
Semantic Modelling of Plans and Execution Traces
for Enhancing Transparency of IoT Systems

∗Milan Markovic, †Daniel Garijo, ∗Peter Edwards and ∗Wamberto Vasconcelos
∗University of Aberdeen, Computing Science, Aberdeen, UK.

Email: {milan.markovic,w.w.vasconcelos,p.edwards}@abdn.ac.uk
†University of Southern California, Los Angeles, CA, USA.

Email: dgarijo@isi.edu

Abstract—Transparency of IoT systems is an essential require-
ment for enhancing user’s trust towards such systems. Prove-
nance mechanisms documenting the execution of IoT systems
are often cited as an enabler of such transparency. However,
provenance records often lack detailed descriptions of a system’s
expected behaviour. Plan specifications describe the steps needed
to achieve a certain goal by a human or an automated system.
Once plans reach a certain level of complexity, they are typically
decomposed in different levels of abstraction. However, this
decomposition makes it difficult to relate high level abstract plans
to their granular execution traces. This paper introduces EP-
Plan, a vocabulary for linking the different levels of granularity
of a plan with their respective provenance traces. EP-Plan also
provides the means to describe plan metadata such as constraints,
policies, rationales, and expected participating agents associated
with a plan.

I. INTRODUCTION

An increasing number of systems provide means to docu-
ment provenance records of past executions [1] (i.e., execution
traces), in order to inspect and explain the creation process of
existing results or behaviour of a system. In this paper, we
argue that recording such provenance can be further enhanced
by recording the set of planned steps that guided its execution,
and we refer to such records as plans.

Plans document intended system behaviour, which is ben-
eficial at the point when no runtime provenance is available
(e.g. to assess risks associated with a planned IoT deployment).
Plans are also critical to understand errors, enabling a point
of reference for comparison when the execution deviates from
what was planned to happen.

Gateway Cloud

Plan
Relay data from sensors

Plan
Process and store data

Plan
Deliver smart temperature monitoring at Alice’s home

Sensor

Plan
Produce observations

IoT System

Execution Trace
A log of activities generating

and publishing raw data
values and timestamps

Execution Trace
A log of activities

receiving and uploading
sensor data

Execution Trace
A log of processing and data

storage activities

Fig. 1. An illustration of different granularity levels of plans and execution
traces in an IoT system.

Plan specifications may become very complex, and therefore
users tend to simplify them into smaller plans. For example,

Figure 1 illustrates a simplified view of an IoT system which
follows a high level plan for delivering smart home tempera-
ture monitoring. At a finer detail level, such a system consist
of individual components (e.g., sensing devices, web services)
that follow their specific individual plans (e.g., a temperature
sensor will observe air temperature and upload readings via a
gateway device to an online location). Each of these devices
might generate execution traces at different levels of detail
which are disconnected from the more abstract high level
descriptions of the expected and the actual system behaviour.

In this paper, we argue that semantic technologies such as
ontologies and linked data1 provide a suitable method to define
a machine processable model of domain concepts, such as
IoT devices, and their inter-relationships, which can be shared
and reused across different IoT deployments and reasoning
applications. Applying such technologies to the IoT domain
is not a novel idea and a number of semantic resources exist
[2].

Individual execution traces can be sufficiently documented
using the W3C standard on provenance (PROV) [3]. How-
ever, detailed descriptions of important aspects of a plan
specification still remain a subject of discussion within the
provenance community, and the link between different levels
of abstraction of a plan and the corresponding execution traces
remains largely unexplored. PROV acknowledges the need to
associate a plan (prov:Plan) with the execution of an activity
(prov:Activity), but does not specify how a plan may be further
defined or decomposed. In previous work, Garijo and Gil
proposed P-Plan [4], a vocabulary designed to link scientific
processes to provenance traces. However, a comprehensive
representation of levels of abstraction in plans and capture
of additional contextual information related to the planned
processes was not within the scope of P-Plan. In this paper we
present a domain agnostic model called EP-Plan for describing
plans and their execution traces which builds on P-Plan [4] and
PROV-O [3]. Furthermore, we discuss its application in the
IoT domain and present a series of example queries executed
against our test knowledge base.

The following contributions are discussed in this paper:
• A set of requirements for capturing critical plan metadata

to enhance transparency descriptions of IoT systems and

1https://www.w3.org/standards/semanticweb/data

Milan Markovic
978-1-5386-5541-2/18/$31.00 ©2018 IEEE�

associating different levels of abstraction in plans with
their execution traces.

