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Abstract

In this paper, flow of multi-component two-phase fluids in highly heterogeneous anisotropic two-
dimensional porous media is studied using computational methods suitable for unstructured trian-
gular and/or quadrilateral grids. The physical model accounts for miscibility and compressibility of
fluids while gravity and capillary effects are neglected. The governing equations consist of a pressure
equation together with a system of mass conservation equations. For solving pressure equation, a
new method called Control Volume Distributed Finite Element Method (CVDFEM) is introduced
which uses Control Volume Distributed (CVD) vertex-centered grids. It is shown that the proposed
method is able to approximate the pressure field in highly anisotropic and heterogeneous porous
media fairly accurately. The system of mass conservation equations is solved using various up-
wind and central schemes. These schemes are extended from one-dimensional to two-dimensional
unstructured grids. Using a series of numerical test cases, comparison are made between different
approaches for approximation of the hyperbolic flux function. Semi one-dimensional high-order da-
ta reconstruction procedures are employed to decrease stream-wise numerical diffusion. The results
suggest that the Modified Dominant Wave (MDW) scheme outperforms other hyperbolic schemes
studied in this paper from both accuracy and computational cost points of view.
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1. Introduction

Hydrocarbon reservoirs are highly heterogeneous with respect to rock properties, especially
permeability for which several orders of magnitude variation within a small distance is not unusu-
al [1]. Such discontinuities in the permeability field will result in strongly discontinuous coefficients
when the governing equations are discretized for numerical simulation [2, 3, 4]. However, physical
constraints dictate that the flow variables, e.g., pressure and flux, should remain continuous at in-
terfaces of Control Volumes (CV) with discontinuous permeabilities. To obtain local continuity, the
Pressure and Flux (P/F) continuity constraints may be imposed at the discretization level [2, 5]. In
one-dimensional case, this is achieved using well-known harmonic averaging of permeability [6]. On
the other hand, in higher-dimensional cases, using the same approach results in first-order diffusion
errors [7].

When anisotropy and full-tensor effects are taken into account in higher-dimensions, the nu-
merical scheme should deal with tensorial discontinuous coefficients. Remarkable progress has
been made in solving parabolic (or elliptic) pressure equation in anisotropic heterogeneous porous
media by introducing the so-called flux-continuous methods such as: Multi-Point Flux Approxi-
mation (MPFA) [2, 8, 9], Control Volume Distributed (CVD) Triangular/Full Pressure Support
(T/FPS) [7, 10, 11, 12, 13, 14, 15], and Mixed Finite Element Method (MFEM) [16, 17, 18, 19].
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These methods employ similar approaches to impose P/F continuity constraints leading to better
accuracy in anisotropic heterogeneous porous media. However, these methods are relatively com-
plicated from implementation point of view and become sensitive to grid geometry when anisotropy
ratio between the largest and smallest permeabilities increases. These issues are investigated in
this paper using numerical test cases.

On the other hand, in petroleum industry, reservoir data such as rock permeability and porosity,
are calculated discretely on separate points and then combined together using geo-statistical models
to construct a complete realization of the reservoir and rock properties. This argument favors the
use of CVD numerical methods in which the rock properties are assigned to CVs in the dual
grid cells. In these methods, the boundaries of different permeability areas are defined after the
construction of CVs [7] leading to higher flexibility in handling discontinuous permeabilities.

Similar to the CVD methods, in Control Volume Finite Element (CVFE) method [20, 21], the
flow variables are assigned to the CV centers (grid vertices); however, the classical CVFE method
differs from the CVD methods as the rock properties are assigned to cells not CVs [20], as a
result this method lacks in capturing high contrast permeability discontinuities and tends to smear
the flow variables such as saturation or composition [12]. Several investigations are conducted to
relieve this smearing of composition by using a combination of higher order finite element with
Discontinuous Galerkin (DG) methods [22, 23]. In this paper, a new method is introduced which
utilizes some of CVFE concepts but complies with the CVD framework. The proposed Control
Volume Distributed Finite Element Method (CVDFEM) is implemented easily and is simple from
both conceptual and practical points of view. Here, CVDFEM is compared to the CVD T/FPS
methods for solving pressure equation.

In the Implicit Pressure Explicit Composition (IMPEC) procedure, after solving the pressure
equation, the solution of hyperbolic system of mass conservation equations should be evaluated
explicitly. The latter part has not been investigated as much as the elliptic part. Most of studies
use classical upwind schemes to solve for either species concentration in single phase or saturation
in two-phase incompressible immiscible flows [13, 9, 24, 25]. When using a compositional model,
the number of equations and the computational cost increase dramatically. In this context, the
potentials of using central schemes has not been considered to a sufficient degree [26]. This is
mainly due to stability and step size limitations of these schemes. However, central schemes take
the advantage of symmetric stencil and are more computationally efficient especially when a large
system of equations should be solved, which is the case in compositional flows. In this paper,
the utilization of central schemes for solving hyperbolic conservation equations associated with the
compositional flows is investigated.

When solving conservation equations on higher dimensions, numerical diffusion is usually gener-
ated along and across streamlines. This error can be mitigated using spatially high-order numerical
schemes. Moreover, using high-order methods with Total Variation Diminishing (TVD) properties
lessens the limitations of central schemes. There are several approaches to achieve high-order
approximations in unstructured grids [27, 28, 13, 14]. Here, one-dimensional high-order reconstruc-
tion [29] is extended to a vertex-centered unstructured grid using an edge-based formulation.

To sum up, this paper compares the accuracy and computational cost of several high-order
upwind and central numerical schemes in the context of Finite Volume (FV) approach using un-
structured grids. Moreover, several CVD methods are evaluated for solving pressure equation in
highly heterogeneous anisotropic porous media. This study is conducted for compressible misci-
ble multi-component multi-phase flows in highly heterogeneous anisotropic porous media, while
capillary and gravity effects are neglected.

In the following, first a brief description of the physical and mathematical aspects of compo-
sitional model is presented. Then, the mathematical formulation of CVD T/FPS and CVDFE
methods for solving the pressure equation are introduced. Next, several hyperbolic schemes utiliz-
ing high-order data reconstruction for solving mass conservation equations are described. Finally,
the capabilities of numerical schemes are assessed by solving several test cases.
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2. Compositional Model

In the compositional model used in this paper, reservoir temperature is considered constant
and fluid is assumed to be consisted of nc chemical components. Moreover, the fluid has at most
np = 2 phases, i.e., liquid l and vapor v, while capillary and gravity effects are neglected.

