1 Supplementary Information for Gilfillan et al., Noble gases confirm plume related

- 2 mantle degassing beneath Southern Africa
- 3

4 **Supplementary Table 1:** *List of samples and sample locations depicted on Fig. 1.* Water

5 temperature in °C, pH, Total Dissolved Solids as measured in the field using a Hanna

6 Instruments 991301 portable EC, TDS, pH and temperature meter and a description of the

7 seep morphology are also provided.

Sample Name	Location (Latitude, Longitude)	Temperature (°C)	рН	TDS (ppt gl ⁻¹)	Seep description
A - Baker Farm	-30.69472, 30.04166	Dry well - no present	water		Partially sealed but active gas venting well bore, originally drilled as a groundwater well.
B - Mjaja	-30.75388, 29.97305	23.5	6.95	6.29	Bubbling seep in stream
C - Umtamvuna Mound 2 (UM)	-30.80722, 29.96222	20.9	5.41	2.31	Seep emitting from a 100 m wide, 30 m high travertine mound. No evidence of recent precipitation.
C - Umtamvuna River Spring (URS)	-30.80861, 29.96250	20.2	5.56	2.81	Stream of bubbles seeping from the river
C- East Cape Small Travertine (ECST)	-30.80861, 29.96250	20.5	6.22	3.29	Bubbling spring contained within a 1m diameter travertine cone
C - East Cape Large Travertine (ECLT)	-30.80819, 29.96224	20.1	6.24	3.18	Bubbling spring contained within a 2.5 m diameter travertine cone

8

- 10 Supplementary Table 2: Measured noble gas concentrations in $cm^3(STP)cm^{-3}$. 1 σ errors to
- 11 last significant figure are provided in brackets, with bracketed letters for sample localities
- corresponding to Fig. 1.

Sample	$\delta^{13}C_{CO2}$ (‰)	4 He (10 ⁻⁶)	20 Ne (10 ⁻⁸)	40 Ar (10 ⁻⁵)	
A - Baker Farm 1	-2.0 (2)	96.2 (46)	4.13 (18)	7.83 (29)	
B - Mjaja	-2.0 (2)	26.6 (13)	1.19 (5)	3.71 (14)	
C - Umtamvuna Mound 2 (UM)	-3.4 (2)	0.00480 (15)	0.40 (2)	0.634 (24)	
C - East Cape Large Travertine (ECLT)	-2.9 (2)	0.713 (35)	1.75 (7)	2.87 (11)	
C - East Cape Small Travertine (ECST)	-3.4 (2)	0.290 (9)	2.82 (10)		
C - Umtamvuna River Spring (UM-RS)		0.164 (5)	2.49 (9)		

- 13 Supplementary Table 3: Noble gas isotope ratios, $CO_2/^3He$ and stable isotope values. ³He/⁴He are reported relative to the atmospheric ratio
- 14 (R_A: 1.399×10^{-6} after³⁷). R_c = measured ³He/⁴He corrected for air contamination using equation [1]. $\delta^{13}C_{CO2}$ % = [(¹³C/¹²C_{sample}-
- $^{13}C/^{12}C_{\text{standard}}/(^{13}C/^{12}C_{\text{standard}})] \times 1000$; the standard used is the Vienna PeeDee Belemnite. 1σ errors to last significant figure provided in brackets
- 16 with the letters for sample localities corresponding to Fig. 1.

	³ He/ ⁴ He	³ He/ ⁴ He						$CO_2/^3He$
Sample	(R_m/R_A)	(R_c/R_A)	²⁰ Ne/ ²² Ne	²¹ Ne/ ²² Ne	⁴⁰ Ar/ ³⁶ Ar	³⁸ Ar/ ³⁶ Ar	⁴ He/ ²⁰ Ne	(10^{10})
A - Baker Farm 1 - MAP	3.92 (5)	3.9 (3)	9.98 (3)	0.0304 (2)	961 (4)	0.191 (4)	2311 (149)	0.188 (10)
B - Mjaja 1 - MAP	3.93 (4)	3.9 (3)	9.89 (3)	0.0300 (2)	549 (2)	0.189 (4)	2229 (144)	0.677 (35)
C- Umtamvuna Mound 2 (UM)	2.80 (2)	3.6 (2)	9.79 (3)	0.0292 (2)	298 (3)	0.182 (7)	1.19 (7)	5238 (474)
C - East Cape Large Travertine (ECLT)	3.58 (4)	3.6 (2)	9.77 (3)	0.0292 (2)	302 (2)	0.187 (3)	41.0 (26)	27.7 (14)
C - East Cape Small Travertine (ECST)	3.95 (7)	4.1 (2)	9.79 (3)	0.0288 (2)			10.3 (5)	61.8 (22)
C- Umtamvuna River Spring (UM-RS)	4.27 (8)	4.5 (2)	9.76 (3)	0.0286 (2)			6.59 (30)	101 (4)

