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13

14 Abstract
15 Brown seaweed such as Laminaria digitata is known to accumulate arsenic to more than 100 

16 mg/kg. How the algae can tolerate such high level of arsenic has traditionally been studied by 

17 arsenic speciation analysis using HPLC-ICPMS, but the knowledge of its molecular forms 

18 has not yet given any answers. Here we demonstrate for the first time that the combination of 

19 speciation analysis with high resolution imaging by NanoSIMS and TEM identifies not only 

20 the molecular structures of arsenic but also the location of arsenic in cells and cell 

21 substructures in a brown seaweed species. 

22 The majority of 117 mg/kg arsenic in L. digitata fronds was in the form of inorganic arsenic 

23 (53%) and arsenosugars (32%) and only 1.5% of total arsenic as arsenolipids (mainly as 

24 AsHC and AsPL). The lateral resolution of 300 nm and the concentration of arsenic was high 

25 enough for the localization of arsenic in the cells of the seaweed using NanoSIMS. The 

26 majority of arsenic was found in the cell walls and cell membrane, while the inside of the cell 

27 was almost arsenic free, which is not expected if the majority of arsenic species are 

28 hydrophilic. The NanoSIMS images questions the integrity of the arsenic species during 

29 extraction for the speciation analysis and that inorganic arsenic is unlikely to occur freely in 

30 the seaweed. Whether inorganic arsenic and the arsenosugars are bound directly to the 

31 polymeric carbohydrates alginates or fucoidans in the seaweed is unclear and needs further 

32 investigations.

33
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34 Introduction
35

36 The use of analytical atomic spectrometry and in particular ICPMS has been instrumental to 

37 identify the molecular forms of arsenic in biological samples over nearly three decades. The 

38 complex arsenic biochemistry of more than 100 naturally occurring organoarsenicals in 

39 addition to arsenite and arsenate made it necessary to use various HPLC methods coupled to 

40 ICPMS and ESI-MS detection in off-line or on-line mode to identify the full spectrum of 

41 arsenic species in biological samples even without standards.i However, neither the 

42 biosynthetic pathways nor the classification whether these metabolic transformations are 

43 detoxification pathways for inorganic arsenic or the formation of beneficial arsenic 

44 containing biomolecules have been elucidated; although credible suggestions have recently 

45 been made about the arsenosugars.ii What is missing is the localisation of the arsenic inside 

46 the cells in order to answer the above mentioned questions about the biochemistry of arsenic.

47

48 It is well known that seaweeds bioaccumulate large concentrations of arsenic from seawater 

49 with bioconcentration factor between 1,000 and 100,000.iii Seaweeds and in particular brown 

50 macroalgae can reach concentrations up to 200 mg As/kg.iv Most of the arsenic in seaweeds 

51 is present as organoarsenicals in the form of arsenosugars (As-sugars), dimethylarsinic acid 

52 (DMA) and also in the lipid soluble forms of arsenic containing hydrocarbons (AsHC), fatty 

53 acids (AsFA) and phospholipids (AsPL)v,vi. Only Hijiki spp viiand Laminaria digitata viii,ix 

54 seem to contain large amounts of inorganic arsenic.

55

56 Here we would like to illustrate the complementary information of using detailed arsenic 

57 speciation analysis and mapping of arsenic at sub-cellular level using the brown seaweeds 

58 Laminaria digitata as examples to gain more detailed insight into the bioaccumulative 

59 behaviour of arsenic especially when the arsenic species are known. Special attention will be 

60 given to the differences in the sample preparation procedures. While often the samples are 

61 freeze-dried before speciation analysis by HPLC-ICPMS is performed in order to report on 

62 concentration relative to dry mass, is it important to have fresh samples available for 

63 transmission electron microscope (TEM) and nanoscale secondary ion mass spectrometry 

64 (NanoSIMS) analysis which need to be prepared by cryofixation using high-pressure freezing 

65 followed by cryo-substitution and resin embedding. This is necessary in order to conserve the 

66 cellular ultrastructure and to fix the elements and not distribute them at a sub-cellular level. 