Mole number of components is shown by vector m with nc entities. Assuming thermodynamic
equilibrium, components are distributed in the liquid and vapor phases, so that m = ml + mv,
where mα is the vector of component mole numbers in phase α. Conservation of mass equation for
ith component reads

∂(ϕmi)

∂t
= −∇ � ui + qi, i = 1, 2, · · · , nc, (1)

where ϕ is porosity and qi is source/sink term of component i. Also, ui is defined as,

ui = −
np∑
α=1

xαi ρ
αλαK∇p, i = 1, 2, · · · , nc, (2)

where p is pressure and K is the tensor of rock absolute permeability. Moreover, kαr , µα, and
λα = kαr /µ

α refer to relative permeability, viscosity, and mobility of phase α, respectively. In
addition, xαi is mole fraction of component i in phase α and ρα is molar density of phase α. In
addition, K is the tensor of rock absolute permeability and g is the gravitational acceleration.

The pressure equation is obtained using volume balance concept [30] and can be written as

ϕ(cr + cf )
∂p

∂t
= −

nc∑
i=1

νtoti ∇ � ui +

nc∑
i=1

νtoti qi, (3)

where cr and cf are rock and fluid compressibilities, respectively and νtoti is total partial molar
volume of ith component which is calculated based on Equation Of State (EOS) and Pressure
Volume Temperature (PVT) relations [31]. For further discussion on the formulation the reader is
referred to [30]. The present paper utilizes SI units.

In this work, an Implicit Pressure Explicit Composition (IMPEC) approach is used to solve
the fluid flow equations. In this approach, using the given temperature, pressure, and composition
m at time t, first a stability analysis [32] is performed to specify the number of phases that exist
in each CV. If both liquid and vapor phases are present, flash calculations [33, 34] should be
performed to determine the distribution of components in each phase, i.e., mα. The procedures
for calculating thermodynamic equilibrium and fluid properties, e.g. ρα and sα, can be found
in [32, 33, 35]. To calculate phase viscosities µα, an algorithm due to Lohrenz [36] is used which
is briefly described in Appendix C.2. Moreover, relative permeabilities kαr are considered to be a
function of phase saturation sα only. Using fluid properties, at each time step, pressure equation (3)
is solved implicitly while its coefficients are calculated using compositions at present time step.
The procedure for solving pressure equation is illustrated in 4.2. Then, using this pressure field,
the system of mass conservation equations (1) is solved explicitly to complete a single time step.
Solution of these equations is of main concern in this paper and is discussed in 4.3.

3. Numerical Method

3.1. Discretization of Equations
The numerical scheme used here utilizes a vertex-centered structure [1, 37] in which CVs are

constructed around grid vertices by connecting cell centroids to edge midpoint as shown in Figure 1.
This vertex-centered scheme allows for using computationally efficient edge-wise data structure
and flux approximation [38]. Moreover, it facilitates the use of semi- one-dimensional high-order
reconstruction [39] as discussed in section 3.3.
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Figure 1: Vertex-centered grid. Grid nodes are shown in black dots. (No. of edges connected to node j is nE = 6)

To begin with, the system of conservation equations (1) is integrated over time and jth CV, as
shown in Figure 1,∫

Vj

∫
t

∂(ϕmi)

∂t
dt dV = −

∫
t

∫
Vj

∇ � ui dV dt+

∫
t

∫
Vj

qi dV dt, i = 1, 2, · · · , nc, (4)

using Euler forward time integration together with Gauss divergence theorem for spatial integration
and neglecting rock compressibility, the above equation becomes

Vj
∆t

ϕj(m
n+1
i,j −mn

i,j) = −
∮
Sj

un
i � ndS +Qi,j , i = 1, 2, · · · , nc, (5)

where Vj and Sj are volume and surface of jth CV, respectively, and Qi,j ≡
∫
Vj
qidV . Moreover,

superscript n refers to time tn and ∆t ≡ tn+1 − tn.
The same procedure is applied to the pressure equation (3) except that the time integrations

are evaluated implicitly. The final equation takes the form,

Vj
∆t

ϕjcfj(p
n+1
j − pnj ) = −

∮
Sj

nc∑
i=1

νtoti un+1
i � ndS +

nc∑
i=1

νtoti Qi,j . (6)

Using IMPEC procedure, the numerical method consists of two parts: elliptic part which con-
cerns with solving the pressure equation (6) and hyperbolic part which deals with solving the system
of conservation equations (5). The procedure of evaluating integral on the right hand side of (6)
in heterogeneous anisotropic media is discussed in section 3.2. The procedures for solving elliptic
and hyperbolic parts are discussed in sections 3.2 and 3.3, respectively.

3.2. Pressure Equation
To solve the pressure equation, it is necessary to evaluate the flux integral in the pressure

equation (6) implicitly. In this paper, the so called, Control Volume Distributed (CVD) approach
is used in which the rock properties, e.g., permeability and porosity, are assigned to the center of
CVs (grid vertices). Each grid cell consists of nV sub-cells each having a different permeability
as illustrated in Figures 2, where nV denotes the number of vertices in each cell (here, 3 or 4).
Referring to Figure 2, it is seen that

−
∮
Sj

K∇p � ndS = −
nE∑
e=1

nFE∑
α=1

∫
Sα

K∇p � ndS, (7)

where nE is the number of edges connected to node j and nFE is the number of sub-faces of each
edge which is equal to 2 in two-dimensional case. Calculation of right hand side of (7) is then
reduced to approximating elliptic fluxes at cross boundaries of CV, i.e.,

Fα ≡ −
∫
Sα

K∇p � ndS, (8)
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where S and n are the area and outward normal vector to the sub-cell integration surface. Fluxes
of (8) are calculated cell-wise. Hence, α refers to the integral points (S,E,N,W ) for quadrilateral
and (S,E,N) for triangular cells, respectively. Relocation of these integral points, from cell centroid
to edge midpoint, leads to a family of CVD methods as elaborated in [12]. The fluxes of (8) which
are approximated within cells, are then assembled to form the fluxes of CV as described in (7).
In the following two sections, three approaches are introduced in order to calculate the fluxes
implicitly. These methods are especially suitable for simulation of flow in anisotropic fields with
heterogeneous permeability.

