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Abstract In this paper, three-dimensional elastic deformation of rectangular sandwich panelswith functionally
graded transversely isotropic core subjected to transverse loading is investigated. An exponential variation of
Young’s and shearmoduli through the thickness is assumed.The approachuses displacement potential functions
for transversely isotropic graded media and a three-dimensional elasticity solution for a transversely isotropic
graded plate developed by the authors. The effects of transverse shear modulus, loading localisation, panel
thickness and anisotropy on the stresses and displacements in the panel are examined and discussed.

Keywords Three-dimensional elasticity · Sandwich panel · Functionally graded material · Analytical
modelling

1 Introduction

Sandwich panels comprising two thin face sheets of high strength and stiffness, separated by a core of lower
density and strength, are ideally suited to a variety of industrial applications, where high specific stiffness and
strength are required, including aerospace, energy, transportation, marine and civil engineering. Modern trends
in theoretical developments, novel designs and modern applications of sandwich structures are outlined in the
recent reviews by Birman and Kardomateas [9] and Vescovini et al. [28].

Due to the mismatch in stiffness properties between the face sheets and the core, the interface between
them is often the most vulnerable part of the sandwich panel. Sandwich panels are susceptible to delamination,
caused by high interfacial stresses, especially under localised loading [1]. One effective method of minimising
the large interfacial shear stresses is to make use of the functionally graded material concepts for the panel
core [7]. Sandwich panels with graded core have been studied analytically, numerically and experimentally
by many researchers, including Anderson [5], Kirugulige et al. [20], Zhu and Sankar [38], Apetre et al. [6],
Kashtalyan and Menshykova [17], Etemadi et al. [14], Rahmani et al. [23], Wang et al. [29], Woodward and
Kashtalyan [30,31,33,34], Sburlati [24], Zhu et al. [37], Alibeigloo [3], Alibeigloo and Liew [4], Liu et al.
[21] and Xu et al. [36] . A detailed review of these studies can be found in Woodward and Kashtalyan [34].

More recently, Sburlati et al. [25] investigated the effect of functionally graded interlayers on bending
response of circular sandwich panels in the context of elasticity theory using displacement potentials method.
Kelly et al. [19] studied sandwich panels with graded core experimentally and found that grading the density
of the foam cores mitigates through-thickness crack propagation and damage in the higher density foam
layers. Xiao et al. [35] investigated the effect of stiffness grading on energy dissipation under indentation
of sandwich panels with graded metallic cellular core. Bending, free vibration and buckling of sandwich
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panels with graded core resting on elastic foundation were examined by Akavci [2] using a new hyberbolic
shear and normal deformation theory. Daynes et al. [12] proposed functionally graded core designs based on
lattice beam diameter tailoring and lattice cell spatial tailoring. Both stiffness and strength of the optimised
cores significantly increased compared to the uniform benchmark core. Birman and Costa [8] and Birman and
Vo [10] investigated wrinkling of sandwich panels with graded core demonstrating that use of graded core
increases wrinkling stability of sandwich panels. An extended higher-order approach to analysis of wrinkling
in sandwich panels with graded core was proposed in Frostig et al. [15]. A new analytical method for solving
exact three-dimensional equilibrium equations for functionally graded structures, including sandwich panels
with graded core, was proposed by Brischetto [11].

The majority of analytical studies on sandwich panels with graded core found in the literature assume the
core material to be isotropic.With many core materials being orthotropic or transversely isotropic in nature, the
combined effect of transverse isotropy and stiffness gradient has not been fully explored yet. Three-dimensional
analytical modelling of transversely isotropic materials represents a formidable challenge even in the absence
of a stiffness gradient due to the complexity of the governing equations involved [26,27].

In this paper, the three-dimensional elasticity solution for transversely isotropic plate with exponential
variation of the Young’s modulus through the thickness [32] is extended to sandwich panels. The paper is
organised as follows. In Sects. 2 and 3, problem statement and method of solution are presented, respectively.
In Sect. 4, validation of the model through both comparison with results from the literature and a finite element
study is presented. In Sect. 5, effects of anisotropy and stiffness gradient on stresses and displacements in the
panel are presented and discussed.

