Journal of Electromyography and Kinesiology 29 (2016) 21-27

Contents lists available at ScienceDirect

JOURNAL OF

AND

KINESIOLOGY

Journal of Electromyography and Kinesiology

journal homepage: www.elsevier.com/locate/jelekin

Feasibility of using combined EMG and kinematic signals for prosthesis

@ CrossMark

control: A simulation study using a virtual reality environment

Dimitra Blana **, Theocharis Kyriacou ", Joris M. Lambrecht ¢, Edward K. Chadwick?

2 Institute for Science and Technology in Medicine, Keele University, UK
b School of Computing and Mathematics, Keele University, UK
€ Biomedical Engineering Department, Case Western Reserve University, USA

ARTICLE INFO ABSTRACT

Article history:

Received 15 December 2014
Received in revised form 8 May 2015
Accepted 29 June 2015

Transhumeral amputation has a significant effect on a person’s independence and quality of life.
Myoelectric prostheses have the potential to restore upper limb function, however their use is currently
limited due to lack of intuitive and natural control of multiple degrees of freedom. The goal of this study
was to evaluate a novel transhumeral prosthesis controller that uses a combination of kinematic and
electromyographic (EMG) signals recorded from the person’s proximal humerus. Specifically, we trained
a time-delayed artificial neural network to predict elbow flexion/extension and forearm pronation/-

ig;vstrisi.m supination from six proximal EMG signals, and humeral angular velocity and linear acceleration. We eval-
Prosthesis uated this scheme with ten able-bodied subjects offline, as well as in a target-reaching task presented in
Myoelectric an immersive virtual reality environment. The offline training had a target of 4° for flexion/extension and
Transhumeral 8° for pronation/supination, which it easily exceeded (2.7° and 5.5° respectively). During online testing,
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all subjects completed the target-reaching task with path efficiency of 78% and minimal overshoot (1.5%).
Thus, combining kinematic and muscle activity signals from the proximal humerus can provide adequate
prosthesis control, and testing in a virtual reality environment can provide meaningful data on controller
performance.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

There are approximately 5-6000 major limb amputations car-
ried out each year in the UK [12]. Although the proportion of
amputees referred with upper limb amputations is only about
5%, they are a population with high functional demands. Trauma
is the major reason for upper limb amputation, and this is reflected
in the age group affected by the condition, with 66% aged less than
55 years [12]. As a result, loss of the upper limb can have a signif-
icant effect on the ability to work, independence, and overall qual-
ity of life. Amputees who choose to fit a prosthetic limb onto the
remaining arm have two options: a passive (cosmetic) prosthesis,
which offers little functional benefit, or an active prosthesis that
has the potential to restore upper limb function. Active prostheses
are either body-powered, which are controlled by upper body
movements through straps and cables, or myoelectric, which are
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electrically powered and use the residual neuromuscular system
for control.

Myoelectric prosthetic designs are continuously improving,
with several manufacturers recently introducing devices that
include dexterous prosthetic hands with multiple degree of
freedom, e.g. i-Limb ultra by Touch Bionics and bebionic from
RSLSteeper [16]. However, the development of functional and
intuitive control schemes for these devices has not kept pace with
the advancement of the hardware. Commercially available myo-
electric prostheses are controlled by recording electrical signals
(“electromyographic signals” or EMG) generated by the contrac-
tions of residual muscles. They use simple control schemes, where
EMG from a pair of opposing muscles are used to actuate a single
prosthesis motor, with a “mode switch” to transition from one
function to the next [11]. This sequential control method can be
very slow and unnatural compared to able-bodied upper limb
control.

Adoption and use of advanced myoelectric prostheses is cur-
rently limited; in the survey conducted by Biddiss and Chau [3],
20% of participants had abandoned prosthesis use, stating aspects
of prosthesis design such as limited function and ease of control
as important factors in abandonment. To improve functional gain,
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it is necessary to develop advanced control algorithms and signal
processing techniques that would allow the use of more EMG sig-
nals to control multiple functions simultaneously. In Pulliam et al.
[13], EMG from seven proximal muscles was used to predict the
movement of the elbow and forearm, with promising results.
Control could be further improved with measurements of residual
body motions using accelerometers and other sensors, as shown in
Fougner et al. [7], where EMG was combined with accelerometer
data, and Akhtar et al. [1], where EMG was combined with shoul-
der orientation.