67
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68 Experimental Section
69

70 Chemicals and reagents

71 All chemicals and reagents were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, 

72 France) unless stated otherwise. All solutions, dilutions and preparations were made with water 

73 (18.2 MΩ cm) obtained from a Milli-Q system (Millipore, Bedford, Ma, USA) unless stated 

74 otherwise. A 10 µL drop of an arsenic ICP Standard, 1000 µg/mL (PlasmaCAL, Villebon-sur-

75 Yvette, France), was dried on a silica wafer and used as standard for mass calibration and mass 

76 resolution tuning for As in NanoSIMS.  

77 Chemicals used for extraction were of lab-grade quality (Fisher, UK). Chemicals used for total 

78 As determination were of trace-element grade (VWR, UK). HPLC grade methanol (Rathburn, 

79 UK), ammonium carbonate (Sigma, UK) and formic acid (mass-spec quality, Fluka, UK) were 

80 used for the preparation of HPLC eluents. Nitric acid (70 % p.a. Fisher, UK) and hydrogen 

81 peroxide (32 % Fisher, UK) were used for extraction and digestion. For quantification of As-

82 species sodium dimethylarsinic acid (DMA, Chemservice, USA) was dissolved in deionized 

83 water and diluted as necessary. Identification of anionic As-species was aided by species 

84 standards of DMA, MA (Chemservice, USA), arsenite and arsenate (BDH, UK). Seaweed 

85 CRM (ERM-CD-200) a brown algae Fucus vesiculosus was purchased from JRC-Institute for 

86 Reference Materials and Measurements (Geel, Belgium).

87

88 Samples 

89 Sampling was conducted at a beach south of Aberdeen, on the east coast of Scotland 

90 (57.139856 N, -2.051430 W) in November 2018. Freshly washed ashore whole thalli of 

91 Laminaria digitata were harvested. 

92

93 Sample preparation for NanoSIMS and TEM 

94 Sample preparation was conducted at the Microscopy and Histology Core Facility at the 

95 University of Aberdeen. Two replicates of L. digitata were prepared. Algae discs of 4 mm 

96 diameter were prepared with a biopsy punch and transferred into gold-plated copper specimen 

97 carriers filled with hexadecane. High Pressure Freezing was then carried out using a Leica EM 

98 ICE (Leica Microsystems, Milton Keynes, UK). For freeze substitution samples were post-

99 fixed with 2% osmium tetroxide (OsO4) in acetone and transferred into an automatic freeze 

100 substitution system (AFS 2, Leica Mircosystems) following the programme outlined in 

101 Supplementary material. This was followed by resin embedding (Spurr’s resin, TAAB, UK) 
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102 through a stepwise infiltration of the samples with a graded resin and acetone series (10, 30, 

103 50, 70, and 90% resin in acetone). Finally, embedded in 100% resin the samples were 

104 polymerized at 60 oC for at least 24 hours. For TEM analysis, 90 nm sections were cut from 

105 the resin blocks using a diamond knife (Diatome Ltd, Switzerland) on an ultra-microtome 

106 (Leica UC6, Leica Microsystems) and placed onto copper grids (TAAB, UK). For NanoSIMS 

107 analysis, 300 nm sections were cut by the same method and placed on silicon wafers (Wafer 

108 Solution, Le Bourget du lac, France).

109

110 Sample preparation for totals arsenic analysis and speciation analysis

111 Laminaria digitata fronds were cleaned by scraping and washing off epiphytes and sediment, freeze 

112 dried and ground with mortar and pestle to a fine powder. Only the young fronts were analysed.

113

114 Extraction of lipophilic arsenic 

115 Algae (1 g) were extracted with hexane (2 × 5 mL), followed by CH2Cl2/MeOH (2:1 v/v, 2 × 

116 5 mL), and both extracts were evaporated to dryness. For speciation analysis only the MeOH 

117 soluble part of the CH2Cl2/MeOH extract was used. 

118

119 Extraction of hydrophilic arsenic

120 The procedure of Petursdottir et al.x was used for the extraction. In brief 0.1 g algae were mixed 

121 with 10 mL of extraction solution (1 % (v/v) nitric acid and 2 % (v/v) hydrogen peroxide) and 

122 heated in a microwave (Mars5, CEM, UK) to 95ºC for 30 min. The solution was centrifuged 

123 and the supernatant used for determination of inorganic arsenic.