• A vocabulary implementation designed to address the
aforementioned requirements.

• A repository of publicly available materials including EP-
Plan examples, test datasets, and a series of competency
questions formalised as SPARQL queries.

The remainder of this paper is structured as follows: Section
II introduces an IoT use case that motivated the design of EP-
Plan, and which we used to define the ontology requirements
in Section III. Section IV describes the core concepts of EP-
Plan. Section V discusses example queries performed on a test
dataset described using EP-Plan; Section VI discusses related
ontologies and alignments. Finally, Section VII concludes the
paper with discussions of future work.

II. IOT USE CASE

The IoT use case was inspired by several activities in the
Trustlens project2, which explores various facets of what it
means to realise trusted IoT ecosystems, with a particular fo-
cus on aspects of governance, transparency and accountability.

IoT deployments are often complex ecosystems consisting
of multiple IoT devices and a range of supporting cloud-based
components. Users impacted by IoT are usually unable to
assess these systems due to their lack of transparency, which
is required for supporting trust between citizens and such
infrastructures [5], [6].

High Level IoT System View

Process DataCollect Data Sensor Data Data Entry Updated Database Store Data

Visualise Data

Data Dashboard
IoT Device Level View

Anonymise Data

Shared Data

Collect Temperature Temp. Data Upload Sent Temp. Data

Collect CO2 CO2 Data Upload Sent CO2 Data

Fig. 2. An example process and data flow of an IoT monitoring system
measuring temperature and CO2 levels.

The Trustlens project held a series of workshops and found
that real users encountering IoT technologies ask many trans-
parency questions including: What data is being collected?
Why is it being collected and who is collecting it? Who is
managing the system? Is the system secure? [7].

Such questions become even more pressing during com-
munity consultations on future IoT deployments that might
be led, for example, by local councils before a public IoT
deployment. These findings suggest that it has to be possible
to audit IoT systems in terms of their expected and actual
behaviour. However, to enable auditing, appropriate models are
needed for representing important aspects of system behaviour
at various levels of detail that are required by different use
cases.

Fig. 2 illustrates a simplified view of processes and data
flows in an example IoT deployment. At a higher abstraction
level, IoT devices are used to collect sensor readings which
are then processed and stored by cloud-based services. A
dashboard is used by the local council to visualise data and

2https://trustlens.org

anonymised reports are also shared with third parties. This
level of abstraction is suitable for answering general queries
that human users might have (e.g., What is the system doing?),
however, it might be insufficient for other assessments which
require access to detailed data provenance (e.g. data quality
assessments).

At a finer grained level, the data collection process may be
decomposed into a series of processes controlled by an IoT
device (e.g., sensing, data transfer, etc.) that follows its own
local plan. Such data collection processes can be performed
by many different devices which could follow different plans
(i.e. they produce the same results but contain different steps).
This information would not be available at a higher level
of abstraction. However, to be able to assess, for example,
whether an IoT device poses potential risks to users’ privacy,
information about agents that control data handling processes,
device policies (e.g., those ensuring the compliance with
government regulations), and constraints resulting from these
policies need to be made available for assessment [8].

To answer some of the questions identified by the Trustlens
project, it is possible to utilise existing vocabularies such
as the W3C Semantic Sensor Network ontology (SSN) [9],
SDPO [10], PROV-O [3], and P-Plan [4]. However, models
for representing the planned behaviour such as P-Plan, lack
the ability to represent important concepts such as constraints,
agency, and policies [10], [8]. Such models also do not
capture representations of objectives that such systems in-
tend to achieve, which are critical for answering questions
related to its purpose. Similarly, to further address questions
querying the why aspects of IoT deployments, rationales for
inclusion of individual plan elements should also be recorded.
For example, consider a system with a security policy that
requires encryption of all internet communication. This policy
provides a rationale for the inclusion of a constraint that
requires the step uploading sensor data to the cloud to use a
secure connection. In turn, a broader data protection legislation
provides a rationale for the enforcement of such a security
policy as part of the plan specification of an IoT system.

Similarly, the objectives of an IoT deployment (e.g., to
monitor temperature levels in social housing for purposes of
preventive maintenance) may be linked to a rationale recorded
in a strategic plan decided by a local council. Capturing such
rich information about plans executed by IoT systems enables
them to be linked to a wider deployment context and thus
enhances the transparency of such systems - something that is
necessary to enhance users’ trust.