3.2.1. Triangular/Full Pressure Support (T/FPS)
To solve the pressure equation using Triangular/Full Pressure Support (T/FPS) methods [15,

10], Pressure/Flux (P/F) continuity constraints are imposed explicitly at control volume interfaces,
i.e., the boundary between gray and white areas of Figure 1. The problem of imposing P/F
continuity constraints at CV interfaces is reduced to the imposition of these constraints at the faces
of sub-cells within each cell. With reference to Figure 2a, the vector of elliptic fluxes within cell,
F ≡ (FS , FE , FN , FW )T, can be calculated as FL ≡ (F 1

S , F
2
E , F

3
N , F

4
W )T or FR ≡ (F 2

S , F
3
E , F

4
N , F

1
W )T

where the subscripts of F V
I refer to the integration surfaces I ≡ (S,E,N,W ) for quadrilateral and

I ≡ (S,E,N) for triangular cells, and superscripts refer to grid vertices V ≡ (1, 2, . . . , nV ) as shown
in Figure 2. Both of FL and FR can be written as [12]

FL = AL pM +BL pV , (9a)
FR = AR pM +BR pV , (9b)

where p
(nM×1)
M and p

(nV ×1)
V are pressures at the edge mid-points and centroid of cell M and vertices

V , respectively. In Figure 2, M ≡ (s, e, n, w,m) for quadrilateral and M ≡ (s, e, n,m) for triangular
cells, respectively. In (9a) and (9b), A and B refer to coefficient matrices of elliptic fluxes defined
in (8). It can be seen that coefficient matrices AL and AR are of dimension (nM × nM ) while BL

and BR are (nM × nV ). Continuity of flux at the interface of sub-cells requires that F = FL = FR.
Mathematically speaking,

F = AL pM +BL pV = AR pM +BR pV , (10)

which leads to nV equations and nM unknowns pM . In TPS method, nM = nV so all matrices are
of nV × nV dimension. On the other hand, in FPS method, nM = nV + 1 and a zero-divergence
condition is imposed over an interior auxiliary control-volume surrounding point m to close the
system. Mathematically speaking [12]

−
∮
Sm

K∇p � ndS = 0. (11)

Solving for pM in (10) and defining C ≡ AL (AL −AR)
−1 (BR −BL) +BL, one can obtain [12]

F = C(nM×nV )p
(nV ×1)
V , (12)

which is the final form of the elliptic flux approximation. Hence, the flux F, depends only on
pressures at vertices pV .

3.2.2. Control Volume Distributed Finite Element Method (CVDFEM)
Similar to existing CVD T/FPS methods, in CVDFEM, the rock properties are assigned to the

center of CVs; however, in order to achieve flux continuity, the permeability tensor is interpolated
within each cell in a component-wise manner using standard shape functions of FE. In order for
the method to be consistent with the so-called harmonic permeability averaging prevalent in the
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Figure 2: Definitions of CVD scheme

literature, the diagonal coefficients of permeability tensor are interpolated inversely while the off-
diagonal coefficients are interpolated normally as the latter are zero in most cases. Mathematically
speaking,

1

Kii
=

nV∑
s=1

Ns

Kiis
, and Kij =

nV∑
s=1

NsKijs where i ̸= j. (13)

This leads to a continuous permeability field within each cell, then, the cell fluxes of (8) are
approximated within each cell as

F = D(nV ×nV )p
(nV ×1)
V . (14)

In equation (14), D ≡ nTK∇p with K from (13). Moreover, F ≡ (FS , FE , FN )T and F ≡
(FS , FE , FN , FW )T for triangular and quadrilateral cells, respectively. To be more specific, elliptic
flux at integration point α is defined as

Fα = nTK∇p =
[
nx ny

]
α

[
Kxx Kxy

Kyx Kyy

]
α

[
∂p
∂x
∂p
∂y

]
α

, (15)

where the K tensor defined in (13). For the sake of simplicity, Piola-Kirchhoff [12] transformation
is used to calculate flux in reference coordination ξ−η. This transformation for permeability tensor
is defined as follow

K̃ = |J |J−1KJ−T, (16)

where J ≡ ∂(x,y)
∂(ξ,η) is the so-called Jacobian matrix of cell and J is its determinant. Using Piola-

Kirchhoff transformation results in

Fα = ñTK̃∇̃p =
[
nξ nη

]
α

[
Kξξ Kξη

Kηξ Kηη

]
α

[
∂p
∂ξ
∂p
∂η

]
α

, (17)

where K̃, ∇̃ ≡ ( ∂
∂ξ ,

∂
∂η )

T, and ñ ≡ (nξ, nη)
T are counterparts of K, ∇ ≡ ( ∂

∂x ,
∂
∂y )

T, and n ≡ (nx, ny)
T

in local coordinates ξ − η defined in Figure 3. Moreover, the position in the physical domain is
related to the reference coordinates as

x =

nV∑
j=1

Nj(ξ, η)xj , y =

nV∑
j=1

Nj(ξ, η)yj . (18)

In relation (17), derivateves of pressure are calculated as

∂p

∂ξ
=

nV∑
j=1

∂Nj(ξ, η)

∂ξ
pj ,

∂p

∂η
=

nV∑
j=1

∂Nj(ξ, η)

∂η
pj . (19)
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Figure 3: Transformation between physical and computational domains for CVDFE method

and (ñ)α of reference cell can be easily defined as follow

[
(ñ)s (ñ)e (ñ)n (ñ)w

]T
=

[(
1
0

) (
0
1

) (
1
0

) (
0
1

)]T
, (20)

for quadrilateral cells, and similar relations can be obtain for triangular cells.
To sum up, in CVDFEM the continuity of rock properties is assumed which automatically leads

to pressure and flux continuities. The reason for the above averaging choice is discussed below.
First, it is necessary for the new CVDFE method to be consistent with conventional harmonic
averaging of permeability when diagonal permeability is used in Cartesian grid, so the diagonal
permeability coefficients shall be interpolated such that they can be reduced to conventional har-
monic averaging. Second, the proposed interpolation shall be able to work with zero off-diagonal
coefficients which is the case in many situations and the proposed interpolation procedure avoids
division by zero problem.

It is worth mentioning that, TPS, FPS, and other explicit flux continuous methods, in fact,
alter the coefficient tensor C in flux calculation to achieve pressure continuity using different ma-
nipulations, while the newly proposed CVDFE method modifies the K tensor itself within each cell
to provide flux continuity. In section 4, the results of CVDFE method are compared with those
of CVD T/FPS methods in heterogeneous anisotropic test cases. Moreover, authors’ experiences
show that CVDFEM can perform better in difficult situations where the full-tensor anisotropy or
heterogeneity are high. It should be noted that the conservativeness of CVDFE method has not
been proved rigorously yet, but in the problems studied by the authors this did not affect the
stability or accuracy of the solution.

As it can be seen form equation (7), Fα as defined in (8) is just the elliptic flux while the total
flux f = fHF including hyperbolic fluxes fH of components as well. The procedure for calculation
of latter will be clarified in the next section.

3.3. Conservation Equations
To solve the system of conservation equations (5) an edge-wise approach is used. Firstly, as

shown in Figure 4a, the elliptic flux of each edge (Fe) is calculated by adding up elliptic sub-face
fluxes (as shown in Figures 2a and 2b) from equations (12) or (14), i.e., Fe =

∑nFE
α=1 Fα. Secondly,

hyperbolic flux fH =
∑np

α=1 x
α
i ρ

αλα is calculated at left L and right R states of each edge, as
depicted in Figure 4b. Thirdly, the total flux is calculated using fL = fHL Fe and fR = fHR Fe at the
left and right states, respectively; in which fHL = fH(mL) and fHR = fH(mR) are hyperbolic flux
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functions calculated at the left and right states of edge e, respectively. Finally, (5) is rewritten as

Vj
∆t

ϕj(m
n+1
j −mn

j ) =

nE∑
e=1

f̂ne +Qj , (21)

where Qj is the source/sink term and f̂e is the so-called numerical flux which is calculated using
fL and fR by any of the procedures described in this section. In (21), the edge numerical flux
f̂e is assumed positive when it enters jth CV as shown in Figure 4c. Hereafter, the subscript
e is omitted for brevity. There are a number of options to approximate f̂e among which four
schemes are presented here: ROE, HLL, LLF, and MDW. For further discussion on these schemes
consult [29, 39].

