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ABSTRACT
We describe an applied methodology to build fuzzy models of geographical expressions, which are meant to be used for natural
language generation purposes. Our approach encompasses a language grounding task within the development of an actual data-
to-text system for the generation of textual descriptions of live weather data. For this, we gathered data from meteorologists
through a survey and built consistent fuzzymodels that aggregate the interpersonal variations found among the experts. A subset
of the models was utilized in an illustrative use case, where we generated linguistic descriptions of weather maps for specific
geographical expressions. These were used in a task-based evaluation to determine howwell potential readers are able to identify
the geographical expressions grounded on the models.
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1. INTRODUCTION

The abundance of data that surrounds our daily lives has allowed the
emergence of several disciplines focused on researching how to bet-
ter communicate to people the relevant information heldwithin raw
data. One such field is natural language generation (NLG), which
studies the problem of how to generate texts from data that can be
useful to human readers [1,2]. Within NLG, systems that gener-
ate texts from non-linguistic data are known as data-to-text (D2T).
This kind of systems have become rather popular in recent times,
thanks to their extensive application commercially [2,3] in a wide
variety of domains.

Most D2T systems provide texts or reports that describe time series
data, and plenty of examples can be found in the literature, e.g.,
in weather forecasting [4–6], health [7,8], or industry [9], among
many others (see the following reviews for more references [1,10]).
Alongside time series, geographical data has also been treated in
D2T, although not as extensively as time series data [11].

An essential task in the conception of D2T systems is lan-
guage grounding, i.e., determining how words and expressions are
anchored in data [12,13]. There are several ways for solving this
task, such as using heuristics or machine learning algorithms on an
available parallel corpora of text and data [14] to create models of
the expressions of interest anchored on the underlying data [15],
getting experts to provide these mappings, or gathering data from

*Corresponding author. Email: josemaria.alonso.moral@usc.es

writers or readers that can be used for the application of mapping
algorithms.

For instance, D2T systems that generate texts from time series data
generally include temporal expressions to refer to relevant events
or patterns found in those data. Performing language grounding of
temporal expressions in this kind of systems allows ensuring that
generated texts include words whose meaning is aligned with what
writers understand or what readers would expect [15,16]. Like-
wise, in systems that produce texts from geographical data, hav-
ing a good geographical model is essential to generate expressions
that refer properly to specific locations and regions of interest.
Moreover, when outliers are present in any resource that is used to
create the data-to-words mapping, building language models that
remove inconsistencies can also be a challenging part of language
grounding which can influence the development of a successful
system [15].

Quite often, temporal and geographical expressions that need to
be included in texts generated by D2T systems are vague, such
as “in the evening” [4] or “southwestern areas” [17]. In situa-
tions where vagueness (and thus borderline cases and gradual
concepts) is present, fuzzy sets have been proposed as a tool
that allows to model linguistic expressions for NLG/D2T systems
[2,18,19]. However, current existing D2T systems do not make use
of such techniques, with the exception of GALiWeather [5], which
provides a basic use of fuzzy sets tomodel temporal expressions and
quantifiers.Pdf_Folio:970
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In this context, this paper describes the methodology we have fol-
lowed to perform a language grounding task of vague geographical
expressions, which is part of a larger project to build a D2T system
that generates descriptions of live weather datamaps. Our approach
involves a data gathering task, the creation of fuzzy models that
aggregate the opinion of several experts, and a use case to check the
appropriateness of the models for potential end-users of the D2T
system to be developed.

It is common (and highly recommended) practice to perform lan-
guage grounding based on expert data in order to build a D2T sys-
tem. However, our proposal considers two additional, yet highly
relevant, elements involved in human communication: vagueness
in language and receivers of information, i.e., readers in our case.
Thus, the novelty of our approach lies in the conjunction of these
three elements: building i) vague geographical expressions based on
ii) expert data, whose use is tested against iii) potential readers even
before the actual D2T system has been developed.

The rest of this manuscript is organized as follows. Section 2 pro-
vides a critical review of the state of the art regarding the use
of geographical references in D2T systems. Based on this review,
Section 3 describes in detail the general context and the motivation
of this work. Sections 4 and 5 explain the methodology we have
followed to gather data from meteorologists and build fuzzy mod-
els for a set of geographical expressions. In Section 6 we present a
practical use case and a task-based evaluation of these models with
actual users. Finally, Section 7 provides some concluding remarks.

2. RELATED WORK

The field of NLG is extensive, with many different kinds of appli-
cations and systems for many different purposes like generation of
textual reports from data, summarizing different textual sources,
generating dialogue, narratives, or even poetry [1]. In our case, we
are focusing on a very specific topic, D2T systems whose input data
are geographically characterized and whose generated texts include
geographical expressions that refer to the occurrence of certain
events found in the data (e.g., “rain in Northern Spain” or “strong
winds in Northeastern Scotland”).

