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Abstract 
This paper focuses on the development of a structural health monitoring (SHM) method for 

damage severity assessment of wind turbine blades. The methodology entails finite element 

model updating (FEMU) of a laboratory scale blade, accounting for uncertainty arising from 

measurement and modelling errors through incorporation of non-probabilistic fuzzy uncertainty 

quantification techniques. SHM involves continuous monitoring of the structure in operation, 

with dynamic responses obtained from the operational structure compared to those of the 

baseline with deviations in behaviour attributed to damage. In this research, the baseline model 

was calibrated through construction and minimisation of an objective function using a global 

optimisation algorithm (GOA) known as virus optimisation algorithm (VOA). Uncertainty in 

the blade Young’s modulus and shear modulus was quantified through the fuzzy FEMU 

process. Then, damage severity assessment was conducted through simulating multiple damage 

scenarios by addition of variable masses to the structure considered to cause localised changes 

whilst preventing permanent structural modification. In total, four single and one concurrent 

scenario were considered with 50g, 100g, 200g and 400g added individually to the trailing edge, 

with the last scenario adding 200g to both the trailing and the leading edge. This work 

investigated the use of VOA for fuzzy FEMU with optimal parameters of the algorithm 

considered and utilised for updating. The research was able to identify all five damage scenarios 

simulated on the structure, with sufficient accuracy and through uncertainty quantification the 

potential variation associated with these parameters were unrevealed. 

 

1 Introduction 

With an increasing focus on energy generated from renewable resources, reducing associated 

operation and maintenance (O&M) costs would provide industry wide benefits. In relation to 

wind turbines, O&M costs can be prohibitively large, estimated at 20-30% of lifecycle costs for 

onshore turbines and 30% of the already higher lifecycle costs for offshore turbines [1]. Damage 

to wind turbine blades in particular can be catastrophic, with implications in terms of asset 

integrity, production and economic losses, and safety of personnel. Turbine blades have been 

identified as one of the most commonly damaged components and are crucial in the drive to 

reduce O&M costs. Current non-destructive methodologies involve shutdown of the turbine and 

travel of inspection engineers to the turbine site. As turbines are often located in remote, harsh 

operational environments, travel can pose risk to personnel, with bad weather caused delays to 

O&M scheduling. In addition, production losses occur during shutdown of the turbine and 

damage occurring between inspection intervals can go unnoticed.  

With these limitations in mind, we propose a vibration based structural health monitoring 

(SHM) method based on finite element model updating (FEMU) which utilises a network of 

sensors permanently attached to the structure to draw conclusions about its operational health. 

This methodology presumes that damage accrued on the structure will manifest itself through 

change in the dynamic behaviour of the blade [2]. Successful application of SHM to turbine 

blades would provide the benefit of remote monitoring, early indication of damage to facilitate 

maintenance scheduling as appropriate, as well as monitoring of the structure after extreme 

unpredictable events such as lightning strikes.  

FEMU is an inverse technique using responses of the blade to calibrate unknown parameters 

enabling a prediction to be made about the operational state of the structure. Responses of the 

M
or

e 
in

fo
 a

bo
ut

 th
is

 a
rt

ic
le

: 
ht

tp
://

w
w

w
.n

dt
.n

et
/?

id
=

23
27

8



 2 

blade are measured in its baseline state, with the responses of the operational blade monitored 

continuously and any significant deviations directly attributed to damage. In its basic form, 

FEMU is a deterministic process, giving no consideration to uncertainty arising from sources 

such as uncertain test data or numerical model idealisations and therefore is considered 

idealistic when considering real world engineering problems. Uncertainty quantification (UQ) 

methods known as probabilistic and non-probabilistic quantification have been developed to 

account for various uncertainties. Probabilistic methods, based on well-known probability 

theory assigns unknown variables with probability density functions (PDFs), however the form 

of these PDFs are rarely known a priori and are based upon assumptions and engineering 

judgment. Non-probabilistic UQ, such as fuzzy methods adopted in this research model 

uncertainty in the output parameters as membership functions and propagate this uncertainty 

through the FEM to obtain an estimate of uncertain input parameters. As a result, they make no 

initial assumptions regarding the distribution of input parameters. 