2 Problem statement

A sandwich panel (Fig. 1) of length a, width b and total thickness h0 = 2h is referred to as a Cartesian
co-ordinate system x1, x2, x3 (0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b, −h ≤ x3 ≤ h) and assumed to be symmetric
with respect to the mid-plane x3 = 0, with the face sheet thickness hf and the core thickness 2hc. The core is
subdivided into two layers for the sake of convenience.

The face sheets (layers 1 and 4) and the core (layers 2 and 3) are assumed to be inhomogeneous transversely
isotropic materials with the x3-axis as axis of material symmetry. Constitutive equations for each layer (k =
1, . . . , 4) of the panel are:
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where σ
(k)
i j , ε

(k)
i j are components of the stress and strain tensors and c(k)

11 , c(k)
12 , c(k)

13 , c(k)
33 , c(k)

44 are five
independent elastic coefficients, which in general case depend on x1, x2, x3. It is assumed that in each layer

Fig. 1 Sandwich panel relative to Cartesian coordinates, with the core subdivided into two layers
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of the panel, elastic coefficients have the same functional dependence on the transverse co-ordinate x3:

c(k)
11 = c0(k)11 m̃(x3) (2a)

c(k)
12 = c0(k)12 m̃(x3) (2b)

c(k)
13 = c0(k)13 m̃(x3) (2c)

c(k)
33 = c0(k)33 m̃(x3) (2d)

c(k)
44 = c0(k)44 m̃(x3) (2e)

This is equivalent to assuming that within each layer, Young’s and shear moduli depend on the transverse
coordinate, whilst Poisson’s ratios are constant [32].

It is also assumed that the elastic coefficients c(k)
11 , c(k)

12 , c(k)
13 , c(k)

33 , c(k)
44 (k = 2, 3) of the core vary

exponentially through the thickness from the c f
i j value at the face sheet/core interface to the cci j value at the

mid-plane according to

c(k)
i j (x3) = cci j exp

(
α(k) x3

h

)
(3)

where α(k) can be determined in terms of elastic coefficients at the centre of the core and at the face sheet/core
interfaces as

α(k) = (−1)k
h

hc
ln

cci j

c f
i j

, k = 2, 3 (4)

All layers are assumed to be perfectly bonded together so that the continuity of stresses and displacements
exists at all interfaces, i.e.

x3 = x (1)
3 : σ

(2)
i3 − σ

(1)
i3 = 0, u(2)

i − u(1)
i = 0, i = 1, 2, 3 (5a)
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3 : σ
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i3 = 0, u(4)

i − u(3)
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where u(k)
i (k = 1, . . . , 4) are the components of displacement vector. The panel is subjected to transverse

loading Q on the top surface, so that

x3 = h : σ
(4)
33 = Q(x1, x2), σ

(4)
13 = σ

(4)
23 = 0. (6a)

The loading Q(x1, x2) is assumed to allow expansion into a double Fourier series

Q(x1, x2) = −
∞∑

m,n=1

qmn sin
πmx1
a

sin
πnx2
b

(6b)

where qmn is the intensity of the loading at the centre of the panel and m and n are wave numbers. The bottom
surface of the panel is assumed to be load-free, i.e.

x3 = 0 : σ
(1)
33 = σ

(1)
13 = σ

(1)
23 = 0 (7)

The Navier-type boundary conditions are assumed at the edges, so that

x1 = 0, a : σ
(k)
11 = 0, u(k)

2 = u(k)
3 = 0, k = 1, . . . , 4 (8a)

x2 = 0, b : σ
(k)
22 = 0, u(k)

1 = u(k)
3 = 0, k = 1, . . . , 4 (8b)

The boundary conditions, Eqs. (8), are representative of roller supports and analogous to simply supported
edges in the plate theories [16].
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3 Solution using displacement potentials method