Although this kind of references were introduced decades ago by
the system FoG [6], RoadSafe can be considered the most recent
and representative example of this kind of systems [20,21]. This

system used weather forecast data to generate textual forecasts for
road maintenance purposes. These reports included temporal and
geographical expressions that helped identify where and when cer-
tain relevant phenomena would take place, with the purpose of
helping maintenance teams to keep the affected roads in a good
condition (see examples of such expressions in Figure 1). Thus,
developing RoadSafe required an extensive study on how to gen-
erate good geographical expressions that referred properly to the
geography underlying the relevant information extracted from the
input data.

Concretely, RoadSafe’s approach to generating geographical refer-
ring expressions is based on standard techniques from geographic
information systems (GIS), that divide the underlying geography
of the events using different spatial schemas, or reference frames
[22], which in turn are composed of non-overlapping partitions
(known as descriptors). For instance, the reference frame Direction
is composed of the descriptors “northeast,” “southwest,” etc., and
the frame Coastal proximity is composed of the descriptors “coast”
and “inland.”

Once the numeric limits of each descriptor are defined for each
frame using plate carrée coordinates (latitude and longitude), each
data point can be characterized by a set of descriptors (e.g., “south-
west” and “coast”). Then, an algorithm that generates geographical
referring expressions selects the best descriptor set that describes
the area formed by the subset of points that represent the event.

Inmore recent work, the geographical model used by RoadSafe was
extended to include named spatial references, which, according to
an study of different corpus collections, are the ones that truly pre-
dominate [11]. Moreover, the previous reference proposed a geo-
graphical referring expression generation algorithm that integrates
the “name” reference frame with the rest of RoadSafe’s frames. For
this, the proposal in [23] addresses the differences between abso-
lute and relative references and a model based on mereology is
proposed, where named descriptors are combined with descriptors
from other reference frames (e.g., “southwestern Moray”).

The described approaches provide good models to generate proper
geographical referring expressions based on a set of reference
frames. However, in all cases the underlying models were devel-
oped based on a crisp partitioning of the geography of interest.
Establishing exact limits between descriptors can be considered a
non-intuitive assumption. For instance, according to the previous

Figure 1 Examples of texts generated by RoadSafe [17].
Pdf_Folio:971
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approaches, if a village is located in the border between two descrip-
tors, depending on the spatial granularity of the data, it can be pos-
sible to assign opposing descriptors (e.g. “coast” and “inland”) to a
pair of almost overlapping points. Thus, if we consider the vague-
ness inherent to even the simplest geographical references, such as
“north,” we can not set borders of geographical references with pre-
cision [17].

Under this light, the limitations that characterize the geographical
models used in previousD2T systems are an important incentive for
searching other approaches that model imprecision or uncertainty
whenmanaging vague geographical references. In fact, the problem
of vagueness treatment in geographical references is not limited to
D2T systems, and a rather extensive discussion of this problem has
existed in the GIS field since long ago [24]. In this sense, fuzzy sets
theory has been applied in many cases to address vagueness in geo-
graphical concepts and spatial relations, e.g., [25–27].

Likewise, as we mentioned in Section 1, fuzzy sets have also been
proposed in amore general way to be used inD2T systems tomodel
vague terms [2,18,19]. To our knowledge, as of today the only D2T
system which uses this kind of techniques and has been deployed
in a real environment is GALiWeather [5]. There exist, however, an
important number of use cases that apply fuzzy sets to extract lin-
guistic descriptions of data, which in occasions are realized through
template-based text generation methods [2,10].

3. MOTIVATION

Given the limitations in terms of vagueness modeling that charac-
terize previousD2T systems that generate texts fromgeo-referenced
data, themainmotivation of this work is to improve themodeling of
vague geographical references for NLG purposes. Our objective is
to establish a methodology to create models of vague geographical
geographical references and algorithms of geographical referring
expressions based on those models, through the use of fuzzy sets.

Since D2T is an eminently applied field, where advances at a
research level are often related to the development of actual systems,
in our case the methodology we propose is encompassed by the
development of a D2T system to generate textual descriptions of the
meteorological state in a map, using data provided by MeteoGalicia
[28]. The generated descriptions will include geographical referring
expressions that will allow to identify relevant meteorological phe-
nomena in maps, such as temperature, wind, and sky state.

Within the development of the aforementioned D2T system, this
paper describes the language modeling task of the geographical
expressions of interest, which will be used in the text generation
process. Moreover, the methodology here described is based on the
ideas introduced in [29] and [30], which will allow to consolidate
new ways of applying fuzzy sets theory to D2T in a practical way.