124

125 Digestion method to determine total arsenic 

126 Total As was determined after standard microwave digestion with HNO3/H2O2 using a Mars5 

127 system (CEM, UK) in solid L. digitata. An ICPMS/MS (Agilent 8800, UK) was used in mass 

128 shift mode to determine As on m/z 91 as AsO+ . 

129

130 Determination of hydrophilic and lipophilic arsenic species

131 Hydrophilic arsenic species were determined by using anion exchange HPLC-ICPMS/MS. The 

132 parameters are given in the supplementary material. The lipophilic arsenic speciation was 

133 performed by coupling reverse-phase HPLC simultaneously to ICPMS/MS and ESI-qTOF-MS 

134 as described previouslyxi. The details are given in the supplementary material.
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135

136 TEM analysis

137 Samples were viewed on the transmission electron microscopes JEM 1400 plus (JEOL, UK) at 

138 an accelerating voltage of 100 kV using an AMT UltraVUE camera. The TEM instrument was 

139 used to determine quality of sample preparation and for high resolution imaging of sub-cellular 

140 structures. Copper grids have been used for sample sections.

141

142 NanoSIMS analysis

143 A NanoSIMS 50L (Cameca, Genneviliers, France) was used for high resolution secondary ion 

144 mass spectrometry analysis. A primary Cs+ ion source served for the mapping of 

145 electronegative elements. Detectors were tuned for carbon (12C2
-), nitrogen (12C14N-), 

146 phosphorus (31P-), sulphur (32S-) and arsenic (75As-). As the concentration of As in the sample 

147 was relatively low, an As standard was used for mass calibration and mass resolution tuning 

148 process. Cs+ ions were implanted onto the sample surface in order to increase sensitivity. It 

149 should be noted that N cannot be directly measured using NanoSIMS, therefore carbon-

150 nitrogen (CN-) cluster ions are measured to detect N in the sample. Images were acquired with 

151 a raster size ranging of 35 μm, divided into 512 x 512 pixels with a dwell time of 10 ms per 

152 pixel. Individual sample sections were located using the NanoSIMS Charged Coupled Device 

153 (CCD) camera. The field of view of the CCD camera is about 500 × 600 μm and the optical 

154 resolution around 1 μm, which allows for an overview of the sample and a selection of regions 

155 of interest for NanoSIMS analysis.

156

157 Results and discussion
158

159 The arsenic concentration in the freeze-dried L. digitata was 117 +/- 30 mg As/kg (Table 1), 

160 which is in the normal range as reported previously.viii The accuracy and precision of the total 

161 arsenic was evaluated using a seaweed CRM and the recovery was quantitative.

162

163 Speciation analysis

164 The speciation of the hydrophilic fraction of arsenic gave the expected distribution of arsenic 

165 species, with 53% of the total arsenic in the form of inorganic arsenic (62 +/- 19 mg As/kg). 

166 Arsenosugars in the form of As-sugars (-glycerol, phosphate ester and sulfonate) contributed 

167 32% (37 mg As/kg), while DMA was only a minor compound with less than 1 % of total As. 
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168 The arsenolipid fraction contributed also only 1.5% of total arsenic of which the majority 

169 65% was in the form of arsenosugar containing phospholipids (AsPL) (structures see Figure 

170 1). The identification and quantification was done using RP-HPLC-ICPMS/MS coupled 

171 simultaneously to ESI-MS. The assignment of the arsenic peaks was achieved by using the 

172 retention time as the first criteria, which should coexist with the corresponding protonated 

173 mass of the molecular mass (ESI-MS) as can be seen in Figure S1a and S1b (supplementary 

174 material). Further evidence for the identification were the accurate masses and MS/MS 

175 pattern as described by previously by Raab et al.xii, where the arsenolipid profile of a brown 

176 seaweed Saccharina latissima was studied in detail. 

177

178

179 Table 1: Total arsenic and hydrophilic arsenic species quantified; total arsenic (iAs), 

180 inorganic arsenic determined as arsenate (iAs), Sum of all arsenosugars (As-Sugar). Fractions 

181 are given as mass % of tAs. Errors are given as +/- SD for n=3. 