3.3.1. Roe’s Upwind Scheme (ROE)
ROE scheme is a modification of the well-known Roe’s upwind scheme [40] in which all wave

directions are computed via a characteristic decomposition. Mathematically speaking, numerical
flux of (21) is defined as,

f̂ =
1

2
(fR + fL)−

1

2
R |Λ|R−1 (mR −mL) , (22)

where Λ ≡ diag(λ1, λ2, · · · , λnc) while λj is the jth eigenvalue and R = [r1, r2, · · · , rnc ] is the
matrix of right eigenvectors of the Jacobian matrix 1

ϕ
∂f
∂m evaluated at mM = mL+mR

2 . It should be
noted that, in order to use this scheme, it is necessary to have a set of independent eigenvectors so
that R−1 can be calculated, otherwise at umbilic points (where two or more eigenvalues are equal
and loss in eigenvector basis occurs) the scheme may fail to produce entropy satisfying solution.
As the procedures for dealing with problematic points are relatively complex in the original Roe’s
scheme, a simplified procedure is introduced in Section 3.5.

3.3.2. Harten-Lax-van Leer Scheme (HLL)
The HLL scheme is a two-wave scheme that theoretically lies between the upwind and central

schemes. Numerical flux is defined as [41],

f̂ =


fL λ̃L ≥ 0,

λ̃RfL − λ̃LfR + λ̃Lλ̃R (mR −mL)

λ̃R − λ̃L
λ̃L < 0 < λ̃R,

fR λ̃R ≤ 0,

(23)

where λ̃L and λ̃R are given in Appendix A. As it can be seen from equation (23), this scheme
requires several eigen-structure calculations to approximate wave speeds, and as a result its com-
putational cost is relatively high.

3.3.3. Local Lax-Friedrichs Scheme (LLF)
Central schemes are a viable alternative for solving hyperbolic equations which do not require

characteristic decomposition. LLF scheme lies in this category in which the term R |Λ|R−1 is
approximated by |λLLF | I. Mathematically speaking [42],

f̂ =
1

2
(fR + fL)−

1

2
|λLLF | I (mR −mL) , (24)

where |λLLF | = max(|λmax
L |, |λmax

M |, |λmax
R |) [42]. Moreover, λmax

L , λmax
M , and λmax

R are the maximum
of absolute eigenvalues at Left, Right, and Mid-points, which are calculated at mL, mR, and mM ,
respectively. I is the identity matrix.
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Figure 4: Definition of fluxes in CVD methods

3.3.4. Modified Dominant Wave Scheme (MDW)
While the LLF scheme is decomposition free, it is still complicated and several eigen-structures

should be evaluated at each interface. Modified Dominant Wave (MDW) scheme alleviates the
aforementioned problem by using a simple formula to evaluate the wave speed without using an
eigen-structure calculation. i.e.,

f̂ =
1

2
(fR + fL)−

1

2
|λMDW | I (mR −mL) , (25)

where dominant wave speed is defined as [39],

|λMDW | = max(|λ̄L−GL|, |λ̄GL−M |, |λ̄M−GR|, |λ̄GR−R|), (26)

and
λ̄1−2 =

(m2 −m1) � (f2 − f1)

(m2 −m1) � (m2 −m1)
. (27)

This definition helps particularly when flux functions are linearly degenerate [42]. The latter scheme
has the advantage of not being prone to entropy violating solutions while the added computational
cost is relatively small.

It should be noted that, L and R states are the same as i and j in the first-order schemes, but
when high-order schemes are used these states depend on a larger stencil, as illustrated in the next
section.

3.4. High-order Methods
Using high-order accuracy in space is known to improve the resolution, especially in one-

dimensional problems. Here, the edge-based data structure allows to reconstruct high-order vari-
ables in a semi-one-dimensional manner. The only difference is that the search for extended points
is not a trivial task because of geometrical complexities in unstructured grids. Several approaches
were investigated to construct the computational stencil [43], i.e., I and J associated with edge e.
Here, the corresponding edge is extended from both ends to reach the opposite sides of the nearest
triangles as shown in Figure 5. The position of these extended points should be found for all edges.
The fluid states at these extended points should be obtained using an appropriate approximation.
For example, the field value ψ at any point within a triangle can be calculated using a simple Finite
Element interpolation as

ψ =
3∑

k=1

Nk(ξ, η)ψk, (28)
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where Nk is the kth shape function and ψk is the corresponding field data at nodal points while ξ
and η are the local coordinates of the triangle. First-order states are substituted whenever either
of points i or j are located on the boundaries (I or J are located outside the domain). Finally
the required states in the semi-1D stencil (I, i, j, J in Figure 5) are used to reconstruct high-order
states similar to one-dimension [29, 39]. To recover the first-order schemes, L and R states of each
edge are simply the values of neighboring nodes, i.e., i and j.

In this paper, two procedures are used to reconstruct high-order variables from the extended
points: 1) Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) and 2) Weighted
Essentially Non Oscillatory (WENO) reconstructions which are briefly described in the following
sections. It should be noted that, the procedures described here are limited to second-order spatial
accuracy.

3.4.1. MUSCL Reconstruction
In order to use a MUSCL high-order reconstruction [44], L and R states are defined as [45],

mL = mi +
1

2
φ(r+)(mj −mi), (29a)

mR = mj −
1

2
φ(r−)(mj −mi), (29b)

respectively, all computed for edge e. In equations (29), m denotes a typical component of vector
m while φ(r+) and φ(r−) are the slope limiters in which

r+ =
mi −mI

mj −mi
� |rj − ri|
|ri − rI |

, (30a)

r− =
mJ −mj

mj −mi
� |rj − ri|
|rJ − rj |

, (30b)

where rk is the position vector for k = I, i, j, J points, as defined in Figure 5. In this paper, minmod
limiter φ(r) = min (r, 1) is used. For further alternatives consult [46, 47].

3.4.2. WENO Reconstruction
For the second-order WENO reconstruction, mL and mR are defined as [48]

mL = w0

(
1

2
mi +

1

2
mj

)
+ w1

(
−1

2
mI +

3

2
mi

)
, (31a)

mR = w2

(
1

2
mi +

1

2
mj

)
+ w3

(
−1

2
mJ +

3

2
mj

)
, (31b)
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for edge e, where w0 to w3 are weight functions described in [48]. A brief review of this procedure
is given in Appendix B.