4. GATHERING DATA FROM EXPERTS

While it is common to perform language grounding from a parallel
set of text and data, and analyze the meaning of words and expres-
sions to be modeled, in our case this kind of resource was not avail-
able. On the one hand, we did not have access to an extensive data
set (e.g., texts of weather forecasts and prediction data) on which
to perform such analysis. On the other hand, our plan is to build a
newD2T system to provide textual descriptions of liveweather data.
Thus, the approach we followed consisted in interacting directly

with the experts that manually produce written information about
weather.

4.1.  The Survey

Given that our aim is to model geographical expressions, we asked
the head of the forecasting department to provide uswith a list of the
most frequently used geographical references for weather forecasts.
Based on this list, we prepared a survey similar to the one described
in [30], which was forwarded among the experts within the weather
agency. In this survey, subjects were asked to draw on a map of the
region of Galicia (displayed under aMercator projection) a polygon
representing a given geographical reference (see Figure 2).

Subjects were provided with a list of 24 descriptors, which appeared
in random order. In this list, 20 out of the 24 descriptors are com-
monly used in the writing of weather forecasts by experts and
include cardinal directions, proper names, and other kinds of ref-
erences such as mountainous areas, parts of provinces, etc. (see
Table 1 for a complete taxonomy of the descriptors). The remaining
four expressions were added to study intersecting combinations of
cardinal directions (e.g., exploring ways of combining “north” and
“west” for obtaining a model that is similar to “northwest”), and are
out of the scope of this paper, since for our current purpose we are
only interested in descriptors that are actually used by meteorolo-
gists when they write forecasts.

4.2. Results and Qualitative Data Analysis

The survey was completed by eight experts,1resulting in a total of
192 drawings (160 without the non-considered descriptors). At a
general level, we had hypothesized that experts would be rather
consistent, given their professional training.We also expected some
variation among the different answers and the reduced number of
meteorologists participating in the survey. We have observed that
this is clearly the case; the polygons drawn by the experts are rather
concentrated and therefore there is a high agreement among them.

For instance, Figure 3 shows a representation of the answers given
by the meteorologists for the cardinal direction “Eastern Galicia”
and a contour map that illustrates the percentage of overlapping
answers. Likewise, Figure 4 shows the same representations of the
answers by experts for a different expression, “Atlantic regions.”

With the exception of cardinal directions, most of the descriptors
in Table 1 focus on very specific areas, such as those categorized
as “Mixed.” Some exceptions to this rule are the “Inland Galicia”
descriptor, or the mixed coastal + name descriptors like “Atlantic
Coast.” We have also found that, in a few cases, descriptors are
almost equivalent to others. This occurs to “Atlantic Coast” and
“Atlantic Regions,” but also to “Northern Galicia” and “Northern
Third,” which are very similar in shape and size.

5. BUILDING FUZZY GEOGRAPHICAL
DESCRIPTORS

In Figures 3 and 4, the contour plots could be taken as the basis
for the semantics of their corresponding expressions, with a core
region that is accepted by the majority, and a gradual decay as one

1 These results were compiled into a data set resource, which has been
thoroughly described [38] and can be retrieved online [39].
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Figure 2 Screenshot of the survey that the meteorologists completed (translated from Spanish).

Table 1 List of geographical descriptors in the survey.

Category Spanish English Translation
Cardinal Directions Norte de Galicia, Sur de Galicia,

Oeste de Galicia, Este de
Galicia, Tercio norte, Extremo
norte, Noroeste de Galicia,
Noreste de Galicia, Suroeste de
Galicia, Sureste de Galicia

Northern Galicia, Southern
Galicia, Western Galicia,
Eastern Galicia, Northern third,
Extreme North, Northwestern
Galicia, Northeastern Galicia,
Southwestern Galicia,
Southeastern Galicia

Inland/Coastal Interior de Galicia Inland Galicia
Named Rías Baixas, Comarcas atlánticas Rías Baixas, Atlantic Regions

Direction + Name Oeste de A Coruña, Oeste de
Ourense, Sur de Ourense, Sur
de Lugo

Western A Coruña, Western
Ourense, Southern Ourense,
Southern Lugo

Inland/Coastal + Name Litoral Atlántico, Litoral
Cantábrico, Litoral norte,
Interior de Coruña, Interior de
Pontevedra

Atlantic Coast, Cantabrian
Coast, Northern Coast, Inland
A Coruña, Inland Pontevedra

Mountain Area + Name Áreas de montaña de Lugo,
Áreas de montaña de Ourense

Mountainous Areas in Lugo,
Mountainous Areas in Ourense

moves to the outer periphery of the outlined regions. Thus, in our
case, fuzziness stems from the interpersonal differences among the
meteorologists.