In these studies, performance of the control method was evalu-
ated offline, which demonstrates that there is a relationship
between input and output signals that can be exploited for intu-
itive and natural control. However, good offline performance does
not necessarily translate to good performance during use, since
errors in the training are inevitable and may be difficult for the
user to overcome. It is therefore important to test novel control
algorithms with the user in the loop. Cost-effective testing can take
place in a virtual reality environment, where the “virtual prosthe-
sis” user can practice with different control schemes, choose the
preferred method and train in its use, before an actual prosthesis
is fitted [15,9,8,4].

In this study, we developed a transhumeral prosthesis con-
troller that combines EMG and kinematic signals from the proxi-
mal humerus to predict the movement of the forearm. We chose
to use signals from a single inertial sensor on the humerus, and
an array of six EMG electrodes placed around the humerus, so that
sensors could be embedded into a prosthesis socket in the practical
realisation of the method. We also developed a virtual reality envi-
ronment that uses a headset to create an immersive experience
which is easy to learn and can realistically model prosthesis testing
tasks. The specific aims of the project were therefore to test the
feasibility of the virtual reality environment for simulating pros-
thesis control and to evaluate the performance of a novel controller
both offline and during online, user-in-the-loop performance.

2. Methods

Fig. 1 describes the method used in this study. Able-bodied indi-
viduals performed reaching movements with their right arms that
were translated into movements of a virtual arm in a virtual reality
environment. During the movements, EMG and kinematic signals
from the humerus were recorded, as well as elbow and forearm
angles. These data were used offline to train two time-delayed
artificial neural networks (ANN) to predict elbow and forearm
angles from processed humerus EMG and kinematic signals.
Subsequently, the participants performed similar reaching move-
ments, but the elbow and forearm angles of the virtual arm were
now controlled by the trained ANN.

Ten able-bodied subjects with no history of injury to the upper
limbs (seven male, three female, age range 22-35 years) partici-
pated in the study after giving informed consent; the study was
approved by the University Ethics Committee. EMG signals were
recorded from six surface electrodes (Biometrics Ltd, UK) placed
around the circumference of the humerus, with the first electrode
placed on top of the biceps, and the rest at approximately equal
spacings. The position along the humerus was chosen as the loca-
tion of the largest bicep muscle bulk. The EMG signals were ampli-
fied, band-pass filtered between 15 and 450 Hz and sampled at
1000 Hz.

Thorax, humerus and forearm movements were recorded using
three Xsens MTx inertial measurement units (IMU, Xsens
Technologies B.V., the Netherlands). One was placed on the ster-
num, one on the proximal humerus (distal humerus in two of the
subjects with not enough space between the EMG and the top of
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Fig. 1. The two experimental phases of the study: the IMU-control and ANN-control
phase. Shown are the EMG sensors around the circumference of the humerus (grey
ovals), and three IMU (orange boxes, 1: thorax, 2: humerus, 3: forearm). Humeral
angles are calculated by the combination of signals from the thorax and humerus
IMU, and these are used to control the movement of the virtual humerus in the VRE.
Similarly, elbow/forearm angles are calculated by the combination of signals from
the humerus and forearm IMU, and these are used in the IMU-control phase to
control the movement of the virtual forearm in the VRE. These are also used as
output training signals for the ANN, while the input training signals are EMG and
humerus angular velocity and linear acceleration, calculated from the humerus
IMU. In the ANN-control phase, the ANN outputs are used to control the virtual
forearm in the VRE instead of the IMU signals.

the humerus) and one on the distal forearm. The humerus and
forearm units were placed facing upwards when the humerus
was at 90° of flexion and zero rotation, and the forearm at full
pronation. We did not consider wrist movement in this study, so
the participants kept their wrist at the neutral position with the
use of a strap. Data were sampled at 50 Hz from the IMU.