3.5. Correction for Stagnation and Umbilic Points
To prevent unphysical entropy violating solutions when upwind schemes are used, a modified

version of LLF scheme is used in problematic points as follow [42]:

f̂ =


f̂LLF λkL ≤ 0 ≤ λkR, k = 1, 2, · · · , nc,
f̂LLF min(|λi − λj |) < ε (maxk |λk|) , i, j, k = 1, 2, · · · , nc, i ̸= j,

f̂original otherwise.
(32)

Numerical experiences show that 0.01 is an appropriate value for ε [29]. The first line in (32) refers
to stagnation points, while the second line describes the umbilic points where eigenvector deficiency
may occur as a consequence of equal eigenvectors.

3.6. Time Step Size
To calculate time step size, positivity and stability concepts are utilized. Specifically, to obtain

a non-negative mi in the new time step, with reference to Figure 4c, the mole number of ith
component in jth CV (i.e., ϕjVjmi,j) shall be greater than the mole number leaving the CV in
a single time step (i.e., −∆t

∑nE
e=1 f̂

−
i,e). To achieve a global time step size, the same requirement

shall be satisfied for all flux components in each CV. Mathematically speaking [49],

∆t = CFL
nCV

min
j=1

[
nc

min
i=1

(
− ϕjVjmi,j∑nE

e=1 f̂
−
i,e

)]
(33)

where f̂−i,e ≡ 0.5(f̂i,e−|f̂i,e|) is the numerical flux of ith component leaving jth CV in nth time step
and CFL denotes Courant-Friedrichs-Lewy number. Time step size obtained from (33) leads to a
stable solution; however, a user-defined threshold on the mi,j should be provided in order to avoid
infinitely small time step size. To prevent this problem, in this paper, the following alternative
formula is suggested

∆t = CFL
nCV

min
j=1

[
nc

min
i=1

(
− ϕjVj∑nE

e=1 λ
−
i,e

)]
(34)

where λ−i,e ≡ 0.5(λi,e− |λi,e|) while λi,e is the ith eigenvalue of the hyperbolic system calculated for
edge e.

4. Results

In this section, several test cases are solved to demonstrate the accuracy and computational
performance of the numerical procedures presented in this paper. All test cases are solved on
two-dimensional unstructured grid. The results are presented in three sections: 1) validation of
numerical procedures, 2) evaluation of procedures for solving pressure equation, and 3) evaluation
of schemes for solving mass conservation equations.

4.1. Homogeneous Anisotropic Five-spot Problem
For the sake of validation, in this section, proposed numerical procedures of this paper is

compared with compositional commercial reservoir simulator Eclipse E300 (Schlumberger 2014).
A quarter of five spot test case is considered for this comparison. In this two-component problem,
reservoir is initially filled with nC10 in liquid and C1 in vapor phase is injected from bottom left
corner while liquid is produced from top right corner. Constant volumetric flow rate constraint
is used for the injection well while the so-called Bottom Hole Pressure (BHP) of the production
well is held constant. Required properties are given Table 4. To compare the result of vertex-
centered procedure of current study with cell-centered method of E300 software, the outermost
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layer of cells are chosen to be half of interior ones in E300 model. The geometry of domain and
positions of injection and production wells are given in Figure 6a. Anisotropic diagonal permeability
K = diag(100, 10) mD is considered for this test case with 3280× 3280 ft2 computational domain.

In order to quantitatively compare various methods for solving pressure equation, first, the
problem is solved on a 20 × 20 uniform Cartesian grid with E300 simulator. Second, the grid
is distorted and/or refined and the same problem is solved on highly distorted grids. Reference
solutions for production CV pressure and recovery of liquid hydrocarbon (oil) versus time are
presented in Figures 6b and 6c, respectively. MDW scheme is utilized to solve conservation equation
and CFL is set to 0.6 according to equation (34) while using other hyperbolic schemes does not
change the results considerably. The pressure part is solved using CVDTPS, CVDFPS, and CVDFE
methods on six various computational grids and the results are compared with E300 simulator result
using appropriate error norms. The error norm is defined as

E =

[∑nstep

i=1

(
ψi∆ti − ψref

i ∆ti

)2]1/2
[∑nstep

i=1

(
ψref
i ∆ti

)2]1/2 . (35)

where ψi is the variable and ψref
i is the reference value of variable. Moreover, ∆ti is the ith time

step size and nstep denotes the number of time steps. Figure 7 shows the grids used in this problem.
Figure 7a depicts 20× 20 uniform Cartesian grid similar to that of E300 model. Figure 7b and 7b
are two highly distorted quadrilateral grids with 400 computational nodes. Moreover, Figure 7d, 7e,
and 7f show three unstructured triangular grids. In Figure 8a, the error norms of oil recovery is
depicted with respect to different pressure methods and various grids. Moreover, in Figure 8b, the
error norms of pressure of production CV is depicted with respect to various methods. Tables 1
and 2 show the aforementioned error norms associated to oil recovery and pressure of production
CV, respectively. It can be seen that, in all cases results of CVDFE and CVDFPS methods are
comparable and outperform CVDTPS method from accuracy point of view.

Moreover, it can be shown that, for triangular grids, the new CVDFE produces the same results
as the more complicated CVDFPS method whenever diagonal homogeneous permeability field is
simulated similar to the one considered in this section.

Table 1: Relative error norm of oil recovery for first test case

TPS FPS CVDFE
Grid I 0.7020 0.7069 0.7069
Grid II 1.8132 1.6087 1.5984
Grid III 2.1449 1.8166 1.7744
Grid IV 3.0756 1.5045 1.5045
Grid V 3.4086 1.1562 1.1562
Grid VI 5.1108 4.1291 4.1291

Table 2: Relative error norm of production CV pressure for first test case

TPS FPS CVDFE
Grid I 0.1254 0.1210 0.1210
Grid II 0.3067 0.2410 0.2406
Grid III 0.3186 0.2471 0.2483
Grid IV 0.5946 0.2846 0.2846
Grid V 0.5997 0.2889 0.2889
Grid VI 0.6562 0.2883 0.2883
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(a) Geometry and well location (b) Pressure of production CV

(c) recovery of liquid hydrocarbon

Figure 6: Reservoir geometry and reference solution of anisotropic homogeneous five-spot problem
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(a) Grid I (b) Grid II

(c) Grid III (d) Grid IV

(e) Grid V (f) Grid VI

Figure 7: Various grids used in first test case
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Figure 9: Unstructured grids used in Result section

4.2. Evaluation of Procedures for Solving Pressure Equation
To investigate different numerical methods for solving pressure equation, a test case was de-

signed in which a quarter of the five-spot problem is solved in a heterogeneous anisotropic domain.
Anisotropy ratio is defined as K1

K2
and the permeability tensor is rotated in various parts of the do-

main. Figure 9a shows geometry and permeability variations in the domain. Reservoir is initially
filled with a mixture of C2 and C3 in liquid phase while C1 in vapor phase is injected from bottom
left corner and liquid is produced from top right corner. Fluid properties and other parameters are
given in Table 5. Elliptic part of the problem is solved using CVDTPS, CVDFPS, and CVDFE
methods in unstructured quadrilateral and triangular grids of Figures 9b and 9c, respectively. ROE
scheme is used for solving hyperbolic system of equations in all cases while CFL is set to 0.5. The
grids are constructed from a uniform structured Cartesian mesh by applying random deformation
of the order of 0.3 of cell size. In both quadrilateral and triangular cases, the deformation param-
eter is set to a large number in order to generate highly distorted grids that make the comparison
between different pressure schemes possible in difficult situations.