Following this notion, we have created fuzzy models that aggre-
gate the opinions of the experts for each descriptor. The method we
used for thismodeling task is an improvement on the heuristic algo-
rithmdescribed in [30], which produced rawmodels based on point
sampling and polygon intersection counting, without any enforced
conditions. Our algorithm is preceded by a simple filtering of the
drawings.

5.1. Filtering Outliers

As we discussed above, the drawings made by the meteorologists
are very consistent visually, but in some cases we observed slight

inconsistencies. In order to maintain the high consistency that is
found in the answers for most descriptors, we applied a simple filter
to the polygon drawings, which consisted in discarding answers out
of the [mean ±2*standard deviation] interval in terms of size and
centroid location.

5.2. Characterization of a Fuzzy
Geographical Descriptor

Using the filtered data, we aim to build fuzzy geographical descrip-
tors which are simple and consistent.

Definition 1. Fuzzy geographical descriptor, G:

G = {S,K, 𝜇G} (1)
Pdf_Folio:973
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Figure 3 Representation of polygon drawings by experts and associated contour plot showing the percentage of
overlapping answers for “Eastern Galicia.”

Figure 4 Representation of polygon drawings by experts and associated contour plot showing the percentage of
overlapping answers for “Atlantic regions.”

Formally, we define a fuzzy geographical descriptorG (e.g., “South-
ern Galicia”) as a set of three elements: a support area S, a kernel
area K, and a fuzzy membership function 𝜇G, which evaluates the
degree in which a point in a map (p = (x, y)|x, y ∈ ℝ) can be con-
sidered part of G:

𝜇G ∶ {ℝ,ℝ} → [0, 1] (2)

Based on 𝜇G,2 K and S can be defined as:

K = {p} |𝜇G
(
p
)
= 1 (3)

 
2For simplicity, we will refer to 𝜇G

(
p
)
instead of 𝜇G

(
x, y

)
.

S = {p} |𝜇G
(
p
)
> 0 (4)

Thus,K is the set of points (or region) whose membership degree is

maximum with respect to G, while the support includes all points
with a non-zero membership degree. However, in order to achieve
consistent models, we need to apply the following restrictions toG:

∀G K ⊆ S (5)

  ∀ {pi, pj} |pi, pj ∈ S, pi, pj ∉ K and pi ≠ pj
d
(
pi,K

)
> d

(
pj,K

)
⇔ 𝜇G

(
pi
)
< 𝜇G

(
pj
) (6)

The previous conditions ensure that the fuzzy models are consis-
tent, by avoiding the possibility of achieving disjoint K’s and S’s andPdf_Folio:974
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ensuring monotonicity for 𝜇G, where d
(
p,K

)
is the euclidean dis-

tance to K from a point p in S.

5.3. Building Descriptors from Data

A fuzzy geographical descriptor G, like “Northern Galicia” is mod-
eled based on the polygons drawn by the experts for that given
expression. Formally, the collection of polygon drawings for a spe-
cific G is defined as:

RG = {P1, P2, ..., Pn} (7)

Each Pi (with 1 ≤ i ≤ n) represents a polygon, and n is the total
number of polygons left after the initial filtering. Each polygon is
composed of a set of vertices, defined under a plate carrée projection
(longitude and latitude values).

The first task in order to model a given G is to determine its two
constituents, i.e., S and K, as calculating both will allow us to char-
acterize 𝜇G afterwards. For this, we define a grid of points D =(
p1, ..., pi, ..., p|D|

)
, which is delimited by the geographical bounds

of the underlying geography (the region of Galicia in our case). The
distance between the grid points is determined by a parameter 𝛿,
which specifies a percentage of the region’s width and height. For
instance,𝛿 = 1means that the distance between a pair of grid points
equals to 1% of the region’s height or width.

As it can be seen in the algorithm given below, in order to compute
K and S for a descriptor G, we take D and the collection of expert
drawings RG, and we calculate the number of times each p in D is
contained by a polygon P inRG to determine the percentage of poly-
gons that overlap in a given p. Based on the percentages computed
for all points in D, we determine K using a simple majority voting
approach. Thus, PK is composed of those points whose percentages
are > 50%, and PS covers all points where the percentage is > 0%.