Probabilistic UQ applied to FEMU of bridges was carried out by Hua et al. [3] and Behmanesh 

and Moaveni [4], while Chandrashekhar and Ganguli [5] and Simoen et al. [6] applied the 

methodology to damage detection of an RC beam. Due to the aforementioned limitations 

associated with probabilistic methods, non-probabilistic methods such as interval and those 

based on fuzzy logic were adopted in this research. To account for epistemic uncertainties in 

model updating, Erdogan and Bakir [7] proposed a general FFEMU framework in which 

responses were modelled as fuzzy numbers to account for measurement error, with this used to 

understand uncertainty associated with structural parameters. This work demonstrated FFEMU 

in the context of damage detection of a reinforced frame structure. Liu and Duan [8] applied 

FFEMU accounting for measurement error through fuzzification of the objective function. They 

were able to obtain multiple potential models, with varying degrees of fuzziness and select the 

most physically compatible using engineering judgment. In dealing with aleatory uncertainty, 

Khodaparast et al. [9] built fuzzy membership functions of responses through histograms 

obtained from repeated assembly and disassembly of the DLR AIRMOD structure. The authors 

built these membership functions and used a kriging predictor meta-model to construct fuzzy 

input variables.  

This research will apply the non-probabilistic UQ method known as fuzzy finite element model 

updating (FFEMU) to account for measurement and modelling uncertainties in the updating 

process. The research will conduct damage severity assessment of a wind turbine blade subject 

to imitated operational conditions through non-destructively simulating multiple damage 

scenarios upon the structure. Damage will be simulated through addition of masses of varying 

magnitudes to the structure to cause alterations. The FFEMU optimisation problem will be 

solved using virus optimisation algorithm (VOA) for minimisation of the fuzzy objective 

functions, providing a novelty aspect of this research.  

 

2 Methodology 

The FEMU process involves calibrating a numerical model based on the results obtained from 

an experimental campaign, to create a numerical model which better reflects the true dynamics 

of the system. This section will demonstrate the methodology adopted in this research for these 

components with section 2.1.1 introducing the experimental configuration and modal analysis 

procedure undertaken. The numerical model created will be discussed in section 2.1.2, which 

will be updated using the FFEMU process. This involves the construction and minimisation of 

both deterministic and fuzzy objective functions as defined in section 2.1.3. To facilitate 

minimisation of these objective functions the GOA described in section 2.1.4 will be utilised. 

To facilitate damage severity assessment studies, damage will be simulated both experimentally 

on the test specimen and numerically on the FEM, a description of both methodologies can be 

found in section 2.1.5. A discussion surrounding the physical implementation of the algorithm 

can be found in section 2.1.6.  



 3 

2.1.1 Experimental configuration 

A 2.36 m blade from a Fortis domestic scale wind turbine with 5 kW power output and 5 m 

rotor diameter was situated in a laboratory environment. The blade material was presumed to be 

glass-fibre reinforced epoxy composite although detailed material specifications were 

unavailable from the manufacturer. The blade has an E387 aerofoil cross-section which is 

continuous through its length. Mass and mass density of the blade, obtained from measurements 

were 7.11 kg and 2,300 kg/m
3
, respectively. The blade was oriented in a vertical fixed-free 

configuration, to represent the parked position of a blade, and clamped to a heavy steel base. To 

simulate an un-measurable wind-like excitation, a pedestal fan with 0.41 m rotor diameter was 

located at a distance of approx. 1 m from the blade leading edge (LE) as shown in  

Figure 1. Operational modal analysis (OMA) was utilised to extract the modal parameters of the 

blade. OMA was used to extract only frequency values, therefore, it was sufficient to capture the 

response using one miniature piezo electric accelerometer model Metra KS94B-100 with a 

weight of 3.2 g, voltage sensitivity of 98.95 mV/g and operational frequency range of 0.5-

28 kHz. Acceleration readings were taken with a sampling rate of 2,048 Hz with a measurement 

time of 30 minutes. The collected acceleration signals were digitised with a National 

Instruments NI-9234 data acquisition card connected to a NI cDAQ-9174 chassis and laptop. NI 

LabView software was used for signal processing. To extract the modal parameters from the 

collected acceleration responses, a system identification algorithm known as frequency domain 

decomposition (FDD) was used. Detailed information about FDD can be found in [11]. 