182

tAs tAs hydro 
(hydrophilic)

iAs DMA As-Sugar 
(sum)

mg As/kg mg As/kg mg As/kg mg As/kg mg As/kg
CRM CD-

200*
55 ± 1.0 44 ± 0.67 0.090 ± 0.010 8.6 ± 0.3 32

L. digitata 117 ± 30 100 ± 22
(85.5%)

62 ± 19
(53.0%)

0.93 ± 0.11
(0.8%)

37 ± 3.9
(31.6%)

183 *certified reference value for tAs: 55 ± 4.0 mg/kg 

184

185 Table 2: Total arsenic and arsenolipids quantified; arsenic containing hydrocarbons (AsHC), 

186 arsenosugar containing phospholipids (AsPL).

 tAs lipid
(lipophilic)

AsHC
(sum)

AsPL
(sum)

as mg As/kg 1.7 ± 0.22 0.14
(8.2%)a

1.1
(65%)a

Mass % of 
total As 1.5% 0.12% 0.94%

187 a (% of As lipid)

188

189
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190

As
CH3
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A
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O

OH
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OH
OH

O

O
O

P
OOH

O

O

CH3

CH2
O

O

CH3

CH2

O

n=x

n=y

R= -C3H7O2

     -C3H7O5S

     -C3H7O4S

     -C6H14O7P

x,y = 14-20

191 Figure 1: generic structures of major organoarsenic compounds in L. digitata: arsenosugar 
192 (As-sugar; left), arsenosugar containing phospholipid (AsPL; right)

193

194

195 Table 3: identified As-lipids and their concentration using the ICPMS signal and compound-
196 independent quantification (n=3).

detected arsenolipid* detected accurate mass** µg As / kg algae dry mass
(AsFA422) C22H36AsO3 (m/z 423) 4.2 ± 0.12
(AsHC360) C19H42AsO (m/z 361) 71 ± 6.7
(AsHC374) C20H44AsO (m/z 375) 23 ± 5.3
(AsHC388

 + AsHC402)
C21H46AsO (m/z 389)

 + C22H48AsO (m/z 403) 18 ± 2.4
(AsPL930) C43H84AsO14P (m/z 931) 109 ± 14
(AsPL944) C44H86AsO14P (m/z 945) 69 ± 11
(AsPL958) C45H88AsO14P (m/z 959) 636 ± 93
(AsPL972) C46H90AsO14P (m/z 973) 30 ± 4.4
(AsPL986) C47H92AsO14P (m/z 987) 97 ± 13
(AsPL1000) C48H94AsO14P (m/z 1001) 14 ± 1.7
(AsPL1014) C49H96AsO14P (m/z 1015) 119 ± 18

197 *number in parentheses gives the non-protonated molecular mass
198 **For more information of the As-lipid structures see Raab et al. 2013vi

199

200 TEM analysis 

201 The cells of L. digitata were imaged with transmission electron microscopy (TEM) and ultra-

202 structures such as the nucleus, Golgi apparatus, chloroplast, and vacuoles were clearly 

203 detectable (Figure 2). Most prominent, very thick cell walls were observed which are 

204 characteristic for brown algae. These cell walls are adjacent to the cell membrane and consist 

205 of an amorphous matrix of alginates and fucoidans with a fibrillary skeleton of cellulose in the 

206 inner cell wall.xiii,xiv The amorphous outer cell wall can be also regarded as intercellular 

207 material.xv Alginate is an unbranched anionic polysaccharide comprised of two uronic acids: 

208 mannuronic acid and guluronic acid. Fucoidans are sulphated fucose-containing 
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209 polysaccharides containing -SO3H groups. Cellulose accounts for only 1-8% of the algal dry 

210 mass, while fucoidans and alginates represent up to 45%.xvi Moreover, fucoidans play a role in 

211 algal cell wall organization and could be involved in the cross linkage of alginate and cellulose. 

212 Alginate gives flexibility to algae, serves as a structural support crosslinked by cationic metal 

213 ions and bound to proteins, and prevents desiccation. In addition, alginate is involved in the 

214 exchange of ions with seawater; it absorbs and retains polyvalent cations at concentrations 

215 significantly higher than those in the surrounding water.xvii 

216

217

218 Figure 2. TEM image obtained from 90 nm section of resin embedded L. digitata cell. Image 

219 is of the whole cell including, inner cell wall (cw) and amorphous outer cell wall (intercellular 

220 material (In)), cell membrane, vacuoles (v), nucleus (n), nucleolus (nu), chloroplasts (ch)).  Bar 

221 length is 2 μm.