Require: D, RG
Ensure: K, S
1: PCS ← ()
2: for all  pi ∈ D do
3: count ← 0
4: for all  Pj ∈ RG do
5: if   pi ∈ Pj then
6: count ← count + 1
7: end if
8: end for
9: pcsi ← count/|RG|
10: PCS ← PCS ∪ pcsi
11: end for
12: PK ← {pi ∈ D|pcsi > 0.5}
13: PS ← {pi ∈ D|pcsi > 0}
14: K ← ConvexHull (PK)
15: S ← ConvexHull (PS)
16: bp ← argmaxpi∈S

(
d
(
pi,K

))
17: op ← argminpi∈D and pi∉S

(
d
(
pi, b

))
18: od ← d

(
K, op

)
return K, S, od

Wechose to determinePK under the> 50%condition aswewanted
to ensure that there exists at least a minimum majority that agrees

and that the modeling of the kernel is consistent across different
descriptors. This was not the case, for instance, in [30], where the
region of points with the highest overlapping would be selected,
leading to kernels built on different agreement percentages. Fur-
thermore, in our case the high consistency of the experts allowed us
to maintain this condition, but in other situations with more diver-
gent answers it would have been necessary to be more flexible or
even to adopt a different modeling strategy.

Instead of just considering S and K as collections of points within
D (what PK and PS are), we calculate their convex hulls, that is,
the convex polygons that delimit their areas. This process removes
any disjoint areas belonging toK that may emerge from divergences
among the polygon drawings, as the convex hull aggregates all of
themunder the same area. Finally, we calculate od, which is the sum
of the maximum distance from a vertex in S toK (bp) and the mini-
mumdistance from that vertex to another point outside S (op). This
distance is used to define 𝜇G, together with K and S.

5.4. Evaluating a Fuzzy Geographical
Descriptor

Based on the three elements returned by the Algorithm described
in the Section 5.3, the function 𝜇G that evaluates a point p is defined
as:

𝜇G
(
p
)
=
⎧
⎨
⎩

1 if p ∈ K
1 – d

(
p,K

)
/od if p ∈ S and p ∉ K

0 if p ∉ S
(8)

The membership function 𝜇G is defined in a monotonous way.
Under this definition, all points in S have membership degrees > 0
and this membership degree decreases as the evaluated point gets
further located from K. Under these conditions, characterizing a
fuzzy geographical descriptorG by determining its support and ker-
nel allows us to provide simple models that are consistent and easy
to interpret.

5.5. Examples

In order to illustrate the results of the modeling algorithm and
explain the result of themodeling decisions that have been included
in the Algorithm described in the Section 5.3 and in the definition
of𝜇G, we describe twodifferent fuzzymodels that result fromaggre-
gating the experts’ drawings for geographical expressions under dif-
ferent categories or reference frames in Table 1.

The first descriptor, shown in Figure 5, models the expression
“Northern Galicia.” The kernel is slightly thicker toward the east-
ernmost part of the regionmap, and does not seem to depend on the
coast distance, but simply on latitude values. As a whole, the model
can be considered straightforwardly regular, for both K and S. The
simple majority condition also ensures a wider consensus on what
the meaning of “north” is in this context, and the distance from K
to the outer border of S accounts for 1/4 of the region extension.
This provides a relevant area where points can be considered as part
of “Northern Galicia” under different degrees. Similar models werePdf_Folio:975
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obtained for the rest of cardinal directions, with slight differences
among them.

Other descriptors adopt different shapes, where S varies in width
with respect to K. This is the case, for instance, of “Mountainous
Areas in Ourense.” As Figure 6 shows, the shape of this descrip-
tor is somewhat ellipsoidal and the distance between S and K is not
constant, compared to Figure 5. This case also illustrates well how
points in S which are close to its border have higher membership
degrees than others that are further, due to their closeness to K.

It must be noted that the models shown in Figures 5 and 6 were
built using 𝛿 = 1, resulting in a grid composed of 10506 points that
were used to determine K and S. Although in our case the number
of answers to aggregate was reduced and increasing 𝛿 (to a certain
extent) may not have had an important impact, in other contexts
it can be feasible to change this value to create less precise models,
depending on the granularity of the geographically localized data
that we want to process (e.g., a 1 km weather forecast grid versus a
12 km grid).

6. USE CASE AND EVALUATION

As we explained in Section 3, the models here described are meant
to be used to feed a geographical referring expression generation
algorithm, as part of a D2T system to describe live weather data.
Within this context, as a use case that shows the usefulness of
the built models, we generated short textual weather descriptions
for specific geographical descriptors. These descriptions were built
based on the use of fuzzy linguistic descriptions of data [2,10,18]
and the same kind of input data that will feed the D2T system.

Particularly, the input data in our setting is a collection composed
of live observations for several weather variables (e.g., tempera-
ture, wind strength and direction, sky state), where each observa-
tion contains data for 314 municipalities (see Figure 7 for a visual
example). The descriptions we generate focus on quantifying the
sky state variable with respect to a geographical descriptor.

Then, using a set of representative cases, we performed a task-based
user evaluation. Potential end-users of the D2T system were pre-
sented with maps similar to the one shown in Figure 7 and associ-
ated textual descriptions without explicit geographical references.
With these materials, they had to choose the geographical descrip-
tor that best suited both the description and the weather map. This
allowed us to verify the appropriateness of a representative set of
the modeled descriptors.