2.1.2 Numerical model  

The numerical model of the blade was created using ABAQUS software. The blade was 

modelled as a beam with generalised cross section to reduce complexity of modelling. The 

cross-sectional values used for the generalised cross section were estimated using a shape 

builder software as shown in Table 1. The blade was modelled using 140 B31 beam elements, 

with the centre of mass and centre of stiffness offset to capture the eccentricity of the E387 

profile. The clamped experimental boundary condition was reproduced through an encastre 

boundary condition imposed upon the bottom node of the blade model. An initial estimate of 

material properties was obtained from Soden et al. [12] assuming the blade to be an epoxy 

composite material with unidirectional glass fibre reinforcement known as E-glass 21xK43 

Gevetex. Initially, the Young’s modulus was assumed to be 53.48 GPa while shear modulus was 

assumed as 5.83 GPa, respectively. These parameters were used as an initial estimate and to 

build the feasibility regions of potential solutions, however, as they were updated during the 

baseline phase, their accuracy was not of concern.  

 

 

Figure 1 - Experimental configuration with excitation source (fan), and sensor and damage 

locations 
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2.1.3 Fuzzy finite element model updating 

FEMU involves calibration of an FEM using responses obtained from an experimental 

campaign, allowing the FEM to be reflective of the true dynamics of the system. FEMU using 

global optimisation algorithms (GOAs) involves creating an objective function containing 

modal parameters from both the analytical model and experimental specimen and minimising 

the discrepancy between the two to obtain a set of updated input parameters. The introduction of 

fuzzy theory, developed by Zadeh [13], allows responses to be modelled as fuzzy numbers with 

the sub-level technique used to assign each level a membership function value. In this regard, a 

membership function value µ=1 indicates that the object is surely a member of the set, while a 

membership function value µ=0 indicates the member does not belong to the set. A membership 

function value between these extremities indicates the value belongs to the set with a given 

degree of membership. In this research, we model responses as triangular membership 

functions, with sub-levels µ=1, µ=0.75, µ=0.5, µ=0.25, µ=0.  

2.1.3.1 Objective functions 

Two types of objective functions are required for FFEMU, one which is deterministic and 

another which is fuzzy in nature. The desired output of the deterministic objective function is an 

updated vector of input parameters that minimises the discrepancy between deterministic 

experimental and analytical modal parameters. Considering only frequency values during 

updating, this objective function can be written as: 
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where λi represents the i
th

 natural frequency value, a and e refer to the analytical and 

experimental frequencies and n is the number of frequencies considered during updating. This 

function is only applicable to updating level µ=1. For the remaining fuzzy sub-levels, fuzzy 

objective functions must be formulated which provides interval updating parameter vectors that 

minimise modal parameter discrepancy at the bounds. The fuzzy objective functions are 

specified as ( )If θ  and ( )If θ  for the lower and upper bounds, respectively. The fuzzy 

objective functions adopted in this research are as follows: 

 

 ( ) ( ) ( )TI I If =θ r θ Wr θ   (2) 

 

 ( ) ( ) ( )
T

I I If =θ r θ Wr θ   (3) 

 

where θ
I
 is the interval updating parameter vector, and W is the weighting matrix. The residuals 

at the lower and upper bounds are denoted as r andr, respectively, and calculated as 

 

 ( ) ( )( ) ( ) ( )( )
a e ea e eI I I I

i i i ii i i i
λ λ λ λ λ λ= − = −r θ θ r θ θ   (4) 