III. MODELLING REQUIREMENTS

This section describes modelling requirements for the EP-
Plan model to provide a vocabulary for capturing plans and
execution traces of IoT systems. The section focuses on the
novel contributions of the model and hence does not include
some basic requirements for plan descriptions. These relate
to the ability to represent individual planned processes, their
inputs and outputs, individual elements of the execution trace
(i.e. activities and entities) and their correspondence to the

plan, which are addressed by the models EP-Plan extends
(PROV-O [3], P-Plan[4]) and thus are not discussed here.

1) It should be possible to link different levels of plan
abstractions and their corresponding execution traces: A
varying granularity of plans and corresponding provenance is a
common result of distributed executions and therefore multiple
abstractions of plans are needed for different types of assess-
ments. Linking such specifications is vital for documenting a
coherent account of the behaviour of a system.

2) It should be possible to capture associations between
agents and the portions of plans in which they are allowed
to participate: Plan executions are often associated with a
number of agents executing portions of the overall system
plan. Detailing individual responsibilities of agents as part
of plan specifications is crucial, for example, to support risk
assessment in plans that process personal data.

3) It should be possible to document references to con-
straints and policies that are associated with a plan:
Constraints in plans commonly define restrictions such as
required value range and location of inputs, types of permitted
data transfer methods used, etc. Such constraints are often
the result of policies. Policies [11], [12], represent concepts
like permission, obligation and prohibition, and establish the
activity/action which is controlled by the policy, as well as
the role/party to whom the policy is directed. Policies can
provide additional context for constraints, for example, by
establishing what sanctions/rewards are applicable to whom, if
the constraint is not met (or is only partially met). To illustrate,
consider the European General Data Protection Regulation
(GDPR3) that establishes how personal data should be handled,
as in, for instance, the need for encrypting data in some
contexts and where data can be stored. Note that we do not
seek to represent a comprehensive vocabulary for defining
constraints and policies which can be represented by existing
models (see Section VI).

4) Plans should be able to document how data between
individual processes should be exchanged: The information
about how data is exchanged between different parts of the
system is important, especially in the context of security and
privacy assessments. To enable constraints to be recorded, such
as those requiring an encrypted communication (see REQ3),
the specification of a data exchange between processes needs
to be captured in a plan specification.

5) It should be possible to capture plan objectives, their
relations to other plan elements, and rationales associated
with a plan: Plans may become complex data flow descrip-
tions. Identifying the relevant final products of a plan (e.g.,
a variable representing the result of a calculation) is not
always straightforward. Objectives provide information about
the purpose of a plan (e.g., a city council wants to monitor
occupancy levels in properties they manage). Objectives might
be associated with specific plan elements that are expected to
achieve them (e.g., data representing an estimate of occupancy
levels calculated based on CO2 sensor readings). Similarly,

3https://eugdpr.org/

descriptions of rationales help with understanding why some
of the plan elements are present in the plan (e.g., a constraint
being a result of a policy that is enforced due to GDPR).

IV. DESCRIBING IOT SYSTEM PLANS AND EXECUTION
TRACES USING EP-PLAN

In this section we describe how the EP-Plan ontology can
be used as a core vocabulary to provide descriptions of IoT
system plans and to link the corresponding execution traces
in accordance with the modelling requirements identified in
Section III.

Semantic descriptions of IoT systems are recorded in the
form of directed acyclic knowledge graphs. In such graphs,
nodes are referred to as individuals and represent the instances
of specific concept types defined in the appropriate ontology.
For example, an individual representing a single process in
a plan can be described with a type ep-plan:Step defined
in the EP-Plan ontology. Ontologies also define edges that
can be used to connect different nodes of the graph and are
referred to as object properties. Object properties describe the
links/relationships between the individuals. For example, an
individual of type ep-plan:Step can be linked to the individual
describing the overall plan (i.e. of type ep-plan:Plan) via
relationship ep-plan:isStepOfPlan. If an individual is linked
to literal values (e.g. text) such relationships are referred to as
data and annotation properties.

A. Modelling Plans of IoT Systems

EP-Plan4 utilises steps to denote any planned processes, and
variables to represent inputs and outputs of steps. Both steps
and variables belong to a plan. Figure 3 illustrates a partial
description of a simple plan denoting the flow of data between
a temperature sensing process and a data storage process.