6.1. Generating Geo-Referenced Linguistic
Descriptions

From a D2T perspective, fuzzy linguistic descriptions (or sum-
maries) of data can be used as a tool for performing content deter-
mination tasks [2,5,10]. The content extracted from the raw data
adopts the structure of protoforms composed of linguistic terms
(modeled by means of fuzzy sets) [18], that still need to be properly
verbalized.

In our particular case, we generated simple descriptions based on
the use of type-II fuzzy quantified sentences [31], that relate two
different variables (e.g., “most wet days were cold) [10]. The specific
kind of protoform we have used adopts the following structure:

Q Xs in G are W (9)

Figure 5 Visualization of the fuzzy geographical descriptor “Northern Galicia.”
Pdf_Folio:976
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Figure 6 Visualization of the fuzzy geographical descriptor “Montainous Areas in
Ourense.”

Figure 7 Live weather snapshot (Galicia, 2017-06-02, 12:32 pm).

Pdf_Folio:977
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In this protoform, Q is a fuzzy quantifier, G is a fuzzy geographical
descriptor, X is a referential set (the collection of data locations),
and W is a sky state label, e.g., “most locations in Southern Galicia
are overcast.” Sky state labels are crisply defined as numeric symbols
(for instance, 101 means “clear sky,” and 111 means “overcast with
rain”). In the case of the fuzzy quantifiers we used, we adapted the
original crisp partition of three quantifiers used in RoadSafe [21]
into the fuzzy quantifier partition shown in Figure 8.

In order to calculate the truth degree of sentences that follow the
protoform defined in Eq. (9), a fuzzy quantification model must
be applied [31]. We opted to use the quantification model GD
[32,33], which was already tested in previous approaches [34,35].
This model fulfills several desirable properties. For instance, it is
less susceptible to the problem of aggregative behavior [36], which
is present in models based on sigma-count cardinalities; and has a
time complexity of O (n), which makes it more efficient than other
well-behaved models like the FA [37].

Under theGDmethod, the truth degreeTof a geo-referenced proto-
form GRP is calculated as follows (see [33] for a more detailed def-
inition of this method):

T (GRP) = ∑
𝛼i∈∆(W/G)

(
𝛼i – 𝛼i+1

)
Q

( ||(W ∩ G)𝛼i
||

||G𝛼i
||

)
(10)

For instance, in Figure 9 a description is given for the fuzzy descrip-
tor “Extreme North” based on the weather map. The description is
composed of several quantified sentences, which are characterized
and ordered by the specificity of their quantifier (less specific ones
are considered better in this case), their truth degree, and their rela-
tive cardinality. The sentences are individually realized using a tem-
plate, which holds the textual structure of the protoforms, the actual
linguistic expressions of the quantifiers and the sky state symbols.

6.2. A Task-Based Evaluation of the Fuzzy
Descriptors

Weevaluated the appropriateness of the fuzzy geographical descrip-
tors by performing a task-based evaluation with potential users of

the D2T system we are developing. The main purpose of this eval-
uation was to check how well subjects were able to relate linguis-
tic descriptions to the actual geographical references modeled by
the descriptors, allowing us to see how they performed in clear and
more ambiguous cases. Furthermore, this evaluation also provided
a way to indirectly assess how well the geographical understanding
of potential readers matches the models created from the experts’
opinions.

6.2.1. Materials

We selected a list of 5 geographical descriptors, making sure that
they covered most of the whole region of interest and were rep-
resentative of the different kinds of categories shown in Table 1.
Specifically, we chose two cardinal directions (“Southern and East-
ern Galicia”), one proper name (“Rías Baixas”), and two mixed
descriptors (“Western A Coruña” and “Cantabrian Coast”).We also
ensured that different degrees of overlapping existed among the
descriptors with respect to the support of their fuzzy models, from
none (e.g., between “Rías Baixas” and “Eastern Galicia”) to a full
containment (e.g. “Cantabrian Coast” ⊂ “Eastern Galicia”).

For each descriptor we generated linguistic descriptions from a
data set composed of more than 300 real live weather snapshots,
which were collected between June and August 2017. We also
generated maps for each snapshot, similar to the ones shown in
Figures 7 and 9. The linguistic descriptions were generated follow-
ing the approach described in Section 6.1, with some additional
restrictions:

• Quantified sentences (GRP) were discarded when
T (GRP) < 0.5 and |GRP| = 0. In case of a tie between
sentences with contiguous quantifiers we chose the one whose
quantifier represents a higher coverage.

• Within a linguistic description, sentences were ranked by the
specificity of their quantifier (as described in Section 6.1), and
then by T (GRP) ∗ |GRP| in a descending order, to help balance
the overall influence of the truth degree and the cardinality
when determining the suitability of the individual sentences.

