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ABSTRACT: Photoisomerization of Irgacure PAG 103 followed by photocyclization and fragmentation leads to three tricyclic
thieno[2,3-b]quinoline-4-carbonitrile heterocyclic compounds. The release of acid which can catalyze polymer resist
modifications is indicated by the low pH of an aqueous extract. These reactions are discussed in view of possible mechanisms
and how these might influence future design strategies.

■ INTRODUCTION
The concept of chemical amplification in thin polymer film
resists was proposed by Ito, Willson, and Frećhet in 1982.1,2

Chemical amplification allows a single photochemical reaction
to induce a cascade of transformations in a resist film which
modify its properties during a postexposure bake.3−5 Photoacid
generators (PAGs), which release catalytic quantities of acid
upon irradiation through a mask, have become a new family of
modern polymer resist. Various PAGs have been synthesized
for use in chemical amplification resists.6,7 They can be divided
into two main types, ionic and nonionic. Ionic or onium salt
acid generators such as triarylsulfonium and diaryliodonium
salts were originally developed by Crivello for curing epoxy
resins.8−15 Upon irradiation, they liberate strong acids with
good quantum yields. Nonionic PAGs include oxime
sulfonates,16−19 oxime esters,20 and N-sulfonyloxyimides.21

The choice of PAG for an application depends upon many
factors such as the wavelength of radiation,22−27 quantum
efficiency of acid generation, solubility in the casting solvent,28

thermal and hydrolytic stability, toxicity, strength of the
liberated acid,3−5 line width,29 acid diffusion,30 and environ-
mental considerations.31,32 Although the mechanism of the
photochemical decomposition of Crivello salts has been
studied,3−5 less is known about how nonionic PAGs release
acid. In this paper, a commercial UV light PAG called Irgacure
PAG 10333−37 is examined and key photochemical decom-
position products are characterized.

■ RESULTS AND DISCUSSION
A batch of compound 1, known as Irgacure PAG 103, was
generously supplied to us for study from a UK division of
BASF in Cheadle. This compound, which is soluble in organic
solvents, can be used in polymer resists to produce a positive
image and for the curing of resins. It has been the subject of

numerous patents.33−37 However, to date, we have found no
published synthesis or data for this compound and only one
study of its degradation by photochemical irradiation to give
two products.38 The two products were characterized by
advanced NMR, and it was not concluded that this PAG 1
released acid upon irradiation. Here, we report an additional
degradation product, and a mechanism is proposed to explain
how these may form. Two of the degradation products and the
stereochemistry of the starting material, were verified by X-ray
single crystal structure determinations. This information is
relevant because it helps to understand how acid is released
from it and what structural features are important for this
particularly because the design of photoacid releasing
compounds39−41 remains a topical subject both academically
and commercially.3−5 Compound 1 was irradiated with a low
power 6 W UV lamp at 254 nm in an immersion well. This
setup is user friendly and is suitable for undergraduates; it is air
cooled by a fume hood fan and it avoids a powerful 400 W
medium pressure mercury lamp inside an immersion well
containing a large volume of flammable solvent. The solution
was not deoxygenated because some PAGs operate in thin
films in air. The products 2−4 were purified by chromatog-
raphy on silica gel (Figure 1).
Figure 2 shows the molecular structure of the starting

material 1 and the molecular structures of two products 2 and
4. Figure 2 Top shows the starting material 1. Analysis by thin-
layer chromatography showed that the two products were
successfully separated by chromatography. The front less polar
spot was fully characterized spectroscopically, and the structure
was confirmed as compound 2 by an X-ray single crystal
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structure determination (Figure 2 middle). This corroborates
the literature result. However, the more polar spot was an
inseparable mixture of compounds 3 and 4 which were
separated and analyzed by liquid chromatography−mass
spectrometry (LC−MS) (Figure S1 and Table S1) and
characterized spectroscopically as an approximately equal
mixture of two compounds (Supporting Information).
Compound 3 had the expected molecular mass of 211; it
lacked a methyl group and only one methyl group was present
in the proton and carbon NMR spectra which belonged to
compound 4. Selective crystallization gave crystals which
solved for one of the components, compound 4 (Figure 2
bottom). The absence of compound 3 in the previous study is
unknown.
Figure 3 shows a mechanism for the formation of products 2