Each IMU comprises a 3D accelerometer, a 3D gyroscope and a
3D magnetometer. Data from the three sensors are combined to
measure the 3D orientation of each sensing unit with respect to
a global, earth-based frame of reference. Thoracohumeral and
elbow angles were calculated using the relative orientation of the
three sensing units and a calibration routine to define the anatom-
ical frames of reference of the thorax, humerus and forearm. This
calibration routine is described in Cutti et al. [6] and, briefly, con-
sists of the participant being asked to sit with the back straight and
the humerus kept alongside the body and performing three
five-second trials: (a) a static trial, (b) repeated flexion-extension
of the elbow keeping a constant pronation/supination angle
(90°), and (c) repeated pronation-supination of the forearm keep-
ing a constant elbow flexion angle (90°).
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Thoracohumeral motion was described according to the ISB rec-
ommendations as a sequence of three Euler rotations: plane of ele-
vation, elevation angle and axial rotation [18]. These angles were
used to translate the movement of the participant’s humerus into
the movement of the virtual humerus. Similarly, elbow flex-
ion/extension and forearm pronation/supination angles were used
to translate the movement of the participant’s forearm into the
movement of the virtual forearm during the first part of the exper-
iment, and provide training data for the ANN. During the second
part of the experiment, i.e. the user-in-the-loop testing of the
ANN, the elbow and forearm angles measured by the IMU were
not used in the virtual environment, but were recorded to quantify
the online performance of the ANN. It is important to note that
during everyday use of the prosthesis, only the IMU on the
humerus would be needed and the calibration described above
would not be performed; the multiple IMU and calibration routine
are only necessary for testing in the virtual reality environment.

The participants were asked to perform reaching movements
from a self-selected “initial” position on their lap to various loca-
tions in the space in front of them. While performing these move-
ments, they wore a virtual reality headset, the Oculus Rift DVK1
(Oculus VR, Inc., CA, USA), which gave them a first-person view
of a virtual person sitting at a desk and tracked their head move-
ments. The virtual reality environment (VRE) was built using
GameStudio (Conitec Datasystems, Inc., La Mesa, CA, USA).
Targets shown in the VRE directed the reaching movements of
the participants. The target was shown as a cylinder held in the
hand of a “target arm”, a less opaque arm than the virtual arm con-
trolled by the participant (Fig. 2). The targets were located within a
virtual rectangular workspace defined in a coordinate frame origi-
nating at the virtual shoulder, with the x-axis pointing laterally, the
y-axis superiorly and the z-axis posteriorly. In this frame, the
workspace limits were x: —10 to 20 cm, y: —10 to 20 cm and z:
—50 to —40 cm. The targets were oriented according to the prona-
tion/supination angle of the target arm, and were either 30° (palm
facing upwards) or 90° (neutral) of pronation. The neutral prona-
tion angle was chosen because it allows the performance of activ-
ities of daily living such as holding a fork or spoon, which was
identified in a survey performed by Atkins et al. [2] as one of the
top five activities prosthesis users would like to be able to perform.
Similarly, the orientation of the palm facing upwards was chosen
because it would allow the prosthesis user to receive small objects
such as change during shopping. When the participant moved the
virtual arm to within 5 cm of the target location and 30° of the

Fig. 2. The virtual reality environment, with a first-person view of a virtual person
sitting at a desk. The participant controls the arm that is fully opaque, and tries to
match the position and orientation of the less opaque (“target”) arm.

target orientation, the target changed colour to indicate they were
within the target, which they then had to maintain for 0.5 s. If they
were successful, a new target appeared. The participants were
required to return to the initial position and then reach to the
new target.

At the start of the experiment, the participants were given the
opportunity to familiarise themselves with the virtual environ-
ment. They practiced controlling the virtual arm and attaining tar-
gets in random locations within the workspace, with a random
choice of one of the two orientations, for as long as they required.
They were asked to choose a comfortable speed for the movements
and keep it roughly the same for the duration of the experiment.
The familiarisation took place in trials of 60s, to avoid fatigue.
When they felt ready, they performed a series of 30-s trials to col-
lect training data for the ANN (“IMU-control phase”). For these tri-
als, they were given a predetermined set of 32 target locations,
evenly distributed within the workspace, first with 30° and then
90° of target pronation, a total of 64 targets. The kinematic and
EMG data recorded during the IMU-control phase were processed
every 50 ms to be used as inputs and outputs of the ANN. The kine-
matic inputs to the ANN were the raw accelerometer and gyro-
scope data from the IMU placed on the humerus of the
participant. The six raw EMG signals were detrended and rectified.
An exponential moving average filter was then applied to both
kinematic data and processed EMG from the last 150 ms, and the
mean was calculated. In the ANN-control phase, the outputs of
the ANN were post-processed in a similar way as the inputs for
smoothing and increased usability: data from the last 0.5 s were
filtered using an exponential moving average filter and averaged.