To determine stresses and displacements in a sandwich panel subject to boundary conditions, Eqs. (5)–(8),
two displacement potentials proposed by Kashtalyan and Rushchitsky [18] are employed. The displacements
in each layer of the sandwich panel (the superscript indicating layer number is omitted henceforth for the sake
of simplicity) can be expressed in terms of displacement potentials as

u1 = ∂�

∂x2
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[
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The components of the stress tensor can be expressed in terms of functions � and 	 as
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where
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(9j)

Functions � and 	 satisfy the following differential equations [18]
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where

g0 = 2c44
c11 − c12

= 2c044
c011 − c012

= const (10c)

subject to boundary conditions (5)–(8). Constant g0, given by (10c), represents the ratio between the shear
moduli in a plane of isotropy and a plane normal to it. For isotropicmaterials, it is equal to unity, for transversely
isotropic materials it can be used to characterise the degree of anisotropy exhibited by a material.
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Solution of Eq. (10) starts with separating variables in the displacement functions in the form
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Substitution of these expressions into Eqs. (10a) and (10b) allows the following four differential equations to
be derived
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For a simply supported plate subjected to sinusoidal loading, with the boundary conditions described by Eqs.

(5)–(8), functions
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Then the boundary conditions on the edges of the plate are satisfied exactly.
Selecting the inhomogeneity function such that it is an exponential one, Eqs. (3) and (4), reduces Eqs.

(12c) and (12d) to the following second- and fourth-order differential equations with constant coefficients
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where

k2� = k2	 = π2
[(m

a

)2 +
(n
b

)2]
(14c)

It is worth mentioning that the exponential variation of material properties with transverse co-ordinate used
in the above solution is not as restrictive as it may seem since any variation of material properties through the
thickness can be handled using a piecewise-exponential model proposed in Woodward and Kashtalyan [34] .

Solutions to Eqs. (14a) and (14b) will vary depending on the values of the elastic constants and parameters
k� and k	 , as detailed in Woodward and Kashtalyan [32].

For example, if the discriminant of the characteristic equation corresponding to Eq. (14b) is negative, then
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where λ and μ are
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The solution of second-order equation (14a) yields
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In Eqs. (15)–(16), Ai (i = 1, . . . , 6) are arbitrary constants.

Substitution of functions





� and





	, Eqs. (13a, 13b), and functions



� and



	, Eqs. (15, 16), into Eqs.
(11a, 11b) and then into Eq. (9), gives the following expressions for stresses and displacements in a simply
supported sandwich panel under sinusoidal loading, with transversely isotropic functionally graded core having
exponential dependence of the elastic constants on the transverse co-ordinate

u(k)
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∞∑
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6∑
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∞∑
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6∑
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6∑
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sin
πnx2
b

(17f)

σ
(k)
12 =

∞∑
m,n=1

6∑
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σ
(k)
13 =

∞∑
m,n=1

6∑
j=1

A(k)
mnj P

(k)
13 j (m, n, x3) cos

πmx1
a

sin
πnx2
b

(17h)

σ
(k)
23 =

∞∑
m,n=1

6∑
j=1

A(k)
mnj P

(k)
23 j (m, n, x3) sin

πmx1
a

cos
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(17i)

Functions U (k)
i j and P(k)

r t j are specified in “Appendix”.
Substitution of Eqs. (17)–(18) into the stress and displacement continuity conditions at the interfaces

x3 = x (k)
3 (k = 1, . . . 4), Eq. (5), and boundary conditions, at the top (x3 = h) and bottom (x3 = −h) surfaces

of the panel, Eqs. (6)–(7), produces a set of 24 linear algebraic equations with respect to arbitrary constants
A(k)
mnj for any combination ofm and n. These are solved in Matlab using LU decomposition method. Boundary

conditions at the edges of the panel, Eqs. (8a, 8b), are satisfied exactly.