and 3. The starting material must first undergo a UV light

catalyzed Z/E isomerization to a less favorable isomer 5.
Presumably structure 1 is the preferred thermodynamic isomer
because the nitrile aligns with the oxime nitrogen atom rather
than the more bulky aryl ring and the thioenol ether is trans to
the nitrile. Light-catalyzed cis−trans isomerizations of stilbenes
are well documented in the literature.42,43 Intermediate 5 could
undergo a 6π electrocyclisation, as shown, which involves the
oxime sulfonate forming a ring at the ipso site carrying the
methyl group. Intermediate 6 could fragment to a resonance-
stabilized carbocation 7, assisted by the electron rich thiophene
ring, followed by a migration of the methyl group to
intermediate 9 and finally loss of the proton forming product
2 and propylsulfonic acid 8. Product 2 has a migrated methyl
group which allows the system to aromatize. Migration of the
methyl group is more suited to a rearranging carbocation
because carbocations are prone to rearrange and require the
ring to form first before fragmentation of the N−O bond.
Hence, the rearranged product is an indication of the
mechanistic pathway. If intermediate 7 or 9 is demethylated
by either the solvent, water, or the counterion 8, then, product
3 is formed. Product 3 might also form via homolytic
fragmentation of the N−O bond of compound 5 (not
shown), followed by ipso cyclization of an aminyl radical and
elimination of a methyl group free radical but this mechanism
would not give product 2. Products 2 and 3 can arise from the
same reaction pathway. Aqueous extracts of the dichloro-
methane (DCM) solution were shown to be of low pH with
universal indicator paper proving that acid is liberated in these
reactions but it would be for forming product 2 and not
necessarily for forming product 3.
Figure 4 shows a mechanism for the formation of product 4.

Intermediate 5 could undergo a 6π electrocyclization to give
intermediate 10 which can give product 4 by a facile
elimination of propylsulfonic acid 8. Hence, this pathway
retains the aryl methyl group and is efficient in producing acid
8.
Both the mechanistic pathways in Figures 3 and 4 require

the release of propylsulfonic acid. A crude reaction mixture was
assayed by proton NMR in CDCl3 and CD3OD which showed
the presence of propylsulfonic acid (Figures S16 and S17).

Crystal Structures. The asymmetric unit of 1 consists of
three molecules, A, B, and C. They differ in the dihedral angles
between the benzene and thiophene rings [69.53 (15), 55.64
(16), and 72.7 (2)° for A, B, and C, respectively] and the
conformation of the O−S−C−C fragment of the propyl chain,
which is anti in A [torsion angle = 175.8 (3)°] and gauche in B
and C [−58.2 (3) and −57.1 (3)°, respectively]. Compound 2
crystallizes with one almost planar molecule in the asymmetric
unit (rms deviation for the atoms in the fused rings = 0.009 Å),
whereas the asymmetric unit of 4 consists of two molecules
(Figures S2−S4).

■ CONCLUSIONS
Mechanisms are proposed for the photochemical fragmenta-
tion of the commercial photoacid generator Irgacure PAG 103
1. These are thought to be the first reactions of this type in
organic systems. The pathways involve an unusual type of 6π
photocyclization reaction which involves cyclization of an
oxime sulfonate followed by an elimination of propylsulfonic
acid 8 which may catalyze polymer resist modification. The
rearrangement product 2 suggests a carbocation pathway is
involved; hence, the photocyclisation occurs first before
fragmentation of the oxime N−O bond which would involve

Figure 1. Photochemical decomposition of Irgacure PAG 103 1.
Yields: 2 (25%); 3 + 4 (60%). Compound 1 was irradiated with a 6 W
254 nm UV lamp in an immersion well.

Figure 2. Top: molecular structure of Irgacure PAG 103 (molecule
C1) 1; middle: photochemical decomposition product 2; and bottom:
photochemical decomposition product 4. Figures show 50% displace-
ment ellipsoids in each case.
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free radicals rather than a carbocation. This mechanistic
understanding may help in the future design of more efficient
and sensitive PAGs for photocuring applications in polymer
resists.