Two ANN were trained, one for elbow flexion/extension, and
one for pronation/supination. They were both two-layer feedfor-
ward ANN with a sigmoidal function at the hidden layer and a lin-
ear function at the output layer. Three input time delays were used
to model the delay between EMG activity and arm movement.
Based on the number of inputs and outputs, the number of neurons
in the hidden layer was initially chosen to be six. After training, the
root mean squared error (RMSE) between the measured angles and
ANN-predicted angles was required to be less than 4° for flex-
ion/extension, and 8° for pronation/supination. The accuracy of
the flexion/extension angle determines the hand position error,
and 4° roughly translates into 2 cm of position error, which can
be easily overcome with a small movement of the trunk or
humerus. The error tolerance for pronation/supination was dou-
bled because it is generally more difficult to predict the pronation/-
supination angle from the movement of the humerus and the
muscles available following a transhumeral amputation [13]. A
small number of neurons in the hidden layer was chosen because
a larger number could cause the network to overfit the training
data and not generalise well to new data. If the required accuracy
could not be achieved with six neurons in the hidden layer, the
number would be increased until the prediction was adequate.

After the ANN were trained, the participants were asked to per-
form ten 30-s trials with randomized targets in different locations
than those used for training (“ANN-control phase”). The online pre-
diction errors of the ANN were quantified using the RMSE between
the angles measured using the Xsens and the ANN-predicted
angles. Additional metrics that describe more detailed perfor-
mance aspects of the movements in the VRE were calculated, both
during the IMU-control and ANN-control phases. These are
described in detail in Williams and Krisch [17]:

e Throughput (bits/s) is a measure of the amount of information
the participant can convey, and is defined as the index of diffi-
culty of a specific target divided by the movement time required
to acquire the target. The index of difficulty is given by:
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ID = log,(D/W + 1) where D is the distance from the initial
position to the target and W is the target size (set to 10 cm
for all targets in this experiment).

Overshoot is the measure of the ability of the participant to
accurately control the velocity of the virtual arm. It is defined
as the number of occurrences of the virtual hand being within
the target and then leaving the target before 0.5 s, divided by
the total number of targets.

Path efficiency is a measure of the straightness of the path to
the target. It is calculated by dividing the straight-line distance
from the initial position to the target by the actual distance
travelled by the virtual hand.

The target-reaching task, ANN training and calculation of RMSE
and movement metrics were implemented in Matlab (Mathworks,
Inc., Natick, MA, USA).

3. Results

All participants felt comfortable in the use of the virtual reality
environment within about 15 min of familiarisation. For subject 6,
the forearm pronation/supination angle could not be measured
even following repeated calibration of the IMU, therefore it was
not used in the task (i.e. only position, and not orientation was
used to determine target acquisition). The data collection for
ANN training (IMU-control phase, 64 preset targets) was com-
pleted in less than 10 min for all participants (median: 6 min,
min: 5 min, max: 11 min).

Fig. 3 shows an example of the data used to train the ANN. Panel
A shows the rectified and filtered EMG data, and panels B and C
show the humerus IMU velocity and acceleration data. These 12
signals were the inputs to the ANN, while the outputs were elbow
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Fig. 3. An example of the input (panels A, B and C) and output (panel D) ANN
training data. Panel A shows the six processed EMG signals, panel B shows the
angular velocity of the humerus IMU, and panel C shows the linear acceleration of
the humerus IMU. Panel D shows the elbow flexion/extension and forearm
pronation/supination calculated based on the IMU on the humerus and forearm.

flexion/extension and forearm pronation/supination, calculated
from the IMU on the humerus and forearm, shown in panel D.
For all participants, six neurons in the hidden layer were sufficient
to achieve the required offline accuracy, as shown in Table 1. ANN
training with such as small number of neurons was extremely fast
(less than 1 min) so the overall training phase required less than
15 min for all participants.