Figure 8 Partition of fuzzy quantifiers used to compute the geo-referenced linguistic descriptions.
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Figure 9 Map example and associated linguistic description composed of several
quantified sentences for the fuzzy descriptor “Extreme North” filtered and ordered by
their truth degree (T) and cardinality (Card).

• Geographical references were replaced with generic
expressions when we textually realized the quantified sentences
(e.g., in Figure 9, G would be expressed as “target zone” instead
of “extreme north”).

Based on this collection of parallel maps and linguistic descriptions,
for each of the 5 descriptors we carefully selected one case where
thematching between the description and the geographical descrip-
tor could be clearly done according to the weather data shown on
the map, and another case where this matching was ambiguous.
For instance, in the latter case we looked for situations where the
linguistic description could apply to other descriptors (e.g., with
slight differences with respect to the quantifiers or the weather
symbols that were mentioned). Thus, after this selection, the final
set of evaluation cases for the survey comprised 10 maps and their
associated descriptions (5 clear and 5 ambiguous cases).

6.2.2. Subjects

Our target was the group of potential users of the texts of the D2T
system to be developed, namely Galician adults or anyone famil-
iar with the geography of Galicia. These were recruited through
university mailing lists and through family and relatives, ensuring
that people from different gender, education backgrounds, and age
ranges participated.

6.2.3. Procedure

Using the collection of weather cases and associated descriptions
for specific descriptors, we created a web survey under a within-
subjects design, where participants were given in random order a
weather map and a linguistic description, and were asked to select
in a drop-down list the geographical descriptor that best suited the
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Figure 10 Screenshot of the web survey (translated from Spanish).

provided description, in accordance to the weather data shown on
the map (see Figure 10). Given that the participants were native
Spanish speakers, both the linguistic descriptions and the survey
were created in Spanish.

As Figure 10 shows as well, we provided information about the
weather symbols that appeared on the map, and a simplified textual
definition of the quantifiers that were included in the sentences of
the description, so that participants could focus just on the task of
identifying the geographical descriptor the description referred to.

At the end of the survey, participants were asked to provide infor-
mation about their gender, level of education, and age range. They
could also write free-text comments about any aspect of the survey.
Then, they were shown the percentage of cases they had guessed
correctly, categorized into clear and ambiguous cases (they were not
aware of this distinction).

6.2.4. Rationale, threats, and hypotheses

At first we had considered preparing a survey where we would
provide maps and descriptions that explicitly referred to the geo-
graphical descriptors they were based on, asking users to rate how
accurate the description reflected what was being showed on the
map. However, this would have resulted in an important bias, as
most users, knowing the geographical zone of interest in advance,
would certainly have adapted their own mental models and agreed
with the description.

Thus, instead we chose to have users make the effort of guessing
the geographical references. While this is a more complicated task
from the participants’ perspective, it avoids having them focus on
a specific zone before they can compare how well the description

matches the geographical reference. Also, our aim is not to get a
rating of the descriptions themselves, since the final texts that the
full D2T systemwill generatewill bemore elaborate in terms of both
content and style. In this case, the descriptions are a tool to illustrate
how the fuzzy geographical descriptors can be used to extract lin-
guistic content and, in our evaluation, they allow users to identify
the descriptors on a map.

Since we are focusing on specific content and the definitions of the
geographical expressions rather than on full texts describing the
weather state of the map (which will be the output of our D2T sys-
tem), we expected some participants to find difficulties when inter-
preting the protoform-like sentences in the description. Also, the
task ofmatching sky state labels and quantifiers with the data shown
on themapwas not trivial in several of the cases we chose, especially
when a description was composed of several sentences. On top of
this, we had assumed that participants would be familiar with the
geographical references we chose, but their expertise might vary as
well.

Considering these threats, we had hypothesized that i) subjects
would performwell in clear cases, but not necessarily close to a pro-
portion of 100% of correct answers; and ii) participants would per-
form better in clear cases than in ambiguous ones.

6.2.5. Results and discussion

The survey was completed by 40 subjects (400 answers in total, 200
for clear cases, and 200 for ambiguous ones). Participants guessed
the geographical descriptors correctly in 155 out of the 200 clear
cases, resulting in a proportion of 77.5%. As for the ambiguous
cases, 83 out of the 200 answers matched the actual descriptor
behind the description, resulting in a proportion of 41.5%.
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We tested our first hypothesis (users perform well in clear cases)
under a 1-sample proportions test. With a percentage of 77.5% cor-
rect answers, for values up to a 70% the null hypothesis was rejected,
with a 95% confidence interval [0.71, 0.83] and a p-value of 0.025.
Thus, we can state that participants performed well and guessed
the right descriptors in a rather high proportion for clear cases.
For our second hypothesis, we performed a 2-sample test for equal-
ity of proportions. In this case, the null hypothesis (the proportion
of correct guesses being the same for both clear and ambiguous
cases) was rejected with a 95% confidence interval [0.26, 0.45] and a
p-value of 4.769 ∗ 10–13.