- 19 **Supplementary Table 4:** *Results of the high precision analysis of Ne isotopes performed on the ARGUS mass spectrometer.* ²⁰Ne/²²Ne,
- 21 Ne/ 22 Ne uncorrected for the contribution from 20 NeH⁺ and 21 Ne/ 22 Ne corrected for the contribution from 20 NeH⁺ are provided. 1 σ errors to last
- significant figure provided in brackets with the letters for sample localities corresponding to Fig. 1.

Sample	²⁰ Ne/ ²² Ne	²¹ Ne/ ²² Ne uncorrected for ²⁰ NeH ⁺	²¹ Ne/ ²² Ne corrected for ²⁰ NeH ⁺
A - Baker Farm 2a - ARGUS	9.959 (7)	0.02996 (7)	0.02966 (8)
A - Baker Farm 2b - ARGUS	9.961 (7)	0.03003 (5)	0.02976 (6)
B - Mjaja 2a - ARGUS	9.881 (7)	0.03021 (5)	0.02963 (5)
B - Mjaja 2b - ARGUS	9.892 (5)	0.03013 (5)	0.02956 (5)

Supplementary Figure 1: Plot of air corrected ${}^{3}He/{}^{4}He$ (R/R_A) against ${}^{4}He/{}^{20}Ne$ for the 24 Bongwan CO_2 samples (red circles). Also plotted is the atmospheric air value (black square) 25 and mixing lines between the air value and: typical average crust $({}^{3}\text{He}/{}^{4}\text{He} = 0.05 \text{ R}_{A}$ and 26 ${}^{4}\text{He}/{}^{20}\text{Ne} = >5000$ 41), Mid Ocean Ridge Basalt (MORB) mantle (${}^{3}\text{He}/{}^{4}\text{He} = 8$ R_A and 27 ${}^{4}\text{He}/{}^{20}\text{Ne} = >5000$ 46) and Sub-continental Lithospheric mantle (SCLM) (${}^{3}\text{He}/{}^{4}\text{He} = 6$ R_A and 28 ${}^{4}\text{He}/{}^{20}\text{Ne} = >5000$ ${}^{46}\text{)}$. This highlights that the ${}^{3}\text{He}/{}^{4}\text{He}$ and ${}^{4}\text{He}/{}^{20}\text{Ne}$ of the Bongwan CO₂ 29 samples can be explained by mixing between mantle, crustal and atmospheric air components 30 with a consistent mantle-crust mixing ratio, and a ${}^{3}\text{He}/{}^{4}\text{He}$ end member of ~4 R_A. All errors 31 are smaller than printed symbols. 32

Supplementary Figure 2: *Plot of* ${}^{20}Ne/{}^{22}Ne$ against ${}^{38}Ar/{}^{36}Ar$ for the Bongwan CO₂ samples (*red circles*). 1 σ errors associated with each measurement are shown and the atmospheric air (black square) and the mass fractionation line (MFL) are also plotted. All of the Bongwan CO₂ samples exhibit ${}^{38}Ar/{}^{36}Ar$ that are within error of the air value, as are the ${}^{20}Ne/{}^{22}Ne$, other than that of Baker Farm, which exhibits ${}^{20}Ne/{}^{22}Ne$ above air and does not lie on the MFL. 1 σ error envelopes are also plotted.

Supplementary Figure 3: Plot of ²⁰Ne²²Ne against ²¹Ne²²Ne for all of the measured 42 Bongwan CO_2 samples. 1 σ errors associated with each measurement are provided and the 43 44 plot includes lower precision analysis uncorrected for NeH⁺ (red diamonds); higher precision analysis uncorrected for NeH⁺ (red diamonds) and the higher precision analysis corrected for 45 NeH⁺ (red triangles). This highlights that the Mjaja sample is within the error envelope of the 46 low precision measurement, which was not corrected for the ²⁰NeH+ contribution to ²¹Ne. 47 The uncorrected high precision Baker Farm sample plots further above the air-MORB line 48 49 than the low precision measurement. This can be explained by the fact that the high precision 50 analysis was performed on a separate sample of the CO₂ from the Baker Farm well, which 51 was collected at a later time, after the well had been sealed off from the atmosphere for a 52 greater period of time. The approximately 1 hour period of magmatic gas accumulation in the sealed well between sample collection can account for the more mantle enriched signature of 53 54 the uncorrected high precision sample.