   = + −   −   

   (4.11) 

 
Then the closed-form expressions for stresses and displacements are obtained as 
 

3 1 2
1 2 3 3

1 sinh cosh cos sin
4(1 )

mnq x mx nxmu x x
G a a b

λ π ππ α λ λ
β ν

  = −   −   
, 

3 1 2
2 2 3 3

1 sinh cosh sin cos
4(1 )

mnq x mx nxnu x x
G b a b

λ π ππ α λ λ
β ν

  = −   −   
, (4.12) 

3 1 2
3 2 3 3

3 4 cosh sinh sin sin
4(1 ) 4(1 )

mnq x mx nxu x x
G a b

λ π πλ να λ λ
β ν ν
  −

= + −  − −  
 . 

 

2 1 2
33

3
2 3 3

sin sin

(2 1)sinh cosh
2(1 )

mnq mx nx
a b

xx x

π πσ λ
β

λα λ λ
ν

= ×

 
× + − − 

 

 

1 2
13

3
2 3 3

cos sin

1 22 cosh sinh
2(1 ) 2(1 )

mnq mx nxm
a a b

xx x

π ππσ λ
β

λνα λ λ
ν ν

 = × 
 

  −
× + −  − −  
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1 2
23

3
2 3 3

sin cos

1 22 cosh sinh
2(1 ) 2(1 )

mnq mx nxn
b a b

xx x

π ππσ λ
β

λνα λ λ
ν ν

 = × 
 

  −
× + −  − −  

 

           (4.13) 

1 2
11

2 2
2 3

2 3 3

sin sin

2 sinh cosh
1 2(1 )

mnq mx nx
a b

xm mx x
a a

π πσ
β

λπ ν πα λ λ λ
ν ν

= ×

     × − + +      − −      

 

 

1 2
22

2 2
2 3

2 3 3

sin sin

2 sinh cosh
1 2(1 )

mnq mx nx
a b

xn nx x
b b

π πσ
β

λπ ν πα λ λ λ
ν ν

= ×

     × − + +      − −      

 

 

1 2
12

3
2 3 3

cos cos

2 sinh cosh
2(1 )

mnq mx nx
a b

xm n x x
a b

π πσ
β

λπ π α λ λ
ν

= ×

   × −    −    

 

 
As the solution of the boundary-value problem in three-dimensional elasticity is unique, the 
above closed-form expressions (4.12) – (4.13) obtained using the displacement potential 
method should coincide with the closed-form expressions (4.5) – (4.6) presented in Section 
4.1. After substituting the quantities (4.11) into (4.12) – (4.13) and employing the notations 
(2.5), the closed-form expression (4.121) for the in-plane displacement 1u  transforms into 

 

( )

( ) ( )

1 2
1 2

cos sin(1 ) (1 2 )cosh sinh
2sinh

sinh sinh cosh cosh
2 2 2

mn mn mn
mn

mn mn

mn mn mn mn mn

m nm hu a q
h hE a
a a

h h h
a a a

πξ παξν π ν γ γ ζ
γ γ γ

γ γ γ ζ ζ γ γ ζ

  +  = − − +        − 
 

    + −         

(4.14) 

 
The above expression coincides with (4.51) given in Section 4.1. 
 
Similarly, the closed-form expression (4.123) for the transverse displacement 3u  transforms 

into 
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( )

( ) ( )

1 2
3

sin sin(1 ) 2(1 ) cosh cosh
2sinh

sinh cosh cosh sinh
2 2 2

mn mn mn
mn

mn mn

mn mn mn mn

m n hu aq
h hE a
a a

h h h
a a a

π ξ π αξν ν γ γ ζ
γγ γ

γ γ ζ ζ γ γ ζ

+ −  = +     − 
 

   + −    
    

 (4.15) 

 
The above expression coincides with (4.52) given in Section 4.1. Thus, it is evident that the 
closed-form expressions (4.12) – (4.13) for displacements and stresses obtained using 
Youngdahl’s displacement potentials satisfy the uniqueness of solution requirement. 
 