2.1.4 Virus optimisation algorithm  

Virus optimisation algorithm (VOA), originally developed by Liang et al. [14], is a 

metaheuristic optimisation algorithm, inspired by the spread of virus through a host cell. The 

algorithm draws on multiple bio-analogies. The algorithm can be divided into three main 

phases: 

• Initialisation 
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• Replication 

• Anti-virus/immunity response 

During the initialisation phase, viruses (potential solutions) are randomly generated within the 

feasibility region with their ability to spread determined dependant on their calculated objective 

function value. Viruses with a low objective function value will be considered as “strong” and 

allowed to replicate at a higher rate than those with a higher objective function value and 

“common” attribute. The higher replication rate will promote exploitation of promising regions, 

while replication of common viruses will promote exploration of the wider solution space.  

During the replication phase, new strong viruses,
n

ij
SV , are created according to the following 

formula: 

 

 
n

ij ij ij

rand

intensity
= ± ×SV SV SV   (5) 

 

where SVij is the parameter vector associated with the strong virus, rand is a randomly 

generated number, and intensity controls the random perturbation of new viruses created from 

the original ones. When the algorithm has not found a better solution after replication, 

exploration is intensified through increasing the intensity value. Subscripts i and j represents the 

j
th

 dimension of the i
th

 particle in the population. The main purpose of common viruses is 

exploration of the cell, searching the wider solution domain for better solutions. They replicate 

at a lesser rate, with new solutions generated according to: 

 

 
n

ij ij ijrand= ± ×CV CV CV   (6) 

 

After replication of viruses, the anti-virus mechanism is triggered to provide some protection to 

the host cell by elimination of a random number of viruses from the population at each iteration. 

As the number of viruses killed at each iteration is variable, the population size is dynamic. 

Additionally, to maintain manageability of the population once the user-defined population 

threshold value is reached the number of viruses is reduced to its originally specified size. In 

this study, we took the minimum number of strong members in the population at any given time 

to be twenty. 

2.1.5 Damage simulation  

As opposed to destructively damaging the experimental specimen, mass was added to the 

structure to simulate a structural alteration. Typical damage locations of operational wind 

turbines were investigated by Ciang et al. and Ataya and Ahmed [15, 16], concluding that 

damage commonly occurred at 30% length and 70% length on the blade LE and TE, 

respectively. The mass magnitude and locations used in each damage scenario can be seen in 

Table 2. This technique for non-destructive experimental damage simulation has been used 

previously by e.g. Behmanesh and Moaveni [4]. To simulate damage analytically, the baseline 

FEM described in section 2.1.2 with updated material properties was adapted to include two 

potential damage locations as shown in Figure 2. The potential locations were chosen based on 

assumed knowledge of the experimentally simulated damage scenarios. As a result, parameters 

M7 and M13 were modelled as non-structural masses with variable magnitudes and considered as 

updating parameters during the optimisation process.  

2.1.6 Algorithm implementation 

The algorithm was coded in MATLAB software with the modal properties of the analytical 

blade obtained using ABAQUS2MATLAB toolbox developed by Papazafeiropoulos et al. [17]. 

To increase computational efficiency, the University of Aberdeen’s high-performance 
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computing cluster was used, with parallel computing ability exploited through parallelisation of 

the code at each iteration. 

 

 
Figure 2 - Numerical damage model in ABAQUS with damage locations 

 

3 Results  

The dynamic properties of the blade, obtained through experimental modal analysis procedures 

are detailed in section 3.1.1. The properties obtained for baseline and each of the damage states 

will be utilised in sections 3.1.2-3.1.4 for calibration of the baseline model and subsequent 

damage prediction studies. Section 3.1.2 will act as a parameter setting exercise, examining 

individually the modifiable parameters of VOA to achieve the optimum configuration of the 

algorithm. Section 3.1.3 will discuss the application of VOA to baseline updating, with section 

3.1.1.2 using these results for damage prediction. 