Table 1 also shows the RMS error between the IMU-measured
angles and the ANN-predicted angles during the ANN-control
phase. As the participants had to use a novel control algorithm, dif-
ferences in the input signals between training and testing resulted
in larger online errors.

Fig. 4 shows the distribution of the values of the Index of
Difficulty used in the experiment. The target size was fixed, so this
depended entirely on the distance to target. The workspace used in
the IMU-control phase was slightly larger than the workspace used
in the ANN-control phase (so that the ANN did not have to extrap-
olate during use), thus the histogram for targets seen during train-
ing (black bars) includes slightly higher values than the targets
seen during testing (median for IMU: 2.76 bits, interquartile range:
2.50-2.94 bits, median for ANN: 2.55 bits, interquartile range:
2.26-2.76 bits).

Table 2 shows the total number of targets hit by each partici-
pant during the ten 30-s trials of the ANN-control phase. (The
number of targets hit during the IMU-control phase was 64 for
all participants.)

Fig. 5 summarises the three movement metrics for each subject
during the two phases of the experiment: the IMU-control phase
(IMU, dark bars), and the ANN-control phase (ANN, light bars).
Throughput (panels A and B) was generally low, since it was
limited by the values of Index of Difficulty, and the self-selected
movement speed (median for IMU: 0.74 bits/s, interquartile range:
0.65-0.84 bits/s, median for ANN: 0.55 bits/s, interquartile range:
0.55-0.62 bits/s, Wilcoxon rank sum test p =0.011). Overshoot
(panels C and D) was near zero, suggesting good control of
movement speed (median for IMU: 0.015, interquartile range:
0.011-0.019, median for ANN: 0.015, interquartile range:
0.003-0.033, Wilcoxon rank sum test p =0.791). Lastly, when
the participants controlled the virtual forearm with the IMU they
showed better path efficiency than the ANN controller (panels E
and F, median for IMU: 0.78, interquartile range:0.69-0.83, median
for ANN: 0.58, interquartile range: 0.55-0.70, Wilcoxon rank sum
test p = 0.005).

The movement metrics were calculated for the targets acquired,
but they do not give any information about targets that were not
acquired, e.g. it is possible that during a 30-s trial, the participant
reached one target in the first 3 s, and spent the remaining 27 s
unsuccessfully reaching for the second target. Consequently, we
looked at the time required to reach the target (“time to target”

Table 1
The offline and user-in-the-loop prediction error of the ANN for each subject. “flex/
ext” is elbow flexion/extension, and “pro/sup” is forearm pronation/supination.

Participant  Offline flex/ Offline Online flex/ Online
ext (°) pro/sup (°) ext (°) pro/sup (°)

S1 2.8 7.5 15.8 304

S2 2.9 4.8 84 16.0

S3 34 7.9 115 271

S4 2.4 5.9 17.6 335

S5 2.6 59 114 19.5

S6 3.0 N/A 20.8 N/A

S7 33 7.2 171 33.8

S8 2.0 34 6.1 134

S9 2.1 3.8 9.0 16.1

S10 2.5 34 194 20.2
mean (std) 2.7 (0.5) 5.5(1.8) 13.7 (5.1) 23.3(7.9)
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Fig. 4. The distribution of the values of the Index of Difficulty, for the targets used
during the IMU-control phase (IMU) and the ANN-control phase (ANN).

in Fig. 6) and the time remaining in the trial after the last target
was acquired (“time remaining in trial” in Fig. 6), to ensure that
the time remaining was less than the time to target. In the
IMU-control phase (panel A), the median time to target was 3.9 s
(interquartile range: 3.2-4.8 s), while the median time remaining
in trial was 2.6s (interquartile range: 1.8-4.7s). In the
ANN-control phase (panel B), the median time to target was 4.3 s
(interquartile range: 3.5-5.5 s), while the median time remaining
in trial was 2.8 s (interquartile range: 1.4-6.8 s). In both cases, a
left-sided Wilcoxon rank sum test showed that the time remaining
was less than the time to target (p < 0.001).