IoT Device Plan
(ep-plan:Plan)

Temp. Data
(ep-plan:Variable)

ep-plan:
hasOutputVariable

Temp. Sensing
(ep-plan:Step)

Storage
(ep-plan:Step)

ep-plan:
hasInputVariable

ep-plan:
isStepOfPlan

ep-plan:isVariableOfPlan
ep-plan:

isStepOfPlan

Fig. 3. An example description of a simple plan.

We will now discuss how such descriptions can be enhanced
with additional metadata to further contextualise IoT deploy-
ments.

1) Plan Agency and Responsibility: In some cases, only
certain agents (ep-plan:ResponsibleAgent) are allowed to
assume a degree of responsibility over the execution of
plans or individual planned steps. In EP-Plan, agents (ep-
plan:ResponsibleAgent) can be linked to such steps using
the property ep-plan:hasPermittedAgent. If a plan contains
an element that is linked with ep-plan:ResponsibleAgent, that
agent will also be linked to the plan specification using ep-
plan:includesResponsibleAgent. Figure 4 includes a descrip-
tion of an AWS agent (denoting the Amazon Web Service)
that is expected to perform data storage.

4ep-plan namespace: http://w3id.org/ep-plan

Temp. Data
(ep-plan:Variable)

ep-plan:
hasOutputVariable

Temp. Sensing
(ep-plan:Step)

Communication
(ep-plan:

CommunicationSpecification)

Storage
(ep-plan:Step)

ep-plan:
hasInputVariable

ep-plan:hasSender ep-plan:hasRecipient

Use Encryption
(ep-plan:Constraint)

ep-plan:
hasConstraint

AWS
(ep-plan:ResponsibleAgent)

ep-plan:ResponsibleAgent

ep-plan:hasPayload

owl:NamedIndividualowl:ObjectProperty

Store in EU
(ep-plan:Constraint)

ep-plan:
hasConstraint

Fig. 4. An example description of a simple plan enriched with references to
constraints and agents.

2) Plan Constraints: ep-plan:Constraint represents any
kind of restriction associated with ep-plan:Plan and its ele-
ments. A constraint defines pre and post conditions restricting
various attributes of the target element (e.g., time when the
activity started, location of the input data, etc.), as well as
the kind of entities used and generated, characteristics of
agents permitted to assume responsibility for an activity, etc.
Figure 4 illustrates a constraint description specifying that
the storage step should be performed within the European
Union (EU). Another constraint (Use encryption) restricts the
communication of data between the sensing and storage step
to use encryption. Here, ep-plan:CommunicationSpecification
represents a planned specification of variables communicat-
ing between steps, which is then linked to steps via ep-
plan:hasSender and ep-plan:hasRecipient.

Estimate Occupancy
(ep-plan:Multistep)

Occupancy Levels
(ep-plan:Variable)

ep-plan:hasOutputVariable
IoT Deployment
(ep-plan:Plan)

Execution Policy
(ep-plan:Policy,

ep-plan:Rationale)

ep-plan:isVariableOfPlan

ep-plan:isPolicyOfPlan

City Council
(ep-plan:ResponsibleAgent)

ep-plan:isStepOfPlan

ep-plan:hasPermittedAgent

Use Data From Specific Location
(ep-plan:Constraint)

ep-plan:
hasConstraint

ep-plan:
hasRationale

ep-plan:hasRationale

Monitor Occupancy Levels
(ep-plan:Objective)

ep-plan:isAchievedByep-plan:isObjectiveOfPlan
"A city council wants to monitor occupancy

levels in properties they manage"rdfs:comment

owl:ObjectProperty owl:Named Individual owl:AnnotationProperty

Fig. 5. An example description of a simple plan enriched with references to
policies, rationales, and objectives.

3) Plan Policies, Rationales and Objectives: ep-plan:Policy
describes a group of rules (i.e. permissions, obligations, and
prohibitions) that can be associated with a plan, along with its
associated metadata. Policies may affect a plan or individual
plan elements, referring to diverse aspects such as data pro-
tection, security, plan execution, etc. Fig. 5 illustrates a policy
that motivates the inclusion of a constraint restricting the data
collection process to a specific location and definition of an
agent (City Council) that is permitted to execute the Estimate
occupancy step.

ep-plan:Rationale may be used to represent any resource
(including elements of a plan) that provides some explanation
about why a plan element is part of the plan. Plan elements can
be linked to rationales via the ep-plan:hasRationale property
(e.g., see the links between execution policy, city council
and location constraint in Fig. 5). Similarly, ep-plan:Objective
represents objects that provide information about the expected
purpose of a plan. The relationship ep-plan:isAchievedBy links

objectives to portions of a plan that are expected to contribute
to delivering these objectives. An example is shown in the
lower part of Fig. 5, where the Occupancy levels output
variable is the main objective of the IoT Deployment plan.