3.1.1 Experimental results 

3.1.1.1 Baseline model 

The experimental campaign undertaken on the blade without modification provided the first ten 

natural frequency values shown in Table 3. The results detailed here are an average value 

achieved over five runs of OMA, with close values achieved for each mode in all five runs. 

3.1.1.2 Damage scenarios 

To simulate experimental structural modification, the mass magnitudes detailed in Table 2 were 

added to the blade in the locations specified. The first ten natural frequency values obtained for 

each damage scenario can be seen in Table 4. The structural modification scenarios 

implemented in this research are sufficient to discern between the naturally occurring variability 

and that due directly to damage simulation. The mass magnitudes selected have a varying affect 

upon the deviation in modal properties, causing a relative frequency variation between 

practically 0% and 12.3%. 

Table 1 – Cross-sectional properties of 

E387 aerofoil profile 

Variable Value  

Area (m
2
) 1.29 x10

-3
 

Moment inertia for bending 

about x-axis (m
4
) 

1.54x10
-8

 

Mixed moment of inertia 

for (m
4
) 

2.40x10
-9

 

Moment inertia for bending 

about y-axis (m
4
) 

1.42x10
-6

 

Torsional constant (m
4
) 5.28x10

-8
 

Centre of mass (m) (0.00, 0.00) 

Centre of stiffness (m) (-7.05x10
-3

, 1.96x10
-3

) 
 

Table 2 – Experimental damage scenario mass 

magnitudes 

Scenario Mass (g) 

Distance 

f/base (% 

length) 

Updating 

parameter 
Edge 

1 50 70 M7 TE 

2 100 70 M7 TE 

3 200 70 M7 TE 

4 400 70 M7 TE 

5 200 & 200 70 & 30 M7 & M13 TE & LE 

 

Table 3 - Experimental natural frequencies of blade in baseline state using FDD 
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3.1.2 VOA optimal parameter investigation  

Setting suitable parameters for VOA is crucial for successful implementation of the algorithm. 

Suitable parameters were investigated for deterministic updating of the baseline state before 

proceeding with damage state updating. The main user specified parametric variables in VOA 

are initial number of solutions, growth rate of strong and common viruses and the algorithm 

anti-virus threshold. Using knowledge obtained from a previous own study [10] in relation to 

the perceived global minimum objective function value achieved by particle swarm optimisation 

(PSO) and firefly algorithm (FA), variables were altered individually with their ability to 

achieve the known minimum compared. The parametric investigation consisted of seven cases 

(Table 5), each run three times with the results averaged due to the randomness associated with 

initial solution generations. The parameters that remained constant throughout this investigation 

were those recommended by Liang et al. [14]. The size of the initial population specified was 

seen to influence the ability to reach a good solution, with 25 and 50 viruses found to be 

unsuitable in all cases. In addition to this, adjusting the growth rate of strong and common 

viruses was found to influence the algorithms success rate, with case 5 providing a good 

compromise between exploration and exploitation of the solution space. The anti-virus 

mechanism was generally found to be beneficial while increasing the population reduction 

threshold enabled the algorithm to achieve good solutions at each run, it, however, required 

significantly more evaluations. The optimum configuration of this algorithm was judged to be: 

• Initial population –100 

Mode number Bending/Torsional Average frequency (Hz) 

1 B 1.75 

2 B 11.2 

3 B 31.3 

4 T 38.9 

5 B 61.3 

6 B 100.2 

7 T 116.8 

8 B 149.3 

9 T 194.7 

10 B 207.2 
 

 

Table 4 - Experimental natural frequencies of blade in damage states using FDD with percentage 

variation wrt. baseline state 

 
Damage Scenario 1 Damage Scenario 2 Damage Scenario 3 Damage Scenario 4 Damage Scenario 5 

Mode 

No. 