222

223 Optimization of the NanoSIMS analysis method

224 The NanoSIMS analysis method has been optimized with regard to maximal spatial/lateral 

225 resolution for sub-cellular imaging and high sensitivity for detection of arsenic at trace level. 

226 For high lateral resolution the Cs+ primary ion beam was trimmed using a diaphragm (D1-4) 

227 with a circled aperture of 150 µm and finally focused with the primary focusing lens (EOP) to 

228 its final spot size of about 50 nm at the sample surface. This lateral resolution was confirmed 

229 in our previous work by applying the knife-edge method on a standard samplexviii and is in 

230 agreement with the instrument specifications. In this work, the actual lateral resolution in the 
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231 image of the seaweed sample was determined by line scans at a sharp edge in the CN- and S- 

232 images (Figures 3ib and 4iia) using the 16-84% criterion (knife-edge method). Depending on 

233 the location in the image the actual resolution was about 300 to 400 nm. Note, that in biological 

234 samples not only the NanoSIMS primary beam size, but also the structure of the sample as well 

235 as the quality of sample preparation which influences the element distribution in the sample 

236 structure contributes to the measured lateral resolution. Therefore in biological samples usually 

237 a lower resolution is measured than in standards for the knife-edge method. The selected pixel 

238 numbers (512 x 512) for a 35 µm x 35 µm image results in a theoretical pixel size of 68 nm 

239 which is slightly higher than the smallest possible probe size of 50 nm but largely sufficient in 

240 view of the measured actual lateral resolution for mapping subcellular structures in seaweed 

241 cells.

242 An advantage of the NanoSIMS is that it combines high lateral resolution with high sensitivity. 

243 In order to accumulate a sufficient number of counts for the detection of trace amounts of 

244 arsenic a compromise had to be found between the dwell time of the primary beam per pixel, 

245 the number of accumulated image scans (planes), and a reasonable analysis time in which the 

246 thin sample section of 300 nm was not completely consumed. Note that NanoSIMS is a 

247 destructive technique where each scan removes sample material. Under optimized conditions 

248 a dwell time of 10 ms per pixel was chosen resulting in an image scan time of about 44 min. A 

249 long-term experiment of about 11 h 40 min showed that 16 scans were possible without 

250 complete consumption of the sample. However, already accumulation of 5 image scans enabled 

251 a sensitive arsenic detection in a reasonable analysis time of about 3 h 40 min while only a part 

252 of the sample was consumed.    

253
254 Sub-cellular elemental imaging

255 Figures 3i-iii show high resolution imaging of a L. digitata cell by NanoSIMS. Both, carbon 

256 and nitrogen (via CN- detection) mapping display the thick cell walls/intercellular material. 

257 The high amount of polysaccharides in these structures explains the intense carbon signal, 

258 although the cells are also embedded in a carbon containing resin matrix. The detection of 

259 nitrogen in the cell wall could indicate the presence of proteins. Nitrogen mapping showed 

260 subcellular structures, especially chloroplasts were clearly visible, probably due to higher 

261 protein concentration in the chloroplasts compared to the cytosol. 

262

263 In Figure 3ii sulphur was mainly found in the thick cell walls. This intense sulphur signal can 

264 be related to the presence of fucoidans, the sulphated polysaccharides typically found in 
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265 seaweed cell walls of brown algae such as L. digitataxix. Moreover, sulphur was also detected 

266 in the chloroplast which can be explained by sulphur-containing proteins involved in 

267 photosynthesis, such as ferredoxin and iron-sulphur clusters.   

268 The phosphorous image is an accumulation of 5 scans. P was detected in concentrated small 

269 spots inside the cell which can be related to in 0.5-1 µm sized vacuoles, which can be seen as 

270 electronically dense sub-cellular structures in the TEM image (Figure 2). In green algae such 

271 small vacuoles are known to be acidocalcisomes containing polyphosphate and calcium and 

272 are involved in osmoregulation.xx,xxi,xxii Although those acidocalcisomes have never been 

273 identified in brown algae, they have been found in bacteria to human cells, which make them 

274 likely to occur in L. digitata. Moreover, phosphorus was clearly detected in the phospholipid 

275 containing cell membranes adjacent to the cell walls.  