■ EXPERIMENTAL SECTION
General. IR spectra were recorded on an ATI Mattson

FTIR spectrometer using KBr discs. UV spectra were recorded
using a PerkinElmer Lambda 25 UV−vis spectrometer with
CH2Cl2 as the solvent. 1H and 13C NMR spectra were
recorded at 400 and 100.5 MHz, respectively, using a Varian
400 spectrometer. Chemical shifts, δ, are given in ppm and
measured by comparison with the residual solvent. Coupling
constants, J, are given in Hz. Low resolution and high
resolution mass spectra were obtained at the University of
Wales, Swansea, using electron impact ionization and chemical
ionization. Melting points were determined on a Kofler hot-
stage microscope. Irgacure PAG 103 was donated from an
agent of BTC.44

Liquid Chromatography−Mass Spectrometry. For
analytical separation, an Agilent 1290 Infinity high-perform-
ance liquid chromatography (HPLC) system consisting of a
quaternary HPLC pump, cooled autosampler compartment,
column compartment, and diode-array UV-vis detector was
used. A Kintex F5 column (2.1 × 150 mm, Phenomenex, UK)
was used for separation with a water/acetonitrile gradient
(both 0.1% v/v formic acid) from 5% acetonitrile to 100% in
10 min. The flow rate was 0.5 mL min−1, column temperature

40 °C, and sample volume 5 μL. The mass spectrometer
[electrospray MS (ES-MS)] used was a MAXIS II UHR-TOF
LC−MS system (Bruker UK Ltd) with an ESI source
connected to the UV−vis detector by a short length of Peek-
tubing. The ES-MS was operated in a positive ion mode with a
capillary voltage of 4.5 kV using sodium formate clusters for
calibration and methyl stearate as lock mass. Mass spectra were
recorded automatically.

Data for Compound 1. (Z)-2-((Z)-2-(((Propylsulfonyl)-
oxy)imino)thiophen-3(2H)-ylidene)-2-(o-tolyl)acetonitrile 1
(Irgacure PAG 103).16 mp 102−103 °C λmax (EtOH)/nm
405 (log ε 3.9), 262 (3.93) and 226 (4.3); νmax (KBr)/cm

−1

3091w, 2964w, 2205w, 1524w, 1373s, 1320s, 1262s, 1167s,
853s, 807s, 769s, 730s, 710s, 684s, 674s, 615s, 600s, 560s,
521s, 487s and 460s; δH (400 MHz; CDCl3): 0.9 (3H, t, J =
8.0), 1.73−1.79 (2H, m), 2.16 (3H, s), 3.39 (2H, t, J = 8.0),
5.96 (1H, d, J = 8.5), 6.65 (1H, d, J = 8.5), 6.99 (1H, d, J =
8.0); 7.05 (1H, t, J = 8.0), 7.08 (1H, d, J = 8.0) and 7.14 (1H,
t, J = 8.0); δC (100.1 MHz; CDCl3): 12.7, 17.2, 19.8, 51.6,
111.7, 116.9, 123.0, 126.5, 129.8, 130.4, 131.2, 132.6, 133.0,
136.8, 146.0 and 161.0; HRMS (orbitrap ASAP) m/z: (M+ +
H, 100%) calcd for C16H16N2O3S2H, 349.0681; found,
349.0682; m/z: (M+ + H− CH3CH2CH2SO3, 40%) calcd for
C13H8N2SH, 225.0486; found, 225.0486.

Photochemical Irradiation of Irgacure PAG 103.16 8-
Methylthieno[2,3-b]quinoline-4-carbonitrile 2, a mixture of
Thieno[2,3-b]quinoline-4-carbonitrile 3, and 5-Methylthieno-
[2,3-b]quinoline-4-carbonitrile 4

Figure 3. Mechanism proposed for the formation of products 2 and 3. Intermediates 5−9 have not been isolated.