4 Validation

Since isotropy is a particular case of transverse isotropy, the proposed solution for a sandwich panel with
transversely isotropic graded core can be used to obtain the solution for the sandwich panel with isotropic
graded core if the elastic coefficients are adjusted as follows

c11 = c33 = E (1 − ν)

(1 + ν) (1 − 2ν)
, c12 = c13 = Eν

(1 + ν) (1 − 2ν)
, c44 = G, G = E

2 (1 + ν)
(18a)

with

c11c13 − c12c13
c11c33 − c213

= c12c33 − c213
c11c33 − c213

= ν, c11 − c12 = 2G (18b)

It was shown by Kashtalyan and Rushchitsky [18] that if for graded transversely isotropic material the elastic
coefficients are adjusted as (18a, 18b), the representation of displacements and stresses in terms of displace-
ment potential functions � and 	 (9a–9j, 10a–10c) fully coincides with that obtained by Plevako [22] for
inhomogeneous isotropic material. Whilst for homogeneous materials transition from transverse isotropy to
isotropy is associated with the roots the characteristic equation changing type (from distinct roots for trans-
versely isotropic materials to multiple roots for isotropic materials), this is not the case when the material is
graded.

Table 1 shows numerical results for the normalised displacements ūi = c044ui
q11h

and normalised stresses

σ̄i j = σi j
q11

in a square sandwich panel (a/h = b/h = 3) obtained using the transversely isotopic solution, Eqs.
(18), and the isotropic solution [17] which employed Plevako’s representation. It can be seen that they are in
exact agreement with each other.

In order to verify that the solution presented in the previous section is correctly modelling transversely
isotropic materials, comparison is also made with a transversely isotropic homogenous plate using two inde-
pendent models: firstly, an analytical solution for a homogenous transversely isotropic plate obtained using
Elliot’s displacement functions [13] and, secondly, a finite element model for a homogeneous plate that was
set up in a relatively straightforward manner in ABAQUS.

Table 1 Normalised displacements and stresses in a square isotropic graded plate using ‘isotropic’ and ‘transversely isotropic’
solutions

Isotropic solution [17] Transversely isotropic solution (present paper) Difference (%)

c044u3
q11h

(0.5a, 0.5b, 0.5h) − 4.29778 − 4.29778 0.0
σ11
q11

(0.5a, 0.5b, 0.5h) 0.653339 0.653339 0.0
σ12
q11

(0, 0, 0.5h) − 0.43007 − 0.43007 0.0
σ13
q11

(0, 0.5b, 0.5h) − 0.64606 − 0.64606 0.0
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Fig. 2 Through-thickness variation of the normalised stresses and displacements in a transversely isotropic homogeneous
plate: a in-plane normal stress σ̄11(0.5a, 0.5b, x3); b in-plane shear stress σ̄12(0, 0, x3); c out-of-plane normal stress
σ̄33(0.5a, 0.5b, x3); d transverse shear stress σ̄13(0, 0.5b, x3); e in-plane displacement ū1(0, 0.5b, x3); f transverse
displacement ū3(0.5a, 0.5b, x3)

Table 2 Elastic constants for alumina

c11 (GPa) c12 (GPa) c13 (GPa) c33 (GPa) c44 (GPa) g0

460.2 174.7 127.4 509.5 126.9 0.889

The results for stresses and displacements in a homogenous, transversely isotropic plate are shown in Fig. 2.

Through-thickness variation of the normalised stresses σ̄i j = σi j/q11 and normalised displacements ūi = c044ui
q11h

in a thick square plate with a/h = b/h = 3 is predicted by the three different models: Graded Transversely
Isotropic (Graded TI); Elliot’s; Finite Element method (FE). Calculations are performed for alumina, with
material properties [13] listed in Table 2.

Excellent agreement is found between all three models. In order to model a homogenous transversely
isotropic plate, parameter α is set sufficiently close to zero when defining the inhomogeneity function, Eq. (3).
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Table 3 Engineering constants of model materials

Materials Ep (GPa) Et (GPa) Gt (GPa) νp νpt νtp

‘Base material’ 380.7 458.37 126.9 0.334 0.167 0.201
‘Low Gt material’ 380.7 458.37 12.69 0.334 0.167 0.201
‘Very low Gt material’ 380.7 458.37 2.54 0.334 0.167 0.201
‘Equivalent Isotropic material’ 380.7 380.7 142.7 0.334 0.334 0.334

Fig. 3 Through-thickness variation of engineering constants: a ‘base material’; b ‘low Gt material’

For alumina, the discriminant of characteristic equation was positive, and the characteristic equation had four
real roots. In order to ensure that the solution was valid for any transversely isotropic materials, comparison
was also made for materials with the other cases of roots, and excellent agreement was again found.