 
 
5. Taylor series expansion and comparisons 
It has been proved in Schneider et al. (2014) that consistent higher-order plate theories are 
Taylor-series expansions of N-th order of the exact solution of the three-dimensional theory 
of elasticity. It is thus intriguing to develop the exact three-dimensional elasticity solution 
into a power series in h a  and show the equivalence of the first terms. It is sufficient to 
show the correspondence for the displacements ju . Due to Hooke’s law the 

correspondence for the stresses in turn is obvious. 
 
When using formulae for the Taylor-series expansions, we frequently take recourse to 
Bronstein & Semendjajev (1996). We start with 
 

 

2 43
3

3

6 8

1 1 1sinh 1
6 20 840

1 ,
60,480

mn mn mn mn mn

mn

h h h h h
a a a a a

h hO
a a

γ γ γ γ γ

γ

     − = + +          
   + +         

 

           (5.1) 

 

2 43

3

6 8

1 6 1 111
20 8,400sinh

17 .
756,000

mn mn
mn

mn mn

mn

a h h
h h h a a
a a

h hO
a a

γ γ
γγ γ

γ

    = − +        − 
 

   − +   
   

 

 
For the products of the hyperbolic functions, we find 
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( ) ( )

( )

( )

2 2 2

4 4 2 2 4

6 6 4 2 2 4 6 8

1cosh cosh 1 3
2 2

1 9 18
24
1 27 135 45 ( ),

720

mn mn mn

mn

mn

h c
a

c c

c c c O c

γ γ ζ γ ζ

γ ζ ζ

γ ζ ζ ζ

  = + + 
 

+ + +

+ + + + +

 

 

 

( ) ( )

( )

( )

2 2 2

4 4 2 2 4

6 6 4 2 2 4 6 8

1sinh cosh 1
2 2 2

1 9 30 5
120

1 27 189 105 7 ( ) ,
5,040

mn mn mn mn

mn

mn

h h c
a a

c c

c c c O c

γ γ ζ γ γ ζ

γ ζ ζ

γ ζ ζ ζ

  = + +  
  

+ + +

+ + + + + 


  (5.2) 

 

 

( ) ( )

( )

( )

2 2 2

4 4 2 2 4

6 6 4 2 2 4 6 8

1cosh sinh 1 9
2 6

1 45 30
120

1 189 315 63 ( ) ,
5,040

mn mn mn mn

mn

mn

h c
a

c c

c c c O c

γ γ ζ γ ζ γ ζ

γ ζ ζ

γ ζ ζ ζ

  = + +  
  

+ + +

+ + + + + 


 

 

 ( ) ( )2 2 2 2 41sinh  sinh 1 3 ( ) .
2 6mn mn mn mn
h c O c
a

γ γ ζ γ ζ γ ζ   = + + +      
 

 
Inserting (5.1) and (5.2) into (4.5) yields 
 

 

4

1 1 24

2
2 2

2

2 4
4 4 6

2 4

( ) cos sin

1 2 3 21 9 5
30 1 1

3 87 157 1 1 3 1 3 ( ) ,
1, 400 1 20 1 120 1

mn

mn

mn

mn

a qu m m n
K

v vc
v v c

v v vc O c
v v c v c

π ζ πξ παξ
γ

ζγ

ζ ζγ

= ⋅

  + −− + −  − −  
 − − − + − − +  − − −   
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4

3 1 24

2 2 2

2

4 4 2 4

2 4

6 6 2

2

4

4

sin sin

11 3(8 3 ) 5
1 10

3 3 1(227 157 ) (5 3 ) (1 )
1 1,400 20 24

1 3(26 791 ) (70 157 )
1 14,000 2,800

1 1(2 3 ) (2
80 720

mn

mn

mn

mn

mn

a qu m n
K

c v v
v c

c v v v
v c c

c v v
v c

v v
c
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6
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2) ( ) .O c

c
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  (5.3) 

 
Again, 2u  follows from 1u  by replacing 1 2cos sinm m nπ πξ παξ  in (5.31) by 

1 2sin cosn m nπα πξ παξ . 
 