IoT Deployment
(ep-plan:Plan)

Collect Data
(ep-plan:MultiStep)

ep-plan:
isStepOfPlan Sensor Readings

(ep-plan:MultiVariable)

IoT Device Plan
(ep-plan:Plan)

ep-plan:isDecomposedAsPlan

ep-plan:isVariableOfPlan
ep-plan:

hasOutputVariable

owl:ObjectProperty owl:Named Individual

Temp. Sensing
(ep-plan:Step)

ep-plan:
isStepOfPlan

CO2 Sensing
(ep-plan:Step)

ep-plan:
isStepOfPlan

Temp. Data
(ep-plan:Variable)

CO2 Data
(ep-plan:Variable)

ep-plan:hasPart ep-plan:hasPart

ep-plan:
hasOutputVariable

ep-plan:
hasOutputVariable

ep-plan:isVariableOfPlan

ep-plan:isVariableOfPlan

Fig. 6. An example partial description of a plan and its sub-plan.

4) Plans & Sub-plans: Plans described at finer grained level
can be linked as sub-plans to their more abstract counterparts
(see Figure 6). EP-Plan supports descriptions of composite
steps as ep-plan:MultiStep and links to the corresponding sub-
plan (ep-plan:Plan) via ep-plan:isDecomposedAsPlan. An ep-
plan:MultiVariable represents an aggregation of variables in
the more abstract plan that are described in more detail in a
sub-plan specification. ep-plan:hasPart is used to link vari-
ables to their aggregate abstractions (ep-plan:MultiVariable)
across different plans. Fig. 6 illustrates an example where
a step for data collection from a high level system plan is
decomposed as a more detailed sub-plan executed by a specific
IoT device.

B. Linking Execution Traces to Plans

IoT Deployment
(ep-plan:Plan)

Trace1
(ep-plan:ExecutiontraceBundle)

prov:wasDerivedFrom

Sytem Execution
(ep-plan:MultiActivity)

IoT System
(ep-plan:Agent)

prov:wasAssociatedWith
prov:

wasGeneratedBy

AWS
(ep-plan:Agent)

StorageActivity
(ep-plan:Activity)

Sensor Data
(ep-plan:Entity)

ep-plan:
has

Trace
Element

owl:ObjectProperty owl:Named Individual
(execution trace)

owl:Named Individual
(plan)

Fig. 7. An example partial description of a plan and mechanism for describing
individual bundles of execution traces.

A single execution trace is contained by ep-
plan:ExecutionTracebundle (this is also a type of ep-
plan:Entity) which is linked to the corresponding plan
via prov:wasDerivedFrom. The activity that generated an
execution trace is recorded as ep-plan:MultiActivity. An
execution trace is modelled using three main concepts based
on the PROV model, namely ep-plan:Entity, ep-plan:Activity
and ep-plan:Agent (see Figure 7).

Figure 8 illustrates how the individual parts of an ex-
ecution trace are linked to plan elements describing steps
and variables that are linked using the sub-plan mechanism.
ep-plan:EntityCollection is used to represent execution in-
stances of ep-plan:MultiVariable so individual entities from
the execution trace of the sub-plan can be linked using the
prov:hadMember relationship.

Figure 9 illustrates an example execution trace corre-
sponding to a plan containing a communication constraint.

Sub-planHigh Level Plan

Collect Data
(ep-plan:MultiStep)

Sensor Readings
(ep-plan:MultiVariable)

ep-plan:
hasOutputVariable

Temp. Sensing
(ep-plan:Step)

Temp. Data
(ep-plan:Variable)

ep-plan:
hasPart

ep-plan:
hasOutputVariable

Data Collection Activity
(ep-plan:MultiActivity)

ReadingsCollection
(ep-plan:EntityCollection)

TemperatureRedings
(ep-plan:Entity)

Sensing
(ep-plan:Activity)

prov:hadMember
TemperatureSensor

(ep-plan:Agent)

prov:wasAssociatedWith

prov:
was

Generated
By

ep-plan:
corresponds

To
Step

ep-plan:correspondsToStep ep-plan:correspondsToVariable

ep-plan:
corresponds

To
Variable

owl:ObjectProperty owl:Named Individual
(plan)

owl:Named Individual
(execution trace)

Fig. 8. An example partial description of a plan and a sub-plan and its
corresponding execution trace. Links between instances representing plans
and sub-plans (i.e. of type ep-plan:Plan) and their elements (e.g, steps) have
been omitted to simplify the figure.