Although we verified our two hypotheses, a more detailed analysis
of the proportions for both situations is in order. In the case of the
clear setting, for the total amount of clear cases that were answered,
we can observe in Table 2 the ratio of descriptors answered by par-
ticipants with respect to the correct answers. The most noticeable
case where subjects failed to guess the correct descriptor was for
“Eastern Galicia” (E.G., second column). Excluding the row which
shows the correct guesses, all rows show for this case a proportion
> 0. This is especially relevant for R.B. (“Rías Baixas”). Although
these descriptors do not overlap (see Figure 11), in this case they
shared the same weather symbols, albeit in very different propor-
tions. Thus, we believe this result might be due to some participants
answering without paying excessive attention to the quantifiers in
the description. Also, it is possible this case was slightly less clear
than the rest.

Regarding the ambiguous cases, the lower rate of correct answers
was to be expected, given that in these cases different descriptors
(which in some cases overlapped and in others did not) shared the
same weather symbols in more or less similar proportions. If we
observe Table 3, in the case with the highest proportion of incor-
rect answers subjects confused “Western A Coruña” and “Eastern
Galicia” (W.C., E.G.: 0.14). Although these descriptors do not over-
lap, the weather events reflected on the map were the same for both

Figure 11 Plot of the support areas for the geographical
descriptors considered in the survey (S.G., Southern
Galicia; E.G., Eastern Galicia; R.B., Rías Baixas; C.C.,
Cantabrian Coast; W.C., Western A Coruña).

Table 2 Confusion matrix for clear cases, categorized by descriptors.

Answer
Actual S.G. E.G. R.B. C.C. W.C.

S.G. 0.18 0.02 0 0.01 0
E.G. 0.01 0.08 0 0 0.01
R.B. 0.01 0.07 0.18 0.02 0
C.C. 0 0.01 0.01 0.16 0.02
W.C. 0 0.02 0 0 0.16
C.C., Cantabrian Coast; E.G., Eastern Galicia; R.B., Rías Baixas; S.G., Southern Galicia;
W.C., Western A Coruña.

Table 3 Confusion matrix for ambiguous cases, categorized by
descriptors.

Answer
Actual S.G. E.G. R.B. C.C. W.C.

S.G. 0.09 0.01 0.11 0.02 0.02
E.G. 0.01 0.02 0 0 0
R.B. 0.1 0 0.07 0 0.08
C.C. 0 0.04 0.02 0.14 0
W.C. 0 0.14 0 0.04 0.1
C.C., Cantabrian Coast; E.G., Eastern Galicia; R.B., Rías Baixas; S.G., Southern Galicia;
W.C., Western A Coruña.

in rather similar proportions. Other interesting cases include sub-
jects answering “Southern Galicia” for “Rías Baixas” (where R.B. is
mostly contained in S.G.) or “Rías Baixas” for “Western A Coruña”
(where R.B. and W.C. partly overlap).

Based on the obtained results, we believe the semantics of the geo-
graphical references we have modeled are appropriate for the D2T
system we are currently developing. The difficulty of the task we
proposed in our evaluation and the proportion of correct guesses
in clear cases, which is close to 80% (and is statistically significant
at 70%), are good indicators in this direction. Moreover, we expect
that users will be able to easily identify weather events in the map
in automatically generated texts, considering these will include the
actual geographical references derived from the fuzzy geographical
descriptors we created.

7. CONCLUSIONS

We have described in this paper an application of fuzzy sets to per-
form a language grounding task. Specifically, in the context of the
development of a D2T system meant to generate geo-referenced
weather descriptions, our work establishes a solid methodology for
integrating fuzzy set-based techniques into the task of language
grounding for D2T purposes.

Based on how expert writers understand certain expressions (geo-
graphical references in this case), we created simple and consistent
fuzzy models that aggregate their perceptions. We have provided
an illustrative use case where these models are used to generate lin-
guistic descriptions. Based on this use case, we checked the models
against potential readers of weather descriptions, evaluating how
well readers relate to the references modeled on the experts’ prefer-
ences under different settings [16].

As future work, we plan to develop a geographical referring expres-
sion generation algorithm that is able to use the models here
described. Based on the same kind of weather data shown in the
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example figures in Section 6, such algorithm will generate expres-
sions that combine different geographical descriptors to refer to dif-
ferent weather event areas distributed across a map. This algorithm
will be the core of the newD2T system to describe live weather data.
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