Now, we can compare the displacements calculated from (5.3) and (3.20). First, it may be 
concluded that all terms not involving the constants 1A  and 2A  are in complete agreement. 

Comparing coefficients of the terms involving the constants 1A  and 2A  leads to the 
following overdetermined system of algebraic equations 
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− −
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 (5.4) 

 
By choosing 
 

 
2

1 2

3 227 48 11 ,
1,400 (1 )

v vA
v

− −
= −

−
      (5.5) 

 
the first three equations of (5.4) are identically satisfied, and 2A  follows from the fourth 
equation as 
 

 
2 3

2 3

1 16,370 12,471 2,544 395 ,
14,000 (1 )

v v vA
v

− + −
= −

−
    (5.6) 
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a formula that would have hardly been guessed a priori. 
 
With 1A  known, we can evaluate the stresses αβσ  up to the order 6( )O c  from (3.81-3) as 

 
 

( )
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( ) ( )
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4 4 2 2

2 4
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2 4

sin sin
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γ
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In conclusion it may be stated that the displacements and stresses calculated from the 
consistent second-order plate theory (denoted with the superscript (P)) coincide with those 
of the three-dimensional elasticity theory (denoted with the superscript (E)) modulo higher 
order terms as 
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( ) ( ) 7

( ) ( ) 8
3 3
( ) ( ) 7

( ) ( ) 4
3 3

( ) ( ) 5
33 33

( ),
( ),
( ),

( ),
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E P
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u u O c

O c
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O c

α α

αβ αβ

α α

σ σ

σ σ

σ σ

= +

= +

= +

= +

= +

        (5.8) 

 
 
6. Parametric study 
In this section, a parametric study for the special case of 1m n α= = =  is performed, i.e. we 
take the formulae for the quadratic plate a b=  under a single-wave external load from the 
previous sections and replace 11q  with 0P . In order to simplify the parametric evaluation we 

introduce a new thickness variable ζ  as 
 

2
23

2

1 1, 12 ,
2 2

x h
h a c

ζζ ζ ζ ζ ζ= ⇒ = = − ≤ ≤ +    (6.1) 

 
The formulae are interpreted as 1 2( , , )f f ξ ξ ζ= . We compare maximum values of the 

second-order consistent plate theory (P) and the three-dimensional elasticity theory (E) for 
the displacements and stresses by introducing non-dimensional quantities. Wherever 
numerical values are presented, we choose 0.3ν =  for Poisson’s ratio. A comparison with 
other consistent second-order theories like, e. g., the Reissner-Mindlin theory, is not 
necessary, since it has been shown in Kienzler and Schneider (2017) that they are equivalent 
within the second-order approximation. 
 
We start with the in-plane displacement and introduce 
 

 
3 3

1 1 23
0 3 0

8 1 8 1( ) 0, , ,0, .
2 2

K Ku u u
a hP a hP
π πζ ζ ζ   = − = −   

   
    (6.2) 

 
For (P) we have from (5.31) 
 

 

2 2
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4 4 6
2 4

4 6

1 2 3 1 2( ) 2 1
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a v v

h v v v hO
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 (6.3) 

 
For (E) we find with (4.51) 
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2 2
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with 
 
 ( )

1lim ( ) 2 .
0

E

h
a

u ζ ζ=
→

        (6.5) 

 

Especially for 
1
2

ζ = , we find 
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2 4
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2 2

( )
1 2

(1 2 ) sinh 2 2
(1 2) .

6 (1 ) sinh 2 2

E

h hv
h a au

h ha v
a a

π π
π

π π

 − + 
 =
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   (6.7) 

 
A comparison of both values for different ratios h a  is given in Table 1,where we restricted 
ourselves to four digit after the comma for perspicuity. 
 
