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Abstract—We present a novel automated approach for the
computation and verification of preferences in an abstract argu-
mentation system. Various argumentation semantics have been
developed for identifying acceptable sets of arguments, however,
there is a lack of explanatory justification for their acceptability
based on preferences. We present an algorithm which takes
an abstract argumentation framework and a single extension
(conflict-free set of arguments) as input, and outputs preference
relations that explain why a set of arguments are acceptable
as opposed to their attackers. We also present an algorithm
to verify that the output preferences when used with the given
argumentation framework induce the input extension.
Keywords: argumentation, preferences, reasoning, explana-
tion.

I. INTRODUCTION

Preferences play a central part in decision making and have
been extensively studied in various disciplines such as econ-
omy, operations research, psychology and philosophy [16].
Preferences are used in many areas of artificial intelligence
including planning, scheduling, multi-agent systems, combina-
torial auctions and game playing [21]. The complexity of elic-
iting preferences and representational questions like dealing
with uncertainty has remained a very active research area [13],
[17], [21]. Logic based abstract argumentation [9] provides
a formal representation of preferences. Argumentation has
gained an increasing popularity in Artificial Intelligence (AI).
It has been widely used for handling inconsistent knowledge
bases [7], [11], [19], and dealing with uncertainty in decision
making [3], [8], [15].

An abstract argumentation framework [9] is a directed graph
consisting of nodes that represent unique atomic arguments
and directed edges that represent an attack between two argu-
ments. This visual representation of an argumentation frame-
work as a directed graph is also known as an argumentation
graph. Acceptable sets of arguments called extensions for an
argumentation framework can be computed based on various
acceptability semantics [9]. Arguments can have different
strengths, e.g., an argument relies on more certain or important
information than another. This has led to the introduction of
preference-based argumentation framework consisting of pref-
erence relations between arguments [1]. Furthermore as given
in [4], preferences are taken into account in the evaluation
of arguments at the semantic level, which is also known as
preference-based acceptability [2]. The basic idea is to accept
undefeated arguments and also arguments that are preferred

to their attacking arguments, as these arguments can defend
themselves against their attacking arguments.

Explainability is one of the key issues in AI systems that
must interact naturally to support users in decision making.
Systems need to be capable of explaining their output. Ad-
dressing this challenge is critical if we are to use AI with
the intent of improving user performance and experience.
Argumentation has been previously used for transparently
explaining the procedure and the results of reasoning, for
instance, [10] identify related information and generate an
explanation for a topic through some fictitious debate game
between two players. However, it only considers explanation
of arguments that are related to each other. [22] present
an algorithm to generate natural language explanations from
debate trees, but the algorithm is domain specific and solely
concerns admissibility.

In our research, we deal with both the issues of preference
computation; and explanation of the reasoning process. We
provide an automated approach to compute argument prefer-
ences from an abstract argumentation framework and an exten-
sion (consisting of conflict-free arguments), that explain why
an argument is in an extension as opposed to its attacking argu-
ment(s). We present a novel algorithmic-approach to identify
the arguments that survive from attacks, thereby computing
preferences for such arguments. We categorize the arguments
based on whether they survive by direct defence, i.e., an
argument appears in an extension despite being attacked by
another argument by defending itself; or indirect defence, an
argument is defended by another argument with both these
arguments being present in the extension. Furthermore, we
present an algorithm for the verification of the computed
preferences.

The rest of this paper is organised as follows. In Sec-
tion II, we present the background on abstract argumentation
framework and acceptability semantics for acceptable set
of arguments also known as extensions. In Section III, we
present the background on preference-based argumentation
framework, and we present two types of preferences and
their representation. In Section IV, we present our proposed
algorithms for computing preferences and verifying them.
Implementation details along with the complete flow chart of
the automated approach are given in Section V. Finally, we
conclude in Section VI.
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Figure 1. Example abstract argumentation framework AAF1

II. PRELIMINARIES

In this section we briefly summarise the background in-
formation related to classical Abstract Argumentation Frame-
works (AAFs).

Definition II.1. (Abstract Argumentation Framework [9]): An
abstract argumentation framework (AAF) is a pair AAF =
(A,R), where A is a set of arguments and R is an attack
relation (R ⊆ A×A). The notation (A,B) ∈ R where A,B ∈
A denotes that A attacks B.

To calculate the sets of arguments that can be accepted
together - called extensions - different acceptability semantics
are introduced in the literature, and from these the most
common are given as follows [9].