4. Discussion

The results of this study show that a virtual reality environment
is a suitable way to evaluate novel prosthesis control algorithms, as
participants accommodated to the VRE easily and were able to
complete the training tasks within a relatively short amount of
time. The immersive environment produced no negative effects
in any users and all users were able to perceive the depth aspect
of the task and learned to complete the 3D target reaching task.

After a training phase that took less than 15 min for all partici-
pants, the offline ANN accuracy exceeded the target of 4° elbow
flexion/extension and 8° forearm pronation/supination (mean of
2.7° and 5.5° respectively). Similar results are described in
Akhtar et al. [1] (4.1° and 5.4° respectively) when ANN were
trained with shoulder orientation and EMG as inputs, but for a
single reaching orientation.

Although the offline ANN training errors were within the
required tolerance, the online performance showed larger

Table 2
The total number of targets hit by each participant during the ANN-control phase.
This phase consisted of ten 30-s trials for all participants.

Participant Number of targets hit
S1 62
S2 44
S3 49
S4 53
S5 28
S6 35
S7 40
S8 55
S9 53
S10 40
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Fig. 5. Summary of the movement metrics. Panel A shows the throughput for each
subject, in the two experiment phases: IMU-control (IMU, dark bars), and ANN-
control phase (ANN, light bars). Panel B shows the mean throughput for each
experiment phase. Panel C shows the overshoot per subject, and Panel D shows the
mean for each experiment phase. Similarly, Panel E shows the path efficiency per
subject, and Panel F shows the mean for each experiment phase.

prediction errors (mean of 13.7° and 23.3° respectively). This is
to be expected as users have to learn to use a new control algo-
rithm when performing the tasks with the ANN controller as
opposed to the training method, and emphasises the importance
of evaluating any control algorithm for its user-in-the-loop perfor-
mance in addition to examining offline fitting errors. However, the
online errors are similar to ANN prediction errors in the literature:
in Pulliam et al. [13], ANN were trained to predict the elbow flex-
ion/extension and forearm pronation/supination angles using only
EMG as input signals, but for a larger variety of movements; the
offline training errors were 15.7° and 24.9° respectively.
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Fig. 6. Histogram of the time to target and the time remaining in each trial, after
the last target was hit. Panel A shows the IMU-control phase, and Panel B shows the
ANN-control phase.
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When controlling the virtual prosthesis with the ANN, users
were able to complete the tasks with similar performance metrics
to the training phase, although throughput and path efficiency
were slightly lower. Scheme et al. [14] used similar movement
metrics for the evaluation of an EMG-controlled transradial pros-
thesis, with a similar range of values for the Index of Difficulty
(from 1.59 to 3.46 bits). They compared two control schemes and
found throughput values of about 1.1 bits/s, path efficiency of
0.77-0.87 and overshoot 0f0.21-0.56. In our study, the participants
were not instructed to perform the task quickly, but at a comfort-
able speed, which resulted in slower movements (reflected in the
throughput of 0.55 bits/s) but higher accuracy (overshoot of just
0.015). The path efficiency of 0.78 was similar to the results of
Scheme et al. [14].

Although the VRE used in this study allowed investigation of
prosthesis controller performance in 3D, there were some limita-
tions. The workspace was quite small, to allow the users to easily
see the targets without much head movement; with longer prac-
tice in the VRE, users could become more confident in their head
movements, and the target space could be expanded to a much lar-
ger area. Also, the range of tasks examined was somewhat limited
by the lack of interaction with the environment allowed by the
VRE. That is, the tasks were limited to goal-directed reaching
movements, which although commonly used to assess arm reach-
ing movements, do not represent functional tasks such as activities
of daily living. Lambrecht et al. [9] have developed a VRE that sim-
ulates prosthesis dynamics and virtual functional assessment tasks
such as the Box and Block Test, and this could be used in future
experiments. Further development of the VRE could include a hap-
tic robot such as the Haptic Master, to allow users to feel the
weight and movements of the prosthesis, and forces from objects
in the environment.