5 Results and discussion

In order to study behaviour of sandwich panels with a transversely isotropic graded core, a ‘base’ transversely
isotropic model material was chosen, with properties of alumina listed in Table 2, and an elastic property
gradient was then imposed in the transverse direction. The stiffness gradient between the face sheets and the
centre of the core was taken as (c0i j )face/(c

0
i j )core = 5, meaning that the face sheets were five times stiffer than

the core centre. The thickness of the face sheets is taken as hf = 0.05h0.
In order to understand combined effect of anisotropy and stiffness gradient, a comparison is made between

the functionally graded ‘base material’, and a functionally graded transverse shear compliant material with
lower transverse shear modulus (‘low Gt material’). Engineering properties of both materials are listed in
Table 3, which shows values of engineering constants in the face sheets: Young’s modulus in the plane of
isotropy Ep; Young’s modulus in the transverse direction Et ; shear modulus in the transverse direction Gt ;
Poisson’s ratio in the plane of isotropy νp; Poisson’s ratios νpt and νpt are related as νpt

E p
= νtp

Et
. Additionally,

‘very low Gt material’ and ‘equivalent isotropic material’ were considered. Variation of the engineering
constants for the ‘base material’ and ‘low Gt material’ is shown in Fig. 3.

5.1 Transverse shear effects under distributed loading

Effect of transverse shear modulus on the through-thickness variation of normalised stresses and displacements
in a sandwich panel under one-term sinusoidal loading is shown in Fig. 4 for three transversely isotropic graded
materials listed in Table 3.

From Fig. 4a, it can be seen that in all three panels, as expected, the upper face sheet is in compression and
the lower face sheet is in tension. Considering the in-plane normal stresses σ̄11 in the panel core, it can be seen
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Fig. 4 Effect of transverse shear modulus on through-thickness variation of stresses and displacements in sandwich panels with
transversely isotropic graded core: a in-plane normal stress σ̄11(0.5a, 0.5b, x3); b in-plane shear stress σ̄12(0, 0, x3); c out-of-
plane normal stress σ̄33(0.5a, 0.5b, x3); d transverse shear stress σ̄13(0, 0.5b, x3); e in-plane displacement ū1(0, 0.5b, x3)
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Fig. 5 Distribution of normalised transverse shear stress σ̄13 on one quarter of panel for ‘low Gt material’

Fig. 6 Panel subjected to patch load relative to Cartesian coordinates

that in the panel with base value of transverse shear modulus, the in-plane normal stresses gradually increase
(due to the functionally graded core properties) from zero at the core centre to a maximum at the outer edges
of the face sheets. The sign of these stresses shows that the upper half of the core and upper face sheet is in
compression, whilst the lower half of the core and lower face sheet is in tension. However, in the panels with
low transverse shear modulus, this is not the case. In these panels, the upper half of the core can be seen to
be in tension and the lower half in compression. As such all four layers of the panel are no longer bending as
one; instead, they are working independently as plates in bending, meaning the panel is no longer behaving as
a true sandwich panel.

For the panels with low transverse shear modulus, the effects of shear deformation can be also observed in
Fig. 4d. The transverse shear stress no longer varies from a minimum at the outer edges of the face sheets to
a maximum at the panel centre. Instead, the face sheets can be seen to be carrying a greater proportion of the
shear stresses, whilst shear stresses at the centre of the core are reduced.

The effects of transverse shear modulus on the in-plane displacement are immediately obvious in Fig. 4e.
For the panel with low transverse shear modulus, individual peaks in displacement are located in the upper
and lower halves of the core and variation is highly nonlinear in relation to the mid-plane.

Figure 5 shows a snapshot from a finite element simulation of a panel with low core shear modulus under
sinusoidal loading where this effect is detailed.