Definition II.2. (Extensions): Let AAF = (A,R) be an
abstract argumentation framework, E ⊆ A and A,B,C ∈ A
• E is conflict free iff there exists no arguments A,B ∈ E

such that (A,B) ∈ R.
• E is admissible iff it is conflict free and defends all its

arguments. E defends A iff for every argument B ∈ A,
if we have (B,A) ∈ R then there exists C ∈ E such that
(C,B) ∈ R.

• E is a complete extension iff E is an admissible set which
contains all the arguments it defends.

• E is a preferred extension iff it is a maximal (with respect
to set inclusion) admissible set.

• E is a stable extension iff it is conflict-free and for all
A ∈ A \ E , there exists an argument B ∈ E such that
(B,A) ∈ R.

• E is a grounded extension iff E is a minimal (for set
inclusion) complete extension.

Example II.1. Given the abstract argumentation framework
of Figure 1, then we compute its extensions as follows:
• Conflict free: {A,C,E}, {A,D}, {B,D}, {A,C}, {A,E},
{B,E}, {C,E}, {A}, {B}, {C}, {D}, {E}, ∅

• Admissible: {A,C,E}, {A,C}, {A,D}, {C,E}, {A}, {C},
{D}, ∅

• Complete: {A,C,E}, {A,D}, {A}
• Preferred: {A,C,E}, {A,D}
• Stable: {A,C,E}, {A,D}
• Grounded: {A}

III. PREFERENCE TYPES AND REPRESENTATIONS

While an abstract argumentation framework captures the ba-
sic interactions between arguments, it does not consider factors
such as argument strength, i.e., arguments may not necessarily
have the same strengths [6], [19]. Consequently, preferences
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Figure 2. Example abstract argumentation framework AAF2

over arguments can be added to the argumentation framework
and taken into account in order to evaluate arguments [1], [14],
[18]. Preference-based argumentation framework [1] extends
abstract argumentation framework to account for preferences
over arguments. The attack relation in a preference-based
argumentation framework is called defeat, and is denoted by
Def .

Definition III.1. (Preference-based Argumentation Frame-
work (PAF) [1]):
A preference-based argumentation framework is a triple
(A,Def ,≥) where A is a set of arguments, Def is the defeat
binary relation on A, and ≥ is a (partial or total) pre-ordering
defined on A × A. The notation (A,B) ∈ Def means that
argument A defeats argument B.

The notation A ≥ B means that argument A is at least as
preferred as B and the relation > is the strict counterpart of
≥.

Example III.1. Let there be the argumentation framework
of Figure 2. Preferences could be applied in two ways [5]:
one way is to apply preferences at the time of argument
acceptability (semantic level); and second way is to compute
all preferred extensions and filter them by the application
of the preferences. By using the first method, if we assume
{A > B,C > D} is the set of preferences between arguments,
then we get a single extension E = {A,C}. Now, by using
the second method, we first compute all preferred extensions
[{A,C}, {B,D}]. These extensions could now be filtered by
the application of the set of preferences {A > B,C > D}
which suggest {A,C} to be better than {B,D}.

A preference-based argumentation framework can represent
an abstract argumentation framework [12]:

Definition III.2. (PAF representing an AAF) A preference-
based argumentation framework (A,Def ,≥) represents an
abstract argumentation framework (A,R) iff ∀A,B ∈ A, it
is the case that (A,B) ∈ R iff (A,B) ∈ Def and it is not the
case that B > A.

A preference ordering captures a notion of argument
strength, and means that a defeat may not always succeed.
In other words, a PAF introduces the notion of defence to
represent a defeat that is not successful based on argument
preferences [9].

Definition III.3. Given A,B ∈ A, an argument A defends
itself against an argument B which defeats A iff A is preferred
to B.

We define two types (direct and indirect) of defence pref-



erences as follows:

Definition III.4. (Direct Defence Preference): Given A,B ∈
A, an argument A defends itself against an argument B which
defeats A iff A is directly preferred to B. We define a direct
defence preference DPref between arguments A and B as
DPref = A >A B, which means that argument A is directly
preferred to argument B due to defence by A itself. For a given
abstract argumentation framework (AAF) and extension E , we
denote the set of all direct defence preferences as DPrefs =
{DPref 1, ...,DPref n}.

Definition III.5. (Indirect Defence Preference): Given
A,B,C ∈ A, an argument C defends an argument A against
an argument B which defeats A iff A is indirectly preferred
to B because of defence by C, where A,B,C are all unique
arguments. We define an indirect defence preference IPref
between arguments A and B as IPref = A >C B, which
means that argument A is indirectly preferred to argument
B due to defence by a third argument C. For a given
abstract argumentation framework (AAF) and extension E ,
we denote the set of all indirect defence preferences as
IPrefs = {IPref 1, ..., IPref n}.