Table 1.  Values for the displacement 1u  
 

h
a

 0 
1

10
 

1
5

 
1
3

 
1
2

 

( ) (1 2)Pu  1 0.9996 0.9989 1.0011 1.0201 
( ) (1 2)Eu  1 0.9996 0.9989 1.0009 1.0176 

∆% 0 0.00 0.00 0.02 0.25 
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Fig. 6 shows the distribution of ( )
1 ,E hu

a
ζ =  
 

 along the thickness of the plate for various 

values of the parameter h a . A significant deviation from the plane cross-section starts with 
1 5h a >  and is quite pronounced for 1 2h a = . The deviation between the plate solution 

( )
1 ,P hu

a
ζ =  
 

 and the exact elasticity solution ( )
1 ,E hu

a
ζ =  
 

 remains far less than 1% even 

for values 1 2h a = . In the example shown in Fig. 7, the difference between both solutions 
is practically not to be seen, The maximal deviation occurs at 1 2ζ = ±  coinciding with the 
values given in Table 1. 

 

Fig. 6. In plane displacement ( )
1 ,E hu

a
ζ =  
 

 along the plate thickness with h a  as 

parameter 
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 Fig. 7. Comparison between the exact elasticity solution ( )

1
Eu  and ( )

1
Pu  along the  

  non-dimensionalised thickness coordinate ζ  for 1 3h a =  
 
 
For the displacement in 3x -direction, we introduce  
 

 ( )
4

3 34
0

4 1 1, ,
2 2
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       (6.8) 

 
and find from (5.32) 
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Especially, we have 
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and 
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Equation (4.52) delivers 
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Especially, we have 
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and 
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A comparison for the transverse displacement 3u  at the centre ( 0)ζ =  and at the faces 
1
2

ζ = ±  of the plate is given in Table 2 for different values of 
h
a

. 

 
Table 2. Values for the displacements 3u  
 

h
a

 0 
1

10
 

1
5

 
1
3

 
1
2

 

( )
3 (0)Pu  1 1.0499 1.1978 1.5376 2.1567 

( )
3 (0)Eu  1 1.0499 1.1978 1.5377 2.1575 
∆% 0 0.00 0.00 0,.01 0.04 

( )
3 ( 1 2)Pu ±  1 ± 1.0399 ± 1.1639 ± 1.4846 ± 2.2167 

( )
3 ( 1 2)Eu ±  1 ± 1.0399 ± 1.1639 ± 1.4846 ± 2.2165 
∆% 0 0.00 0.00 0.00 0.01 

 
We see that the values of the second-order consistent plate theory and the three-
dimensional theory of elasticity are in excellent agreement with each other even for ratios 

1 2h a =  which are rather solid bricks than plates. 
 

Fig. 8 shows the distribution of ( )
3 ,E hu

a
ζ 
 
 

 along the plate thickness. The deviation from 

the classical assumption of the thin-plate theory 3 const. ( )u f ζ= ≠  becomes visible with 5% 
already for relatively thin plates of 1 10h a =  and increase considerably for thicker plates. 
The differences between the elasticity and plate solutions are less than 0

001 . Both solutions 
are plotted in Fig. 9 for 1 3h a = . Differences are not visible in the plot, the maximal 

difference occurs at 0.ζ = (cf. Table 2). Fig. 10 shows the development of ( )
3

1,
3

Pu ζ 
 
 

 for 

different approximation orders. Considering (6.9), we define 
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  (6.16) 
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The transverse displacement 0
3u  represents the result of the classical theory and is equal to 

1= const. The first order approximation (quadratic parabola) improves the solution 
considerably, whereas the second-order approximation adjusts the displacement in a still 
visible manner. The third-order term, which is not fully fixed within a consistent second-
order plate theory, results in marginal improvements not visible in Fig. 10. 

 

 Fig. 8. Transverse displacement 3 ( ) ,E hu
a

ζ 
 
 

 along the plate thickness with 
h
a

 as 

parameter 
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Fig. 9. Comparison of the exact elasticity solution ( )
1

Eu  and the second-order 

consistent plate-theory solution ( )
3

Pu  along the non-dimensionalised 
thickness coordinate ζ  for 1 3h a =  

 

 
 
 Fig. 10. Transverse displacement 3

iu  for different approximation orders 
 
Proceeding further to the stresses, we introduce 
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Especially at the plate faces we have 
 



35 
 

 

2 2 4 4
( )
11 2 4

2 4

2 4

1 2 7 11( 1 2) 1
30 1 2,100

1 1.037574 0.510238 .