276

277 In Figure 3iii arsenic was found in a pattern consistent with the cell wall/intercellular material. 

278 The image is an accumulation of 5 scans. Figure 3iii (b and c) are a colour merge images of the 

279 relative distribution of arsenic (white) and nitrogen (red) or phosphorus (blue). It further 

280 demonstrates that the arsenic is mainly present in the cell wall with phosphorus outlining the 

281 cell membranes and subcellular structures.  

282

283 Knowing the arsenic speciation in L. digitata, it is not expected that all arsenic would be in the 

284 cell membrane, since only a small proportion of arsenic is lipophilic (1.5%). Almost all arsenic 

285 is in the form of either inorganic arsenic or in the form of hydrophilic arsenosugars (together 

286 approx. 82%). No arsenic was detected inside the cells by NanoSIMS in either the cytosol, the 

287 vacuoles or acidocalcisomes (their location was indicated by the phosphorus map). Hence, the 

288 localisation of arsenic in L. digitata is significantly different to the accumulation of arsenic in 

289 rice root cells.xxiii Inorganic arsenic in rice roots is bound mainly to phytochelatins while DMA 

290 seemed unbound.xxiv In contrast brown seaweed with a large proportion of inorganic arsenic 

291 (Hijiki spp.) showed no significant amounts of arsenic phytochelatin complexes.xxv Hence, the 

292 lack of arsenic in the cytosol and in particular in the vacuoles of L. digitata is not surprising. 

293

294 It seems that most arsenic is located in the cell walls containing polysaccharides such as 

295 alginate, fucoidan and cellulose. Those alginates are also known to accumulate mono and 

296 divalent cations such as Na+, K+, Ca2+, but also Zn2+
 and Cu2+

.xiv Arsenic however in its 

297 inorganic forms is either neutral (As(OH)3) or anionic (HAsO4
2-) and will not bind to the 

298 alginates in the same way. So far it is not known if arsenate or arsenite bind to either alginates 
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299 or fucoidans, which are abundant in the cell walls in brown seaweed. The fucoidans however 

300 bind sulphate as sulfuric acid ester. If arsenic binds as arsenate to the carbohydrate in a similar 

301 way is unclear. The resulting arsenic acid esters would be very unstable and will quickly 

302 hydrolyse and form again inorganic arsenic.xxvi It has been noted that not only AsHC and AsPL 

303 can be extracted, some unstable arsenic species have also been extracted with DCM/MeOH. A 

304 significant part of the extract eluted however in the void of a reverse phase HPLC method. This 

305 was likely to be attributed to unstable non-polar arsenolipids as shown before.xxvii Arsenic acid 

306 esters would quickly hydrolyse to inorganic arsenic during the sample preparation step. 

307

308 Although the binding of arsenite or arsenate to the constituents of the cell wall and membrane 

309 is unclear, the accumulation of arsenate into the cell wall is however mechanistically 

310 conceivable. The arsenic accumulation into brown seaweed depends on the salinity and hence 

311 also on the arsenic concentration in the seawater.xxviii Arsenate might directly accumulate from 

312 seawater or indirectly when it is taken up through phosphate transporters and then excreted as 

313 arsenite. Efflux of arsenite is well known, while the efflux of arsenate has only recently been 

314 suggested to occur as well.xxix 

315

316 The accumulation of arsenosugars in the cell wall is however more difficult to understand. 

317 Since no arsenosugars have been found in seawater so far, the accumulation of these arsenic 

318 species need to come from biotransformation reactions either directly within the macroalgae or 

319 from bacteria on the surface of the seaweeds.xxx If the arsenosugars are transported through the 

320 cell membrane into the cell wall, then certain transporters which excrete those compounds need 

321 to exist. Otherwise, the arsenosugars could be linked to the alginates which are produced in the 

322 Golgi apparatus and then directly incorporated into the carbohydrate structure. They might bind 

323 directly to the carbohydrates via the alcohol groups or the sulfonate (major arsenosugar in L. 