We define a set of all defence preferences PrefSet as
follows.

Definition III.6. The set of all defence preferences PrefSet
for a given abstract argumentation framework (AAF) and
extension E is as follows: PrefSet = DPrefs ∪ IPrefs , where
DPrefs and IPrefs are the sets of direct and indirect prefer-
ences given in Definition III.4 and Definition III.5 respectively.

IV. COMPUTING AND VERIFYING PREFERENCES

We present Algorithm 3 that takes an abstract argumentation
framework (AAF) and an extension (consisting of conflict-free
arguments) as input and computes the set of all the defence
preferences PrefSet that are valid for the acceptability of the
arguments in the input extension. Algorithm 1 computes the
set of all direct defence preferences DPrefs and Algorithm 2
computes the set of all indirect defence preferences IPrefs .

Algorithm 1 Compute direct defence preferences
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict-free arguments
Ensure: DPrefs , the set of all direct defence preferences

1: procedure COMPUTEDIRECTPREFERENCES(AAF , E)
2: for each A ∈ E do
3: Attackers ← {B | (B,A) ∈ R} . get all

attackers of A
4: for all B ∈ Attackers do
5: Defenders ← {C | C 6= A,C ∈ E , (C,B) ∈
R} . C 6= A attacks B & defends A

6: if Defenders = ∅ then . if B not attacked by
any C

7: DPrefs ← DPrefs ∪ {A >A B}
8: return DPrefs

Algorithm 2 Compute indirect defence preferences
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict-free arguments
Ensure: IPrefs , the set of all indirect defence preferences

1: procedure COMPUTEINDIRECTPREFERENCES(AAF , E)
2: for each A ∈ E do
3: Attackers ← {B | (B,A) ∈ R} . get all

attackers of A
4: for all B ∈ Attackers do
5: Defenders ← {C | C 6= A,C ∈ E , (C,B) ∈
R} . C 6= A attacks B & defends A

6: if Defenders 6= ∅ then
7: for each C ∈ Defenders do
8: IPrefs ← IPrefs ∪ {A >C B}
9: return IPrefs

Algorithm 3 Compute all defence preferences
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict-free arguments
Ensure: PrefSet , the set of all defence preferences

1: procedure COMPUTEPREFERENCES(AAF , E)
2: DPrefs ← ComputeDirectPreferences(AAF , E)
3: IPrefs ← ComputeIndirectPreferences(AAF , E)
4: PrefSet ← DPrefs ∪ IPrefs
5: return PrefSet

Algorithm 4 takes an abstract argumentation framework
(AAF) and a set of all defence preferences PrefSet as input
and computes an extension E ′. Algorithm 5 verifies that the set
of all the defence preferences PrefSet returned by Algorithm 3
is correct by using Algorithm 4. If the computed extension E ′
returned by Algorithm 4 is equal to the initial extension E
given as input to Algorithm 3, then PrefSet is the correct set
of all defence preferences.

The following theorem is used for verifying the correctness
of the set of all defence preferences PrefSet .

Theorem IV.1. Algorithm 3 is sound in that given an abstract
argumentation framework AAF and an extension E as input,
the output preference set PrefSet , when applied to the AAF
results in the input E (under a given semantics).

We now present a worked example to show the computation
of preferences by using Algorithm 3 and also show how they
can be verified by using Algorithm 5.
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Algorithm 4 Compute an extension
Require: AAF , an abstract argumentation framework
Require: PrefSet , the set of all defence preferences
Ensure: E , an extension consisting of conflict-free arguments

1: procedure COMPUTEEXTENSION(AAF ,PrefSet)
2: for each A ∈ A do
3: Attackers ← {B | (B,A) ∈ R} . get all

attackers of A
4: if Attackers 6= ∅ then
5: for all B ∈ Attackers do
6: Defenders ← {X |(A >X B) ∈ PrefSet}

. A is preferred to B since X defends A
7: if Defenders 6= ∅ then
8: E ← E ∪A ∪X
9: for each A ∈ A do

10: Attackers ← {B | (B,A) ∈ R} . get all
attackers of A

11: Attacked ← {C | (A,C) ∈ R ∧ C ∈ E} . get
arguments A attacks that are in E

12: if Attackers = ∅ ∧Attacked = ∅ then
13: E ← E ∪A
14: return E

Algorithm 5 Verify all defence preferences
Require: AAF , an abstract argumentation framework
Require: E , an extension consisting of conflict-free arguments
Require: PrefSet , the set of all defence preferences
Ensure: PrefSet , the verified set of all defence preferences