Furthermore, the reaching tasks themselves were simplified by
the restriction of possible forearm orientations. Since most muscles
involved in pronation/supination are not available following a
transhumeral amputation, it is not possible to accurately predict
a large number of hand orientations, as discussed in Pulliam
et al. [13]. The choice of a fully supinated and neutral orientation
allowed us to take advantage of the supinating action of the biceps
to distinguish the two. Expanding the input sensors to include
intramuscular electrodes could allow us to record from the bra-
chialis as well, which flexes the elbow but does not act on the fore-
arm, thus helping the pronation/supination prediction.

In addition to the limitations of the platform, it must be noted
that all testing in this study took place with normally-limbed vol-
unteers and not amputees. The participants thus had normal mus-
cle morphology from which to record EMG signals, and it remains
to be seen what compromise will be necessary in the case of tran-
shumeral amputees. For this reason, the placement of EMG elec-
trodes in this study was not based on the identification of
specific muscles, but electrodes were simply placed fairly uni-
formly around the proximal humerus. The ANN thus worked with
different combinations of muscles in different subjects, providing
assurance that it could function with an arbitrary set of inputs,
as long as those inputs are repeatable. This gives some confidence
that control is feasible even in amputees with abnormal muscle
morphology in the proximal humerus.

With regard to the practical realisation of such a system, the
neural network used in this study was computationally inexpen-
sive, and it would be simple to implement on an embedded system
that could be part of the prosthesis. Following initial training, the
network would be able to run fast enough that real-time control
with sufficiently low latency would be achievable.

Moreover, for a practically-realisable system, consideration of
sensor placement becomes important. The choice of restricting
EMG sensors to the proximal humerus, rather than also including

shoulder muscles, means that the sensors could all be embedded
within the socket of the myoelectric prosthesis. This would also
ensure that the EMG signals are fairly repeatable; to account for
small changes, a short calibration routine could be developed that
adjusts the ANN weights each time the prosthesis is donned.

To assess the feasibility of a self-contained device, we have cho-
sen to use kinematic signals only from the humerus IMU, and not
use data from the thorax sensor. However, it should be noted that
subjects were seated during the performance of the tasks in this
experiment. In a real system, the user may well be walking or mov-
ing in some way and this will affect the kinematic signals from the
inertial sensors. In order to reject these confounding signals, an
additional sensor could be placed somewhere on the trunk such
as the anterior shoulder region, and used as a reference. This
would, of course, increase the complexity of the system, in partic-
ular with regard to donning and doffing the prosthesis.

Work to improve the prediction errors can be focussed on three
main areas: user training, neural network structure, and optimisa-
tion of sensor placement. The training period for users in this study
was short, and it is expected that increasing the training time
would lead to a decrease in prediction errors, although care needs
to be taken not to fatigue the participants muscles. More advanced
network structures such as echo-state networks that are particu-
larly well-suited to modelling time-series data may also bring
improvements to prediction error without increasing the computa-
tional burden [19]. Finally, positioning of EMG electrodes and iner-
tial sensors was carried out with a focus on convenience. Some
optimisation of the location of those sensors (including a move
to intra-muscular EMG electrodes) should achieve an improve-
ment in performance, albeit with a cost in terms of simplicity.

Regarding translation of these methods from normally-limbed
participants to transhumeral amputees, the question arises of
how to collect the training data, where the normal distal limb is
not available. In this case, the contralateral limb could be used
for training, which was demonstrated in able-bodied participants
by Muceli and Farina [10] and was shown to be a feasible method
when contralateral kinematic data are available. For bilateral
amputees, training could be achieved with teacher imitation, a
modality used in Castellini et al. [5], where the amputee imitates
the movements of an able-bodied teacher, whose kinematics are
used as a target for ANN training. Alternatively, a model-based
training approach could be investigated, which involves a muscu-
loskeletal model representing the amputee limb and prosthesis.
This could be used to develop an initial controller, that could then
be further improved by online adaptation of the ANN.

5. Conclusions and further work

We have shown that the use of a virtual reality environment for
testing prosthesis control algorithms provides meaningful data on
controller performance, and that the combination of kinematic and
muscle activity signals from the proximal humerus can be used to
provide adequate control of a simulated prosthetic device. Further
work will focus on development of the VRE to include object inter-
action; optimisation of signal processing methods, sensor place-
ment and controller training to reduce prediction errors; and
finally expansion of testing and development work to include
amputee participants to assess the effects of variable limb mor-
phology on controller performance.
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