Figures 10a to 10f show the results of C1 mole fraction at 0.50 Pore Volume Injection (PVI)
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Figure 10: Result of C1 mole fraction in second test case at 0.50 PVI using a quadrilateral grid for various K1
K2

.

using various pressure schemes on the quadrilateral grid of Figure 9b. In Figures 10a, 10b, and 10c
anisotropy ratio is K1

K2
= 1000

100
mD
mD and it can be seen from these figures that all three methods

produce somewhat similar results in quadrilateral grid. In Figures 10d and 10e, anisotropy ratio
increases to K1

K2
= 1000

50
mD
mD for which FPS and CVDFE methods produces similar results while

TPS diverges and fails to predict a physical solution. If anisotropy ratio rises to K1
K2

= 1000
10

mD
mD as

depicted in Figure 10f, only CVDFE method produces an acceptable solution, while both TPS and
FPS methods diverge at the early time steps.

Similar results can be obtained using triangular grid of Figure 9c as depicted in Figures 11a
to 11e. Since the latter grid is more complicated than its quadrilateral counterpart, it can be
seen that only FPS and CVDFE are able to produce acceptable solutions for K1

K2
= 1000

100
mD
mD and

K1
K2

= 1000
50

mD
mD cases albeit with higher numerical dissipation compared to the result of quadrilateral

grid as shown in Figures 10. Finally, as shown in Figure 11e, only the CVDFE produces an
acceptable solution when anisotropy ratio rises to K1

K2
= 1000

10
mD
mD . It should be noted that all methods

(TPS, FPS, and CVDFE) produce reasonable solutions for anisotropy ratios up to K1
K2

= 1000
100

mD
mD

but are not shown here for the sake of conciseness.
It can be seen that, while FPS (and TPS in simpler cases) does not produce cross-flow dissipa-

tion (spread the flow information along permeability discontinuities), however, they face difficulties
dealing with highly distorted grids with high anisotropy ratios. On the other hand, CVDFEM can
be used with much lower quality grids and heterogeneous permeability fields albeit by generating
some dissipation where high contrast discontinuities occur as can be seen in Figure 10f, near perme-
ability discontinuities. This phenomenon originates from FE averaging of flow variables in CVFEM
not from averaging rock properties as suggested here in CVDFEM. However, as it can be seen from
the results of this section, CVDFE solutions can compete well in all cases, and dissipations only
occurs in very high anisotropy ratios for which other methods fail to converge to a physical solution.
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Figure 11: Result of C1 mole fraction in second test case at 0.50 PVI using a triangular grid for various K1
K2

.

4.3. Evaluation of Schemes for Solving Mass Conservation Equations
In this section, the performance of numerical schemes (ROE, HLL, LLF, and MDW) used

for solving the mass conservation equations are assessed. A highly heterogeneous and anisotropic
reservoir is considered and CVDFEM is used for solving the pressure equation. The geometry
of problem, location of wells, and rock properties are the same as the second test case; however,
here the problem involves flow of a five-component two-phase fluid. Fluid properties are given in
Table 6. In this test case, C1 in vapor phase is injected from bottom left corner into a reservoir
initially contains C2, nC4, nC10, and nC16 components in the liquid phase.

Figure 12 shows the results of vapor saturation at 0.5 PVI using various first order numerical
schemes and quadrilateral grid of Figure 9b. CFL is set to 0.5 as before. The reason for using vapor
saturation for the comparison is that this parameter is a secondary one which is obtained from a
combination all mole fractions and pressure, hence it can be an indication of overall quality of
solution. Moreover, vapor saturation is a tangible physical properties of the flow in porous media.
It is evident from this figure that the MDW and HLL schemes produce superior results. The ROE
scheme shows abnormal behavior near the production well where pressure gradient and velocities
are higher. Ideal route of flow is shown in Figure 13a, which is composed of four straight line
segments connecting points with various permeability tensor. Figure 13b shows the result of vapor
saturation along the route shown in Figure 13a. Figure 13b clearly shows the features of flow such
as shocks, discontinuities, and rarefactions. Figure 13c shows similar result for the triangular grid
(Figure 9c). The superiority of MDW and HLL schemes can be clearly seen from Figure 13b and
Figure 13c.

To investigate the effect of high-order extension procedures presented in this paper, results
of MUSCL and WENO reconstructions are shown in this section. Figure 14 shows the results
of vapor saturation using high-order spatial reconstruction. In Figure 14 MDW scheme is used
as the base method. It is evident from this figure that the streamline diffusion decreased greatly
using either MUSCL or WENO high-order methods. It can be seen from Figure 14 that WENO and
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Figure 12: Result of vapor saturation in third test case at 0.50 PVI using a quadrilateral grid and various hyperbolic
schemes
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(a) route of flow (b) solution on quadrilateral grid

(c) solution on triangular grid

Figure 13: Result of vapor saturation in third test case at 0.50 PVI using various hyperbolic schemes
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Figure 14: Result of vapor saturation in third test case at 0.50 PVI using high-order reconstructions

MUSCL reconstructions produce similar results. In fact, authors’ experiences indicate no significant
preference between MUSCL and WENO reconstructions for compositional flow in heterogeneous
anisotropic porous media. Figure 14d shows the result of vapor saturation along the flow route.
It can be seen from this figure that, flow features were captured with greater resolution when
high-order schemes are used.

Figure 15 shows the effect of grid refinement for the current problem on the consecutively refined
quadrilateral grids. As expected, the numerical diffusion decreases as the number of cells increases.
Figure 15d shows the result of vapor saturation along the route shown in Figure 13a. It is evident
that by increasing the number of cells, the accuracy of solution of conservation equation increases.

Computational run times (seconds) of various schemes are compared in Figure 16a as a function
of the number of nodes. This figure shows that MDW scheme has the lowest computational cost,
while the LLF has the highest. In fact, as the number of chemical components increases in the
compositional simulation, the gap between the run time of the MDW and that of other schemes
increases.