1: procedure VERIFYPREFERENCES(AAF , E ,PrefSet)
2: E ′ ← ComputeExtension(AAF ,PrefSet)
3: if (E ′ = E) then
4: return PrefSet
5: else
6: return null

Example IV.1. Let there be an abstract argumentation frame-
work of Figure 3 and an extension E given as follows:
• A = {A,B,C,D}.
• (A,B) ∈ R, (B,C) ∈ R, (D,A) ∈ R, (A,D) ∈ R.
• E = {A,C}

By using Algorithm 3, we can compute the direct defence
preference DPref = A >A D, since it satisfies the condition
that (D,A) ∈ R and A ∈ E and D /∈ E and there is no
other argument X ∈ E that attacks D. We can compute the
indirect defence preference IPref = C >A B, since it satisfies
the condition that (A,B) ∈ R, (B,C) ∈ R, A,C ∈ E
and B 6∈ E . Therefore, the set of all defence preferences
PrefSet = {A >A D,C >A B}.

By using Algorithm 5, we can verify that the computed set
of all defence preferences PrefSet is correct. Algorithm 5
computes the extension E ′ for the given abstract argumentation
framework (AAF) and set of all defence preferences PrefSet =
{A >A D,C >A B}. Argument A is attacked by argument
D but since it is preferred to D as given in PrefSet , A is
added to the extension E ′, and therefore E ′ = {A}. Argument

C is attacked by argument B but since it is preferred to B as
given in PrefSet , C is added to the extension E ′, and therefore
E ′ = {A,C}. Argument B is attacked by argument A but
since it is not preferred to A, therefore B is not added to the
extension E ′. Similarly, argument D is attacked by argument
A but since it is not preferred to A, therefore D is not added
to the extension E ′. The output extension E ′ = {A,C} is equal
to the input extension E . Thus, we conclude that the computed
set of all defence preferences PrefSet is correct.

V. IMPLEMENTATION DETAILS

We have implemented our proposed algorithms given in
Section IV for evaluation purposes, in Java and using the
Tweety library [20]. Figure 4 shows the flowchart of the auto-
mated approach for preference computation and verification.
Following are the steps that occur:

1) The input to the system is an abstract argumentation
framework (AAF) and an extension E (consisting of
conflict-free arguments). This is denoted by (AAF , E).

2) The ComputePreferences procedure:
• calls the ComputeDirectPreferences procedure (with

input (AAF , E)) as given in Algorithm 1 that computes
the set of direct defence preferences DPrefs .

• calls the ComputeIndirectPreferences procedure
(with input (AAF , E)) as given in Algorithm 2
that computes the set of indirect defence preferences
IPrefs .

• receives DPrefs and IPrefs from ComputeDirect-
Preferences and ComputeIndirectPreferences proce-
dures respectively and computes the set of all defence
preferences PrefSet ← DPrefs ∪ IPrefs .

3) The VerifyPreferences procedure gets the input
(AAF , E ,PrefSet) from the ComputePreferences
procedure and:
• calls the ComputeExtension procedure to compute the

extension E ′.
• receives the extension E ′ from the ComputeExtension

procedure and checks the condition that E = E ′. If
the condition is true then it returns the verified set of
defence preferences PrefSet .

Following are some of the properties of our approach.
• An argument may be defended by more than one argu-

ment in the argumentation framework, since two ore more
different arguments that defend such an argument from a
defeating argument could be present in the extension of
acceptable arguments.

• Moreover, an argument can defend another argument
from the defeats of more than one arguments in the
argumentation framework.

• An argument can defend itself from any number of
arguments in the argumentation framework.

• An argument can have a direct defence preference only
when it has no indirect defence preference.



Figure 4. Flow Chart of the Automated Approach for Preference Computation
and Verification

• An argument can have an indirect defence preference only
when the argument defending it is present in a given
extension.

VI. CONCLUSION

We have presented a novel approach that automates the
computation and verification of preferences in an abstract
argumentation system. We have implemented the algorithms
and evaluated them on small abstract argumentation graphs.
This provides a promising mechanism to test our computation
on larger argumentation graphs to check the scalability. The
novelty of our approach with respect to previous research is
that:

1) Preferences are computed at the end of the argumentation
process and need not be stated in advance.

2) Preferences explain the justification of the acceptability
of an argument, i.e., whether an argument was able to
defend itself or by another argument, from an attack.
Moreover, from this information it can also be deduced
why the attacking arguments were not accepted in terms
of argument preferences.

3) We also provide a mechanism for verifying the computed
preferences to prove their correctness.

This work has applications in decision support and recom-
mender systems, where the resulting decision or recommen-
dation can be explained by the preference relations.
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