324 digitata is the AsSugar-SO3). These compounds again would be rather unstable in water and 

325 hydrolyse quickly. The fact that no hotspot inside the cell which could be assigned to the Golgi 

326 apparatus has been found, indicates that the arsenic transformation inside the cell needs to be 

327 fast. Alginate generation is taking place within 20 minutes. This would explain that the cytosol 

328 and the sub-cellular structures inside the cell are virtually arsenic free. 

329

330
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331

332 Figure 3i. High resolution imaging of carbon (via C2
-) (a) and nitrogen (via CN-) (b) in L. 

333 digitata cells by NanoSIMS obtained from a 300 nm resin section. Both images display the 

334 thick cell walls (cw). N mapping (b) shows subcellular structures, e.g. chloroplasts (ch), line 

335 scan 1 (red line) resulted in a measured lateral resolution of 305 nm. NanoSIMS images were 

336 obtained with an Cs+ plasma primary ion source for detection of negative secondary ions: 35 x 

337 35 μm2 field of view images; 512 x 512 pixel; dwell time 10 ms/pixel; total image acquisition 

338 time approx. 44 min.

339

340 Figure 3ii. High resolution imaging of S (a) and P (b) in L. digitata cells by NanoSIMS 

341 obtained from a 300 nm resin section. S is mainly concentrated in the thick cell 

342 walls/intercellular material (cw). P is more concentrated in spots inside the cells as well as in 

343 the cell membrane (cm) adjacent to the cell wall. Line scans 1 and 2 (red lines) resulted in 

344 measured lateral resolutions of 433 nm and 295 nm, respectively. NanoSIMS images were 

(a) (b)

cm
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345 obtained with an Cs+ plasma primary ion source for detection of negative secondary ions: 35 x 

346 35 μm2 field of view images; 512 x 512 pixel; dwell time 10 ms/pixel; total image acquisition 

347 time approx. 44 min.

348  

349

350 Figure 3iii. High resolution accumulated imaging of As (a) in L. digitata cells and two colour 

351 merge images that shows the relative distribution of As (white) and N (red) localisation (b) as 

352 well as As (white) and P (blue) localisation (c) by NanoSIMS obtained from a 300 nm resin 

353 section. As was mainly found in the cell wall/intercellular material (cw) and to a much lesser 

354 extend in the cell membrane (cm). NanoSIMS images were obtained with an Cs+ plasma 

355 primary ion source for detection of negative secondary ions: 35 x 35 μm2 field of view images; 

356 512 x 512 pixel; dwell time 10 ms/pixel; total image acquisition time approx. 44 min.

357

cm
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358 It has been speculated that arsenosugars are intermediates in the formation of arsenolipids such 

359 as AsPL.ii But when arsenosugars accumulate in large quantities in the cell wall, then the 

360 biosynthesis to AsPL needs to take place there as well, which is unlikely. Hence, the 

361 localisation of arsenic in the cell wall rather than in the cell membrane indicates that the 

362 seaweed can handle certain concentrations of arsenic and has means of excluding the arsenic 

363 from the cytosol and other sub-cellular structures within the cell. The biotransformation and 

364 kinetics of arsenic in L. digitata are not clear, but the seaweed is able to biotransform quickly 

365 the taken up arsenic and transport it outside the cell. This could be an effective detoxification 

366 strategy, or the evidence of the utilization of the accumulated arsenic for a purpose, since the 

367 cell wall with the gel-like alginates and sulphated fucoidans act often as the first barrier to toxic 

368 or unwanted chemicals. More fundamental studies are necessary to elucidate the biochemical 

369 role of arsenic in seaweed.  

370

371 In summary the complimentary use of high spatial resolution imaging of elements at a sub-

372 cellular level in combination of speciation analysis can shed new lights on the role of arsenic 

373 in seaweeds. Is the arsenic in the form of inorganic arsenic essential for the algae as suggested 

374 elsewherexxxi or is the efflux of arsenic in these molecular forms into the intercellular space or 

375 the cell wall a successful detoxification strategy? These questions can only be asked if in 

376 addition to arsenic speciation also its distribution within a cell and sub-cellular structures is 

377 known this however would need a high resolution imaging technique which is capable at the 

378 same time to provide speciation information. -XANES would have the analytical attributes 

379 but its resolution is currently not sufficient to identify subcellular structures.   

380

381

382
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