Temp. Data
(ep-plan:Variable)

ep-plan:
hasOutputVariable

Temp. Sensing
(ep-plan:Step)

Communication
(ep-plan:

CommunicationSpecification)

Storage
(ep-plan:Step)ep-plan:hasInputVariable

ep-plan:hasPayloadep-plan:hasSender ep-plan:hasRecipient

Sensing Activity
(ep-plan:Activity)

Storage Activity
(ep-plan:Activity)

Temp. Reading
(ep-plan:Entity)

prov:wasGeneratedBy
prov:used

Readings Upload
(ep-plan:Communication)

ep-plan:
corresponds

ToStep
ep-plan:correspondsToStep

ep-plan:correspondsToVariable

prov:activity

ep-plan: correspondsToCommunicationSpecification

prov:qualifiedCommunication

Use Encryption
(ep-plan:Constraint)

"SSL 3.1"

ex:encryption
ep-plan:satisfied

ep-plan:
hasConstraint

owl:ObjectProperty owl:Named Individual
(execution trace)

owl:Named Individual
(plan)

owl:DataProperty

Fig. 9. An example partial description of a plan containing a communication
constraint and its corresponding execution trace. Links between the instance
representing the plan (i.e. of type ep-plan:Plan) and its elements (e.g, steps)
have been omitted to simplify the figure.

ep-plan:Communication describes an execution instance of
the ep-plan:CommunicationSepecification. Relationships ep-
plan:satisfied and ep-plan:violated are used to indicate
whether a particular instance of an execution trace satis-
fied or violated a constraint specification. If a constraint
was associated with ep-plan:Step and ep-plan:MultiStep (not
shown in Figure 9) such properties would link corresponding
execution instances described as ep-plan:Activity and ep-
plan:MultiActivity.

V. EXAMPLE QUERIES

The EP-Plan ontology was implemented using the OWL
2 syntax5 and documented with WIDOCO6. EP-Plan seri-
alisations, documentation, examples, test datasets, and other
relevant materials are stored and maintained in a public GitHub
repository7 under the Creative Commons 2.0 license8. The
repository includes competency questions9, sample datasets,
and example SPARQL10 queries11 that cover EP-Plan’s ability
to retrieve information relating to elements used to describe
plans (i.e. steps, variables, constraints, policies, rationales,
objectives, responsible agents), their correspondence to the
execution trace, and the ability to query linked plans and
executions traces described at different abstraction levels.

5https://www.w3.org/OWL/
6https://zenodo.org/record/2576182/
7https://w3id.org/ep-plan
8https://creativecommons.org/licenses/by-nc-sa/2.0/
9https://github.com/TrustLens/EP-PLAN/blob/master/docs/cq/cq.csv
10https://www.w3.org/TR/sparql11-query/
11https://trustlens.github.io/EP-PLAN/examples/sample datasets/iot/

For example, the SPARQL query illustrated in Figure 10
will return a list of all agents that are associated with some
level of responsibility in ex:HomeMonitoringHighLevelPlan
and all of its sub-plans.

SELECT DISTINCT ?agent
WHERE {
{ ex:HomeMonitoringHighLevelPlan a ep-plan:Plan;
 ep-plan:includesResponsibleAgent ?agent.}
UNION {
?subPlan ep-plan:isSubPlanOfPlan* ex:HomeMonitoringHighLevelPlan;
 ep-plan:includesResponsibleAgent ?agent.}
}

Fig. 10. A query to retrieve all agents that can assume some responsibility
for portions of a plan or its sub-plans.

The SPARQL query illustrated in Figure 11 will re-
turn a constraint specification associated with a step in
ex:HomeMonitoringHighLevelPlan and the corresponding step
execution activity which violated this constraint.

SELECT DISTINCT ?constraint ?activity
WHERE {
ex:HomeMonitoringHighLevelPlan ep-plan:includesConstraint ?constraint;
 ep-plan:includesStep ?step.
?step ep-plan:hasConstraint ?constraint; a ep-plan:Step.
?constraint a ep-plan:Constraint.
?activity ep-plan:correspondsToStep ?step; a ep-plan:Activity.
?activity ep-plan:violated ?constraint.