P h v h
a v a

h h
a a

π πσ
 +

± = ± + + + 
 

= ± + + 
 

    (6.19) 

 
The elasticity solution follows from (4.61) as 
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with 
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E

h
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Especially, for 
1
2

ζ = ±  we find  

 

 ( )
2 2
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(1 2 ) sinh 2 2
1 11 2 .
6 1 sinh 2 2

E

h hv
h a a

h hv a
a a

π π
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π π
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The normal stresses for the plate faces taken from (6.19) and (6.22) are compiled in Table 3. 
 
Table 3. Non-dimensional normal stresses 11σ  and 22σ  at the plate faces 1 2ζ = ±  
 

h
a

 0 
1

10
 

1
5

 
1
3

 
1
2

 

( )
11 ( 1 2)Pσ ±  ± 1 ± 1.0104 ± 1.0423 ± 1.1216 ± 1.2913 
( )
11 ( 1 2)Eσ ±  ± 1 ± 1.0104 ± 1.0423 ± 1.1214 ± 1.2887 
∆% 0 0.00 0.00 0.02 0.20 
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In Fig. 11, the bending-stress distribution over the plate thickness is depicted. The deviation 
from the classical linear distribution becomes visible for 1 5h a >  and gets more 
pronounced for larger values. The distributions of the exact elasticity solution and the 
second-order plate theory practically coincide (cf. Fig. 12). The main difference occurs at 

1 2ζ = ±  (cf. Table 3). Again, we discuss the influence of the approximation order on the 
stress distributions. In view of (6.18), we introduce 
 

 

1
11

2 2
2 2

11 2

3
11 11

, 2

1 2 3 1 2, 2 1
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, ( ) (6.18)

h
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σ ζ ζ
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 − +   = − −    + +    
  = 
 



    (6.23) 

 
and plot the results in Fig. 13. The stress distribution given by 1

11σ  coincides with classical 

linear assumption, 2
11σ  represents the correction within the consistent second-order theory. 

Terms form the third-order theory supply only marginal changes. 

 

 Fig. 11. Distribution of ( )
11 ,E h

a
σ ζ 

 
 

 along the plate thickness with h a  as 

  parameter 
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Fig. 12. Comparison of the exact elasticity solution ( )

11
Eσ  and the second order plate 

theory ( )
11

Pσ  along the non-dimensionalised thickness coordinate ζ  for 

1 3h a =  

 
 Fig. 13. Bending stress 11

iσ  for different approximation orders 
 
Similar results and conclusion are valid for the in-plane shear stresses 12σ , the results for 
which will be omitted here. 
 
For the transverse shear stresses, we introduce 
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and find with (3.84) 
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Especially at the plate middle surface 0ζ = , we have 
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The elasticity solutions turns out to be (4.63) 
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Especially at the plate middle surface, we find 
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3 sinh 2 2

E

h
h a

h ha
a a

π
πσ

π π

 
 
 =

  − 
 

     (6.28) 

 
Numerical values are given in Table 5. 
 
 
Table 5. Non-dimensionalised transverse shear stresses 13σ  and 23σ  at the plate middle 
surface 0ζ =  
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h
a

 0 
1

10
 

1
5

 
1
3

 
1
2

 

( )
13 (0)Pσ  1 0.9984 0.9934 0.9817 0.9589 
( )
13 (0)Eσ  1 0.9983 0.9933 0.9806 0.9537 
∆% 0 0.01 0.01 0.11 0.54 

 
Although the approximation order is less than for αβσ , the agreement between both 

solutions is again excellent. 
 
As depicted in Fig. 16, the classical quadratic transverse-shear distribution (Dübelformel) 
occurs for 0h a → , and is slightly changed to a bi-quadratic solution within the second-
order plate theory. 
 