Frequency 

(Hz) 

Relative 

difference 

(%) 

Frequency 

(Hz) 

Relative 

difference 

(%) 

Frequency 

(Hz) 

Relative 

difference 

(%) 

Frequency 

(Hz) 

Relative 

difference 

(%) 

Frequency 

(Hz) 

Relative 

difference 

(%) 

1 1.75 -0.1 1.73 -0.9 1.72 -1.5 1.69 -3.5 1.72 -1.7 

2 11.2 0.0 11.2 -0.2 11.2 -0.4 11.1 -0.9 11.0 -1.9 

3 31.2 -0.5 30.9 -1.3 30.6 -2.2 29.7 -5.5 29.7 -5.3 

4 38.0 -2.2 37.1 -4.7 37.1 -5.0 35.7 -8.8 37.0 -5.1 

5 61.2 -0.2 61.0 -0.5 60.9 -0.7 60.6 -1.2 60.3 -1.7 

6 100.1 -0.1 100.2 0.0 100.1 -0.1 100.0 -0.2 100.0 -0.2 

7 116.7 -0.1 116.6 -0.2 116.2 -0.5 116.3 -0.4 112.5 -3.9 

8 148.1 -0.8 149.0 -0.2 145.5 -2.6 141.5 -5.5 142.8 -4.6 

9 190.7 -2.0 191.6 -1.6 186.2 -4.6 173.4 -12.3 184.0 -5.8 

10 205.8 -0.7 205.4 -0.9 203.9 -1.6 201.7 -2.7 199.6 -3.8 
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• Growth rate of common viruses – 6 

• Growth rate of strong viruses – 10  

• Anti-virus mechanism - on 

• Population reduction threshold – 2000. 

The optimum parameter configuration detailed above was able to achieve convergence on the 

same minimum solution, with slightly higher objective function value compared to the 

deterministic updating using PSO and FA shown in Table 6 [10]. To visualise the VOA through 

various iterations, a snapshot of the population of viruses was taken at selected iterations, as 

shown in Figure 3. At the first iteration, the randomly populated viruses are evenly distributed 

throughout the solution domain. As the algorithm moves onto its second iteration, the number of 

viruses is seen to grow with the most significant growth observed for strong solutions. By the 

third iteration, viruses appear to be focusing on exploitation of the region near the minimum 

value, however, with the threshold of strong viruses set to be any objective function value below 

0.001, exploration of the wider solution domain is continued in the future iterations. By the 

tenth iteration, the population, consisting only of strong viruses, has found the minimum value 

and has searched the region in its vicinity for a better solution. 

3.1.3 Baseline model updating  

Deterministic updating of the baseline model was carried out using the optimal parameter 

configuration detailed in section 3.1.2. The baseline model was updated well, with the relative 

error in frequencies obtained between initial model and VOA updated model seen to decrease 

from 19.2% to 1.7% as shown in Table 7. Uncertainty was introduced into the numerical results 

following the methodology defined by Simoen et al. [6]. For fuzzy updating of the baseline 

model, to understand the uncertainty associated with material properties, the sublevels were 

updated individually to obtain an updating parameter vector at both lower and upper bounds of 

the level. These updating parameter vectors were then assembled to give the results shown in 

Figure 4. 

 

Table 5 - Updating baseline deterministic model with various VOA parameter settings 

 

Case number  

 

1 2 3 4 5 6 7 

Number of initial solutions 25 50 100 100 100 100 100 

Growth rate - common viruses 4 4 4 3 6 4 4 

Growth rate - strong viruses 7 7 7 5 10 7 7 

Anti-virus (on/off) on on on on on off on 

Population reduction threshold 1000 1000 1000 1000 1000 1000 2000 

Minimum objective value 7.81x10
-5

 2.14x10
-5

 8.47x10
-7

 3.70x10
-6

 2.27x10
-7

 8.58x10
-7

 2.27x10
-7

 

No. of function evaluations 11268 6345 3964 7799 6905 6484 11585 

 

 

 

 
Table 6 - Updating parameters and objective function values achieved by PSO, FA and VOA with 

optimal parameters 

 