2474 B. Woodward, M. Kashtalyan

Fig. 7 Through-thickness variation of normalised in-plane normal stress σ̄11 under sinusoidal and patch loadings on a central
vertical section x2 = 0.5b: a ‘base material’ under sinusoidal loading; b ‘base material’ under patch loading; c ‘low Gt material’
under sinusoidal loading; d ‘low Gt material’ under patch loading

5.2 Transverse shear effects under localised loading

To investigate the effect of load localisation, two types of loading—sinusoidal loading and patch loading—are
examined. Both are applied to thick panels with a/h0 = b/h0 = 3.

Patch loading (Fig. 6) is defined as

Q(x1, x2) =
{
q0, x0 − c < x1 < x0 + c, y0 − d < x2 < y0 + d
0, elsewhere (19)

For patch loading, coefficients in the double Fourier series, Eq. (6b), are

qmn = 16

π2mn
sin

πmx0
a

sin
πmy0
b

sin
πmc

a
sin

πmd

b
(20)

Patch loading is taken over an area with dimensions c = d = a/16 and applied at the centre of the
panel (x0 = 0.5a, y0 = 0.5b). In order for an accurate comparison to be made between panels subjected
to different types of loading, the intensity of the patch load is adjusted so that the overall load remains the
same as that applied in the sinusoidal case. For the considered panel and patch sizes, this requirement leads to
qpatch0 = 25.94qsinusoidal0 .
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Fig. 8 Through-thickness normalised in-plane shear stress σ̄12 under sinusoidal and ‘small’ patch loadings on a central vertical
section x2 = 0.5b: a ‘base material’ under sinusoidal loading; b ‘base material’ under patch loading; c ‘low Gt material’ under
sinusoidal loading; d ‘low Gt material’ under patch loading

To facilitate direct comparison of stresses and displacements, for the ‘base material’ and ‘lowGt material’,
normalisation is as follows: ūi = Gpui

qsinusoidal0 h
, where Gp is shear modulus in the plane of isotropy. Stresses are

normalised as σ̄i j = σi j

qsinusoidal0
. To avoid repetition, sections in the x1-direction only are given here as due to the

isotropy in the x1 − x2 plane, plots in the x2-direction would be identical.
Plots of normalised in-plane normal stress σ̄11 are shown in Fig. 7 on a vertical cross section taken at

x2 = 0.5b. It can be seen that decreasing the transverse shear modulus of the core leads to an increase in the
in-plane normal stresses within the face sheets. This is the case under both sinusoidal and patch loadings.

Figure 8 shows the distribution of normalised in-plane shear stress σ̄12 on a vertical section located at
x2 = 0 for panels under sinusoidal and patch loadings. A similar trend is observed in the plots of in-plane
normal stress. Once again due to the low transverse shear modulus, the core offers very little shear resistance
and the core and face sheets no longer work together. The panel with low transverse shear modulus (Fig. 8c,
d) has individual peaks of in-plane shear stress within the upper and lower halves of the core.

Figure 9 shows the distribution of normalised out-of-plane normal stress σ̄33 on a vertical section located at
x2 = 0.5b for panels under sinusoidal and patch loadings. In the panels with lower transverse shear modulus, it
can be seen that the stresses caused by the transverse loading penetrate further into the panel. For the panel with
the highest transverse shear modulus, the stresses are higher (than the panels with lower transverse modulus)
in the upper half of the panel but lower in the bottom half. Similarly, in the lower half of the panel the stresses
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Fig. 9 Through-thickness variation of normal stress σ̄33 under sinusoidal and ‘small’ patch loadings on a central vertical section
x2 = 0.5b: a ‘base material’ under sinusoidal loading; b ‘base material’ under patch loading; c ‘lowGt material’ under sinusoidal
loading; d ‘low Gt material’ under patch loading

for the panel with lowest transverse shear modulus are higher (than the panels with higher transverse shear
modulus).