Fig. 11. A query to retrieve execution trace activities that violated a constraint
associated with a step.

The SPARQL query illustrated in Figure 12 will return the
policy associated with ex:HomeMonitoringHighLevelPlan and
any plan elements (e.g., constraints) that were included in the
plan specification as a result of this policy.

SELECT DISTINCT ?policy ?planElement
WHERE {
ex:HomeMonitoringHighLevelPlan a ep-plan:Plan;
 ep-plan:includesPolicy ?policy;
 ep-plan:includesPlanElement ?planElement.
?policy a ep-plan:Policy; a ep-plan:Rationale.
?planElement ep-plan:hasRationale ?policy.}

Fig. 12. A query to retrieve plan elements that were included as a result of
some policy associated with the plan specification.

Such queries can then be used, for example, by an auto-
mated assessment service to assess user privacy risks associ-
ated with an IoT deployment - as proposed in our previous
work [8].

VI. RELATED WORK

A number of ontologies capture different aspects of plan
specifications, their metadata and their association with prove-
nance traces. D-PROV [13] and its successor ProvONE12

extend PROV-O with a vocabulary for describing workflow
specifications. Similarly, the Common Workflow Language13

and its extension CWLProv [14] represent a community effort
to generalise workflows and link them to their results. These
models are designed for supporting descriptions of scientific

12http://purl.org/provone
13https://w3id.org/cwl/

workflows systems and do not capture concepts such as con-
straints, policies, agents that execute individual processes, etc.
Mapping between these models and EP-Plan is possible at the
level of connecting the descriptions of planned steps/processes
and specifications of how data between such steps should be
exchanged.

In previous work, including P-Plan extensions for domain
specific applications such as social computation [15] and food
safety [16], Markovic et al. explored the concept of constraints
recorded as part of the plan description. EP-Plan brings this
strand of work into a more generic, domain agnostic model.
In EP-Plan we also expand the ability to associate plans with
policies [11], [12].

While EP-Plan only contains a high level reference to
policies and constraints, models such as the W3C recommen-
dation ODRL [17] can be used with EP-Plan to define in
detail the policies associated with a plan. Alternatively, the
concept of policy defined in Dublin Core Terms14 can be
used to align ontological descriptions of high level policies
such as GDPR15. Similarly, other vocabularies such as the
W3C recommendation SHACL [18] and SPARQL Inferencing
Notation (SPIN)16 can be used with the plan description to
specify constraints.

In the IoT domain, the W3C SSN ontology may be utilised
to describe various characteristics of devices (e.g., their sens-
ing capabilities). Plans described using EP-Plan are aligned
with the SSN description of a device (ssn:System) by extending
the ssn:Procedure followed by such a device.

VII. CONCLUSIONS & FUTURE WORK

In this paper we presented EP-Plan, a vocabulary for de-
scribing generic plan specifications and their corresponding
execution traces. By proposing extensions to capture refer-
ences to concepts such as constraints, agents, policies, ob-
jectives and rationales, we create opportunities for describing
coherent cross-domain provenance records documenting what
was expected to happen and what actually happened during
system operation. EP-Plan’s domain agnostic nature and ability
to link across different levels of plan abstractions provides a
powerful tool for interrogating and assessing a wide range of
systems.

Our future work will focus on further validation and evalu-
ation of EP-Plan as part of a prototype implementation for an
automated privacy assessment framework for IoT deployments
proposed in the Trustlens project [8]. This will generate
additional examples detailing the use of EP-Plan in a domain
specific application.

ACKNOWLEDGMENT

The work described here was funded by the award made
by the RCUK Digital Economy programme to the Univer-
sity of Aberdeen (EP/N028074/1), a SICSA PECE travel
award, the Defense Advanced Research Projects Agency

14http://dublincore.org/documents/dcmi-terms/#terms-Policy
15https://w3id.org/GDPRtEXT/gdpr#
16http://spinrdf.org/

with award W911NF-18-1-0027, the SIMPLEX program with
award W911NF-15-1-0555 and from the National Institutes of
Health under awards 1U01CA196387 and 1R01GM117097.

REFERENCES

[1] L. Moreau, P. Groth, J. Cheney, T. Lebo, and S. Miles, “The rationale
of prov,” Journal of Web Semantics, vol. 35, pp. 235 – 257, 2015.