From a theoretical point of view, the computational costs of solving hyperbolic equations in
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Figure 15: Result of vapor saturation in third test case at 0.50 PVI on consequently fined grids
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(a) Computational cost with respect to number of nodes
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Figure 16: Computational cost of hyperbolic schemes

the compositional simulation depends linearly on the costs of flux approximation. The latter cost
may be divided into two categories: 1) the cost of fluid properties calculation including: stability
analysis and flash procedure, 2) the cost of linear algebra and matrices computations, including
inversion, multiplications, and eigen-structure approximation used for flux calculations. According
to the authors experiences in compositional simulation, the computational resources needed for
calculation of fluid properties surpasses other costs by far, especially when fluid systems with several
components are to be simulated. Table 3 shows the the number of times fluid properties must be
calculated for approximating numerical fluxes in each scheme at each time step. Figure 16b shows
theoretical computational cost. Figure 16b suggests that the MDW outperforms other schemes
from computational cost point of view and the superiority of MDW is more prominent as the
number of chemical components increases.

Table 3: Number of times fluid properties must be calculated for flux approximation at each time step

Scheme MDW ROE HLL LLF
Number of calculations 10 nc + 1 3(nc + 1) 5(nc + 1)

Table 4: Problem properties for first test case

Quantity Unit Value
Components - C1 nC10

Injection mole fraction - 1.00 0.00
Initial mole fraction - 0.00 1.00

Initial pressure psia 1500
Temperature F 159.4

Injection rate at standard condition ft3/day 100,000
BHP of production well psia 1500

Porosity - 0.2
Relative permeability - kαr = (sα)2
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Table 5: Problem properties for second test case

Quantity Unit Value
Components - C1 C2 C3

Injection mole fraction - 0.90 0.10 0.00
Initial mole fraction - 0.00 0.25 0.75

Initial pressure MPa 6.9
Temperature K 311
Injection rate m3/day 0.017

Production pressure MPa 6.9
Porosity - 0.2

Relative permeability - kαr = sα

Table 6: Problem properties for third test case

Quantity Unit Value
Components - C1 C2 nC4 nC10 nC16

Injection mole fraction - 1.00 0.00 0.00 0.00 0.00
Initial mole fraction - 0.00 0.25 0.25 0.25 0.25

Initial pressure MPa 6.9
Temperature K 311
Injection rate m3/day 0.017

Production pressure MPa 6.9
Porosity - 0.2

Relative permeability - kαr = (sα)2

Table 7: PVT properties of components [50]

Name Symbol
Tc pc vc Mw ω
[K] [MPa] [m3/kg −mol] [kg/kg −mol] [-]

Methane C1 190.56 4.599 0.0986 16.043 0.0115
Ethane C2 305.32 4.872 0.1455 30.070 0.0995
Propane C3 369.83 4.248 0.2000 44.096 0.1523
n-Butane nC4 425.12 3.796 0.2550 58.123 0.2002
n-Decane nC10 617.70 2.110 0.6000 142.285 0.4923

n-Hexadecane nC16 723.00 1.400 0.9440 226.446 0.7174

5. Conclusion

In this paper, a new method was introduced for solving pressure equation in full-tensor anisotrop-
ic and heterogeneous porous media. This method which is called CVDFE belongs to the CVD
framework and was shown to be able to simulate multi-phase compositional flow in highly anisotrop-
ic and heterogeneous porous media.

It was shown that, CVDFE method can be preferred choice when grid does not comply with
the principal directions of permeability field or in cases of highly heterogeneous permeability field
with distorted grids. However, despite its stability and convergence preferences on heterogeneous
permeability fields, CVDFE method suffers from the so-called spread of flow information when
crossing sudden permeability variations. It should be noted that, this occurs in cases with very
high anisotropy ratio where all other methods fail to produce physical solutions.

Several numerical schemes were used to solve hyperbolic system of mass conservation equations
including ROE, MDW, LLF, and HLL. Theses schemes have been previously tested by the authors
for one-dimensional problems and in this paper they are extended to two-dimensional unstructured
grids.
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The results suggest that MDW scheme outperforms other schemes studied in this paper from
both accuracy and computational cost points of view.

The proposed high-order extensions which are based on one-dimensional reconstruction was
shown to improve the accuracy of solution.

Nomenclature

nc number of components, [-]

np number of phases, [-]

sα saturation of phase α, [-]

µα viscosity of phase α, [ML−1T−1]

kαr relative permeability of phase α, [-]

ρα molar density of phase α, [NL−3]

ϱα mass density of phase α, [ML−3]

λα mobility of phase α, [M−1LT]

Zα compressibility of phase α, [-]

βv mole fraction of vapor phase, [-]

p pressure, [ML−1T−2]

T temperature, [Θ]

zi mole fraction of component i, [-]

Ki equilibrium ratio of component i, [-]

fαi fugacity of component i in phase α,
[ML−1T−2]

xαi mole fraction of component i in phase α,
[-]

m vector of component mole numbers, [N]

uα velocity of phase α, [LT−1]

ui vector of velocity for component i, [LT−1]

νtoti total partial molar volume of ith compo-
nent, [N−1L3]

cf fluid compressibility, [M−1LT2]

cr rock compressibility, [M−1LT2]

K tensor of absolute permeability, [L2]

ϕ porosity, [-]

t time, [T]

∆t time step size, [T]

Vj volume of jth CV, [L3]

x length coordinate, [L]

y width coordinate, [L]

F Elliptic flux, [LT−1]

f vector of component hyperbolic fluxes,
[NLT−1]

f̂ vector of component numerical fluxes,
[NLT−1]

Q vector of component molar sources/sinks,
[NT−1]

λ numerical wave speed, [LT−1]

λj jth eigen-value of Jacobian matrix,
[LT−1]

Λ diagonal matrix of eigenvalues, [LT−1]

rj jth eigen-vector of Jacobian matrix, [-]

R matrix of eigenvectors of Jacobian ma-
trix, [LT−1]

φ slope limiter, [-]

CFL Courant-Friedrichs-Lewy number, [-]

HLL Harten-Lax-van Leer scheme

ROE Roe-based scheme

LLF Local Lax- Friedrichs scheme

MDW Modified Dominant Wave scheme

AL,AR coeficient matrix, [-]

BL,BR coeficient matrix, [-]

C coeficient matrix, [-]

D coeficient matrix, [-]

N shape function, [-]

nE number of edges of CV, [-]

nV number of vertices of cell, [-]

nCV number of CV, [-]

r position vector, [L]

ξ local coordinate of cell, [-]
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η local coordinate of cell, [-]

subscripts

i component index

α phase index

l liquid phase

v vapor phase

j node (CV) index

e edge index

L left state

M mean state

R right state

S,E,N,W integration points

s, e, n, w,m mid-points of cell

I, J extended point index

M mid-point index

V vertex index
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Appendix A. Calculation of HLL Wave Speeds

The two wave speeds of HLL scheme, i.e., λ̃L and λ̃R, are defined as [51],

λ̃L = min
(
λmin
L , λmin

M

)
, (A.1)

and
λ̃R = max (λmax

M , λmax
R ) , (A.2)

where λmax
X ≡ maxnc

i=1 (λXi) and λmin
X ≡ minnc

i=1 (λXi) are the maximum and minimum of eigenval-
ues calculated at point X, respectively.