Figure 10 shows the distribution of normalised transverse shear stress σ̄13 through the panel with a section
taken through the panel centre. In the panel with base transverse shear modulus (Fig. 10a), as was previously
seen for the panels with isotropic core [17] the core can once more be seen to be carrying the majority of the
transverse shear stresses, with variation taking an almost parabolic form through the thickness. The stress is
again anti-symmetric around the panel centre with maximum and minimum stresses being equal in magnitude
but opposite in sign located at x1 = a and x1 = 0, respectively. Equally, under patch loading (Fig. 10b), it
is clearly seen that the maximum transverse shear stress is once again located (in the x1-direction) below the
boundary of where patch loading is applied. It can also be seen that the transverse shear stress is concentrated
in the upper section of the core leaving the majority of the lower core free of transverse shear stress. For the
panel with low transverse shear modulus, the effects of shear deformation can be observed. The transverse
shear stress no longer varies from a minimum at the outer edges of the face sheets to a maximum at the panel
centre. Under both sinusoidal (Fig. 10c) and patch (Fig. 10d) loadings, the face sheets can be seen to be carrying
a greater proportion of the shear stresses, whilst shear stresses at the centre of the core are reduced. Under
patch loading, it should also be noted that the lower half of the core now also shows localised effects under
the edges of the patch loading. Since the main purpose of the core is to carry the shear stresses, reducing the
shear carrying capacity of the core and transferring it to the face sheets would not be advantageous.

Figure 11 shows the distributionof vonMises stress on the panel.As the transverse shearmodulus is reduced,
the increase in in-plane normal stresses becomes particularly apparent. The increased bending associated with
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Fig. 10 Through-thickness variation of normalised transverse shear stress σ̄13 under sinusoidal and patch loadings on a central
vertical section x2 = 0.5b: a ‘base material’ under sinusoidal loading; b ‘base material’ under patch loading; c ‘low Gt material’
under sinusoidal loading; d ‘low Gt material’ under patch loading

Fig. 11 Through-thickness variation of von Mises stress σ̄von on a central vertical section x2 = b/2: a ‘base material’ under
sinusoidal loading; b ‘low Gt material’ under sinusoidal loading



2478 B. Woodward, M. Kashtalyan

Fig. 12 Through-thickness variation normalised in-plane displacement ū1 under sinusoidal and patch loadings on a central vertical
section x2 = 0.5b: a ‘base material’ under sinusoidal loading; b ‘base material’ under patch loading; c ‘low Gt material’ under
sinusoidal loading; d ‘low Gt material’ under patch loading

low transverse shear modulus is a particular danger as it may give rise to core buckling, face sheet wrinkling
or failure of the core in shear.

Figure 12 shows the distribution of normalised in-plane displacement ū1 on a central vertical section
x2 = 0.5b under sinusoidal and patch loadings. For the panels with low transverse shear modulus (Fig. 12c,
d), the core can be seen to deform more easily than the panels with base transverse shear modulus.

Study of the normalised transverse displacement ū3 (Fig. 13) shows a large increase in displacement as the
transverse shear modulus is decreased due to the increased panel bending. This is observed for both sinusoidal
(Fig. 13a, c) and patch loadings (Fig. 13b, d).

5.3 Effect of anisotropy in thick and thin panels

In order to study the effect of shear deformation in greater detail, a comparison is made between a panel
with transversely isotropic ‘low Gt material’ and a panel whose coefficients have been modified to give an
equivalent isotropic panel, with properties listed in Table 3 under ‘Equivalent Isotropic material’.

Plots of normalised transverse shear stress on a line through the panel thickness at x1 = 0, x2 = 0.5b are
shown in Fig. 14. Four different panel thicknesses are considered: very thick panels with a/h0 = b/h0 = 1.5;
thick panels with a/h0 = b/h0 = 2; moderately thin panels with a/h0 = b/h0 = 6 and thin panels with
a/h0 = b/h0 = 10.
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Fig. 13 Through-thickness variation of normalised transverse displacement ū3 under sinusoidal and patch loadings on a central
vertical section x2 = 0.5b: a ‘base material’ under sinusoidal loading; b ‘base material’ under patch loading; c ‘low Gt material’
under sinusoidal loading; d ‘low Gt material’ under patch loading