[2] A. Gyrard, S. K. Datta, and C. Bonnet, “A survey and analysis of
ontology-based software tools for semantic interoperability in iot and
wot landscapes,” in 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT), Feb 2018, pp. 86–91.

[3] T. Lebo, S. Sahoo, and D. McGuinness, “PROV-O: The
PROV ontology,” Tech. Rep., April 2013. [Online]. Available:
https://www.w3.org/TR/2013/REC-prov-o-20130430/

[4] D. Garijo and Y. Gil, “Augmenting prov with plans in p-plan: Scientific
processes as linked data,” in Proceedings of the 2nd International
Workshop on Linked Science, vol. 951. CEUR Workshop Proceedings,
2012.

[5] V. A. F. Almeida, D. Doneda, and M. Monteiro, “Governance challenges
for the internet of things,” IEEE Internet Computing, vol. 19, no. 4, pp.
56–59, July 2015.

[6] Alliance for Internet of Things Innovation, “AIOTI Strategy 2017-2021,”
2017. [Online]. Available: https://aioti.eu/aioti-strategy-2017-2021/

[7] N. Jacobs, P. Edwards, M. Markovic, C. Cottrill, and K. Salt, “Public
sector internet of things deployments: Value, transparency, risks and
challenges,” in Data For Policy. Zenodo, 2019, doi to appear.

[8] M. Markovic, W. Asif, D. Corsar, N. Jacobs, P. Edwards, M. Rajarajan,
and C. Cottrill, “Towards automated privacy risk assessments in iot
systems,” in Proceedings of the 5th Workshop on Middleware and
Applications for the Internet of Things, ser. M4IoT’18. New York,
NY, USA: ACM, 2018, pp. 15–18.

[9] M. Lefrançois, K. Janowicz, A. Haller, S. Cox, D. L. Phuoc, and K. Tay-
lor, “Semantic sensor network ontology,” W3C, W3C Recommendation,
Oct. 2017, https://www.w3.org/TR/2017/REC-vocab-ssn-20171019/.

[10] D. Corsar, M. Markovic, and P. Edwards, “Capturing the provenance of
internet of things deployments,” in Provenance and Annotation of Data
and Processes, K. Belhajjame, A. Gehani, and P. Alper, Eds. Cham:
Springer International Publishing, 2018, pp. 196–199.

[11] J. Singh, T. F. J.-M. Pasquier, J. Bacon, J. E. Powles, R. Diaconu, and
D. M. Eyers, “Big ideas paper: Policy-driven middleware for a legally-
compliant internet of things,” in Middleware, 2016.

[12] J. A. Padget and W. W. Vasconcelos, “Fine-grained access control via
policy-carrying data,” ACM Trans. Reconfigurable Technol. Syst., vol. 11,
no. 1, pp. 31:1–31:24, Feb. 2018.

[13] P. Missier, S. Dey, K. Belhajjame, V. Cuevas-Vicenttı́n, and
B. Ludäscher, “D-prov: Extending the PROV provenance model with
workflow structure,” in 5th USENIX Workshop on the Theory and
Practice of Provenance (TaPP 13), 2013.

[14] F. Z. Khan, S. Soiland-Reyes, R. O. Sinnott, A. Lonie, C. Goble, and
M. R. Crusoe, “Sharing interoperable workflow provenance: A review of
best practices and their practical application in CWLProv,” Dec. 2018,
submitted to GigaScience (GIGA-D-18-00483).

[15] M. Markovic, P. Edwards, and D. Corsar, “Sc-prov: A provenance
vocabulary for social computation,” in Provenance and Annotation of
Data and Processes, B. Ludäscher and B. Plale, Eds. Cham: Springer
International Publishing, 2015, pp. 285–287.

[16] M. Markovic, P. Edwards, M. Kollingbaum, and A. Rowe, “Modelling
provenance of sensor data for food safety compliance checking,” in
Provenance and Annotation of Data and Processes, M. Mattoso and
B. Glavic, Eds. Cham: Springer International Publishing, 2016, pp.
134–145.

[17] S. Villata and R. Iannella, “ODRL information model 2.2,” W3C, W3C
Recommendation, Feb. 2018, https://www.w3.org/TR/2018/REC-odrl-
model-20180215/.

[18] D. Kontokostas and H. Knublauch, “Shapes constraint
language (SHACL),” W3C, W3C Recommendation, Jul. 2017,
https://www.w3.org/TR/2017/REC-shacl-20170720/.