Appendix B. WENO Procedure

The procedure for obtaining weight functions in WENO scheme of (31) is as follow:

1. Find the constants dr for r = 0, 1, as

d0 =
2

3
, d1 =

1

2
, (B.1)

2. Find the smooth indicators βr for r = 0, 1, as

β0 = (mj −mi)
2, β1 = (mi −mI)

2, (B.2)

3. Form the weight wr for r = 0, 1, as

w0 =
α0

α0 + α1
, w1 =

α1

α0 + α1
, (B.3)

where
α0 =

d0
(ϵ+ β0)2

, α1 =
d1

(ϵ+ β1)2
, (B.4)

in which ϵ = 10−6.
4. Calculate the k reconstructed values mr for r = 0, 1 for each edge as,

m0 =
1

2
mi +

1

2
mj , m1 = −1

2
mI +

3

2
mi, (B.5)

5. Finally, the second order reconstruction for left state is given by

mL = w0m0 + w1m1. (B.6)

The same procedure can be utilized for calculating mR.

Appendix C. Fluid Properties and Thermodynamic Equilibrium

In order to determine phase properties, e.g., density ρα, viscosity µα and saturation sα, in a com-
positional model, thermodynamic (or phase) equilibrium state must be known. A multi-component
multi-phase system at specified temperature and pressure is in thermodynamic equilibrium when
there is no driving force between different phases of each component [50]. In this case, each phase
has different composition, but all have the same temperature and pressure. Total mole fraction
of components z = m/(eTm) and mole fraction of components in phase α, xα = mα/(eTmα) are
defined with respect to m and mα in section 2. Thermodynamic equilibrium state of a multi-
component multi-phase system is the state with minimum Gibbs energy. Mathematically speaking
dG(T, p, z) = 0, where G represents Gibbs energy [35].

In order to find out how many phases exist in the reservoir, stability analysis [32] should be
performed that specifies the number of phases by evaluating different probable single- or two-phase
states. Again, the actual state is the state which has the least Gibbs energy [35].
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Whenever both liquid and vapor phases exist, flash calculation is perform to determine the com-
position of each phase. For a system with liquid and vapor phases, the criterion of thermodynamic
equilibrium becomes [31]

f li (T, p,x
l) = fvi (T, p,x

v), i = 1, · · · , nc, (C.1)

where fαi is partial fugacity of component i in phase α.
fαi is a complicated, non-linear function of T , p, and xα which is derived through using Equation

Of State (EOS). In order to calculate the fugacity in the flash calculations, the EOS is employed for
each phase separately. Various types of EOS may be used to this end, for example [52, 53, 54], among
them Peng-Robinson [54] is used here. The latter EOS is a cubic function of phase compressibility
factor Zα = p/(ραRT ) where R is the universal gas constant. Consequently, the inputs of flash
calculations are T , p, and z; while, the outputs are xl, xv, Z l, and Zv. This information is used
to estimate the values of ρα which, in turn, leads to calculation of phase saturation sα and relative
permeabilities as a functions of saturation. In order to calculate phase viscosities µα, algorithm
of [36] is used, which is briefly described in Appendix C.2. Details of PVT calculations can be
found in [35].

Appendix C.1. Flash Procedure
1. Given the overall composition zi, Ki is defined as the ratio of components mole fraction in

vapor to liquid phases; then, the so-called Rachford-Rice equation [32]

F (βv) =

nc∑
i=1

zi(Ki − 1)

1 + (Ki − 1)βv
= 0, (C.2)

should be solved iteratively, with an initial guess from stability analysis, to determine the
mole fraction of vapor phase βv = eTmv/eTm.

2. The mole fraction of components in the liquid phase is solved from the overall material balance
equation as

xli =
zi

1 + (Ki − 1)βv
, (C.3)

and xvi = Kix
l
i.

3. Given the T , p, xl, and xv, EOS is solved for both liquid and vapor phases, and the fugacities
of each component in each phase is calculated. Finally, the Ki in part (1) are updated
successively as

Ki = Kold
i f li/f

v
i , (C.4)

until
∑nc

i=1 |f li − fvi | ≤ ε within a preset tolerance, here ε = 10−12.

It should be noted that, the properties needed for EOS calculations are given in Tables 7.

Appendix C.2. Calculation of Viscosity
Lohrenz et al. [36] proposed the following formula for approximation of viscosity in hydrocarbon

mixtures as a function of temperature, pressure, and composition:

µ = µ∗ + 0.18383

(
M3

wp
4
pc

Tpc

)0.16667

×
[
(0.1023 + 0.023364ϱr + 0.058533ϱ2r − 0.040758ϱ3r + 0.0093724ϱ4r)

4 − 1.10−4
]
, (C.5)

where Mw is molecular weight, ϱr ≡ ϱ
ϱpc

is reduced mass density while ppc, Tpc, and ϱpc are the
so-called pseudo critical pressure, pseudo critical temperature, and pseudo critical mass density of
mixture, respectively. It should be noted that the pressure unit in equation (C.5) is atmosphere
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(atm) and viscosity comes in centi-poise (cP) unit. Pseudo critical properties are calculated using
Kay’s mixing rule [50] as

Tpc =

nc∑
i=1

xiTcr,i, (C.6a)

ppc =

nc∑
i=1

xipcr,i, (C.6b)

1

ϱpc
=

nc∑
i=1

xi
1

ϱcr,i
. (C.6c)

Here, xi is the mole fraction of ith component in the mixture while pcr,i, Tcr,i, and ϱcr,i are critical
pressure, critical temperature, and critical mass density of ith component, respectively. Moreover,
in equation (C.5), µ∗ is viscosity of mixture at atmospheric pressure calculated as

µ∗ = 0.18383

∑nc
i=1 xiµ

∗
i

√
Mw,i∑nc

i=1 xi
√
Mw,i

, (C.7)

where Mw,i is the molecular weight of ith component while µ∗i is defined as

µ∗i =


3.4× 10−4T 0.94

r,i

(
M3

w,ip
4
cr,i

Tcr,i

)0.16667

Tri < 1.5,

1.778× 10−4(4.58Tr,i − 1.67)0.625
(

M3
w,ip

4
cr,i

Tcr,i

)0.16667

Tri ≥ 1.5

(C.8)

in which Tr,i ≡ T
Tcr,i

is the reduced temperature.
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