Fig. 14 Effect of isotropy and panel thickness on through-thickness variation of normalised transverse shear stress σ̄13 at x1 =
0, x2 = 0.5b



2480 B. Woodward, M. Kashtalyan

When considering the thick and very thick panels (Fig. 14a), it can be seen that for the transversely isotropic
panel, the through-thickness variation of transverse shear stress is non-parabolic and themaximumoccurs close
to the upper/lower face sheet, pointing to a high degree of shear deformation. For the isotropic panel, it can
be seen that for the thick and very thick panels, the shear response is much more parabolic in shape, but shear
deformation is just starting to become apparent.

Conversely, when considering the moderately thin and thin panels (Fig. 14b), it can be seen that for the
transversely isotropic panel, shear deformation is still evident even when a/h0 = b/h0 = 10. However, for
the isotropic panel, the response is parabolic for both the moderately thin and thin panels. It has been shown
that shear deformation is apparent in transversely isotropic panels at much smaller thickness to span ratio than
an equivalent isotropic panel and as such when designing panels with transversely isotropic core material,
shear deformation effects should not be ignored even for moderately thin and thin panels. This is especially
true for panels with lower transverse shear modulus.

6 Concluding remarks

In this paper, a three-dimensional elasticity solution was developed for simply supported sandwich panels with
transversely isotropic functionally graded core subjected to transverse loading. The Young’s and shear moduli
of the core material were assumed to vary exponentially through the thickness, whilst the Poisson’s ratios
were assumed to remain constant. The solution was derived using displacement functions for inhomogeneous
transversely isotropicmedia proposed in [18] andwas validated through comparisonwith results for an isotropic
functionally graded plate [17] and a homogenous transversely isotropic plate [32].

The solution allowed the first full 3D analysis of sandwich panels with transversely isotropic graded core
to be carried out. Key findings of the study were as follows:

• In panels with low transverse shear modulus, a greater effect of shear deformation was observed both under
distributed and localised loadings;

• A comparative study of panels with transversely isotropic and isotropic graded cores demonstrated that
when considering the panel with transversely isotropic core, the effects of shear deformation are apparent
in thinner panels with much smaller thickness to span ratio than in an equivalent isotropic panel;

• In panels with transversely isotropic core highly non-parabolic variation of transverse shear stress was
observed;

• Increasing the in-plane Young’s modulus was shown to give the panel greater resistance to bending and a
reduction in displacement throughout for both thin and thick panels;

• Under localised loading, it was seen that high displacement gradients can occur in areas close to the
load application. The functionally graded core was seen to provide additional resistance under areas of
localised loading, reducing the load penetration through the panel thickness. This is important practically,
as indentation of the core would reduce the cross-sectional area of the panel and therefore decrease the
bending stiffness of the panel as a whole. In addition, the graded core gave a reduction in the magnitude
of shear and normal stresses near to the load application. This provides the panel with greater resistance
to failure of the core material by yielding or shear.

• Local bending of the upper face sheet under localised transverse loading was also shown to be eliminated
through introduction of the graded core as the effects of the local load can be effectively distributed across
the interface into the panel core.

Acknowledgements Financial support of this research by the EPSRC DTA is gratefully acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Three-dimensional elasticity analysis of sandwich panels 2481

Appendix

Functions U (k)
i j and P(k)

r t j involved in Eqs. (17a–17i) are

U (k)
1 j (m, n, x3) = − qmnh

c011c
0
33 − c0213

πmh
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exp

(
−α(k)x3

h
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c013k
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dx23
f j (x3)

]

U (k)
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c011c
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33
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f j (x3) + α(k)c013 f j (x3)
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j = 1, . . . , 4;
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1 j (m, n, x3) = −qmnh
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U (k)
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U (k)
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j = 5, 6.

In the expressions above, functions f j (x3), j = 1, . . . , 4 are as follows.
If discriminant of characteristic equation is negative,
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If the discriminant of the characteristic equation is positive with two real roots and two complex roots, then
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Functions f5(x3) and f6(x3) are
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