Algorithm E (GPa) G (GPa) Objective function value 

PSO 61.9 8.5 2.08x10
-7

 

FA 61.9 8.5 2.08x10
-7

 

VOA 61.9 8.5 2.14x10
-7
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3.1.4 Damage model updating  

Deterministic updating was undertaken utilising the experimental results obtained from various 

alteration scenarios detailed in section 3.1.1.2. Deterministic results were considered 

individually, with the experimentally simulated damage predicted well for each of the five 

scenarios as seen in Figure 5. The accuracy demonstrated was sufficient for the four individual 

damage scenarios, whilst the concurrent scenario (scenario 5) showed an under prediction of M7 

and over prediction of M13. Results obtained from deterministic damage updating in previous 

 
Figure 3 -VOA iterations showing population of viruses at iterations 1, 2, 3 and 10 (grey dots = 

viruses, black star = minimum value of objective function) 

 

Table 7 - Comparison between experimental, initial model and VOA updated models for 

deterministic baseline updating  

 
Frequency no. 1 2 3 4 5 6 7 8 9 10 

Experimental (Hz) 1.75 11.2 31.3 38.9 61.3 100.6 116.6 149.2 194.6 207.2 

Initial model (Hz) 1.65 10.4 29.0 32.1 56.7 92.9 139.0 160.2 193.3 224.2 

Initial error (%) -5. 5 -7.6 -7.6 -17.5 -7.6 -7.7 19.2 7.4 -0.7 8.2 

VOA (Hz) 1.8 11.2 31.2 38.7 61.0 100.6 116.7 149.9 193.1 208.8 

Updated error (%) 1.7 -0.6 -0.5 -0.5 -0.5 0.0 0.1 0.5 -0.7 0.8 
 

 
Figure 4 - Fuzzy updated material parameters obtained using VOA 
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own studies using FA [10] have been shown for comparison. As the methodology would be 

used for damage prediction, this knowledge would trigger an inspection therefore perfect 

accuracy of the method may not be required. 

After deterministic updating, uncertainty was introduced to each of the results in Table 4 and 

propagated back through the FEM using the FFEMU procedure to understand the uncertainty 

associated with the updating parameters. The fuzzy updated mass parameters obtained from 

each damage scenario are visualised in Figure 6 with a comparison to the experimental mass 

shown by the dashed line. In each case, the experimental mass magnitude lies within the range 

of uncertainty, with each case indicating damage is surely present in the correct region. In all 

singular damage scenarios (1-4), a small magnitude of mass was predicted analytically on 

location M13 where it had not been simulated experimentally. This result was consistent through 

all scenarios but considerably smaller than the magnitude of mass predicted on the location of 

actual experimental mass M7. When considering the case of concurrent damage, the membership 

functions of parameter M7 appeared as non-convex. This could be the result of premature 

convergence to a local minimum solution as opposed to the global optimum.	

 

 
 

Figure 5 - Experimental masses and deterministic masses predicted by VOA and FA 

 
Figure 6 - Experimental masses and fuzzy masses obtained by VOA 

 

4 Conclusions 

Within this research, a SHM methodology was developed and implemented to facilitate damage 

severity assessment of a laboratory-scale wind turbine blade. The method demonstrated the 

ability to predict successfully the location and magnitude of structural alteration on the blade. 

Uncertainty due to measurement and modelling error was incorporated through modelling 

responses as fuzzy numbers with triangular membership functions to obtain the uncertainty 

associated with input parameters. VOA was proposed and undertaken for minimisation of the 
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objective functions using FFEMU and was found to be satisfactory for the purpose. To compare 

the accuracy of VOA, we judged the algorithm ability to reach the global minimum presumed to 

have been achieved by PSO and FA. Often, VOA was able to achieve an objective function 

value close to the other algorithms, but equally often displayed convergence on a higher value. 

In terms of computational efficiency, due to the dynamic nature of the algorithm population 

size, VOA was found to require significantly more function evaluations before convergence 

than either PSO or FA.  
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