The differences between the exact elasticity solution and the second-order plate theory are 
less than 1% and are not visible in Fig. 17 for 1 3h a = . The maximal derivation occurs at 

0ζ = , cf. Table 5. 

 

Fig. 16. Transverse-shear distribution 13 , h
a

σ ζ 
 
 

 along the plate thickness with h a  

as parameter 
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 Fig. 17. Comparison of the exact elasticity solution ( )

13
Eσ  and the second-order  

  plate theory ( )
13

Pσ along the non-dimensinalized thickness coordinate ζ  for 
  1 3h a =  
 
Finally, we investigate the transverse normal stresses 33σ  and introduce 
 

 ( )33 33
0

1 1 1, ,
2 2P

σ ζ σ ζ =  
 

       (6.29) 

 
and find for the plate solution, cf. (3.86) 
 

 ( ) ( )
2 2 4

( ) 2 2 4
33 2 4

1 1( ) 3 4 1 8 16 .
2 40

P h hO
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= − − − + +  

  
  (6.30) 

 

 ( )
33

Pσ  at 0ζ =  is zero and at 
1
2

ζ = ±  it is 
1
2

±  as prescribed by the boundary 

conditions. 
 

For comparison, we evaluate 33σ  at 
1
4

ζ =  and find 

 

 
2 2 2

( )
33 2 2

11 9(1 4) 0.343750 0.138791 .
32 640

P h h
a a
πσ = − = −    (6.31) 
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The elasticity solution turns out to be (4.64) 
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33
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2 2 2

E h h
h h a a
a a
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           (6.32) 
with 

 ( )( ) 2
33

1lim ( ) 3 4 .
20

E

h
a

σ ζ ζ ζ= −
→

      (6.33) 

 
In Table 6, the values of 33 (1 4)σ  from (6.31) and (6.32) are compared and, again, an 
excellent agreement is observed. 
 
Table 6. Transverse normal stresses 33σ  evaluated at 1 4ζ =  

h
a

 0 
1

10
 

1
5

 
1
3

 
1
2

 

( )
33 (1 4)Pσ  0.3438 0.3434 0.3425 0.3399 0.3351 
( )
33 (1 4)Eσ  0.3438 0.3434 0.3423 0.3396 0.3339 
∆% 0 0.00 0.06 0.09 0.36 

 

As can be seen in Figs. 18 and 19, the through-thickness distribution of ( )
33 ,E h

a
σ ζ 

 
 

 is hardly 

influenced by the relative thickness h a  of the plate. The maximal difference between the 
exact elasticity solution and the second-order plate solution occurs at 0.236 1 4ζ = ± ≅ , cf. 
Table 6. 
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Fig. 18. Transverse normal stress ( )
33 ,E h

a
σ ζ 

 
 

 along the plate thickness with h a  as 

parameter 

 
 

Fig. 19. Comparison of the exact elasticity solution ( )
33

Eσ  and the second-order plate 

theory ( )
33

Pσ  along the non-dimensionalised thickness coordinate ζ  for 

1 3h a =  
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7. Conclusions 
 
For the simply supported rectangular plate under sinusoidal load, closed form solutions are 
available within the consistent second-order plate theory as well as within the three-
dimensional theory of elasticity. A Taylor-series expansion of the exact elasticity solution 
with respect to the non-dimensionalised thickness h a  reveals that the formulae of the 
plate theory coincide exactly with the first terms of the Taylor-series expansion. We were 
able to identify two constants which had not been determined within the second-order 
consistent plate theory. 
 
For both theories, maximal values for displacements and stresses are evaluated for the 
special case of a quadratic plate under a single-waved load ( 1)m n α= = = . The values of 
both theories show a remarkably good agreement. Even for thick plates with 1 2h a =  - 
which are rather three-dimensional bricks than plates - the deviation turns out to be far less 
than 1%. 
 
In a forthcoming paper we will treat transversely isotropic plates and show that the 
arguments may be applied equally well. 
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