Figure 4. Proposed mechanism for the formation of product 4.
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Irgacure PAG 10317 1 (100 mg, 0.29 mmol) in DCM (100
mL) was irradiated for 5 h with a 6 W 254 nm lamp in a quartz
immersion well without deoxygenation. Cooling was provided
by a fume hood fan. The solution was extracted with 50 mL of
dilute KOH (0.1 M), dried over MgSO4, and concentrated to
20 mL. This clean reaction was purified by chromatography on
silica gel. Light petrol: DCM (50:50; 150 mL:150 mL) eluted
the first title compound 2 (16 mg, 25%) as a colorless solid,
mp 206−207 °C (from DCM/light petroleum ether 40−60).
λmax (EtOH)/nm 357 (log ε 3.8) and 264 (4.6); νmax (KBr)/
cm−1 3080w, 2221w, 1556w, 1475w, 1391w, 1370w, 1318w,
1277w, 1256w, 1216w, 1160w, 1093w, 1032w, 901w, 820w,
806w, 745s, 734s, 687s, 623w, 610w and 518w; δH (400 MHz;
CDCl3) 2.83 (3H, s), 7.54 (1H, d, J = 4.0), 7.57 (1H, t, J = 4.0
and 4.0), 7.63 (1H, d, J = 4.0), 7.83 (1H, d, J = 4.0) and 8.10
(1H, d, J = 4.0); δC (100.1 MHz; CDCl3): 18.4, 111.1, 115.4,
119.8, 123.0, 124.1, 128.2, 130.4, 132.7, 133.7, 137.6, 145.3
and 161.2; HRMS (orbitrap ASAP) m/z: (M+ + H, 100%)
calcd for C13H8N2SH, 225.0486; found, 225.0489. Then,
DCM (200 mL) eluted the second title compound mixture 3 +
4 (37 mg, 60%) as a colorless solid, broad mp 130−140 °C
(from DCM/light petroleum ether 40−60). λmax (EtOH)/nm
357 (log ε 3.9) and 264 (4.7); νmax (KBr)/cm−1 3099w,
2218w, 1634w, 1548w, 1504w, 1474w, 1386w, 1319w, 1275w,
1258w, 1223w, 1156w, 1088w, 1033w, 967w, 878w, 863w,
810w, 762s, 747s, 681s, 645w, 588w and 478w; δH (400 MHz;
CDCl3): 3.07 (3H, s), 7.41 (1H, d, J = 8.0), 7.54 (1H, d, J =
8.0), 7.57 (1H, d, J = 8.0), 7.62 (1H, t, J = 8.0), 7.69 (1H, t, J =
8.0), 7.77−7.83 (2H, m), 7.84 (1H, d, J = 8.0), 8.02 (1H, d, J =
8.0), 8.17 (1H, d, J = 8.0) and 8.24 (1H, d, J = 8.0); δC (100.1
MHz; CDCl3): 22.3, 109.6, 111.0, 115.0, 117.8, 119.8, 120.7,
122.8, 124.0, 125.1, 128.1, 128.4, 129.3, 130.0, 130.3, 130.5,
133.2, 133.5, 133.9, 134.5, 135.3, 145.8, 147.0, 161.0 and
162.2; HRMS (orbitrap ASAP) m/z: (M+ + H− CH2, 20%)
calcd for C12H6N2SH, 211.0330; found, 211.0327; m/z: (M

+ +
H, 100%) calcd for C13H8N2SH, 225.0486; found, 225.0485.
Crystallization Experiments. Compounds 1, 2, and 4

were crystallized by the same method. The compound (75 mg)
was dissolved in a small quantity of DCM (about 25 mL) in a
50 mL beaker. This was then carefully diluted with light
petroleum ether (40−60) until the solution turned hazy. A
small amount of DCM was then added to turn the solution
clear. This is then a good solvent composition to begin
crystallization. The beaker was covered in aluminum foil that
had some small holes in it, and the solution was left for a few
days to evaporate the solvent. A sample of partially crystalline
material, a mixture of compounds 3 and 4, was sent away for a
data set, and this was successful. However, a partial, physical
separation of material to give either pure 3 or 4 by NMR was
not successful.
Intensity data for 1, 2, and 4 were collected at T = 100 K on

a Rigaku AFC11 CCD diffractometer with Cu Kα radiation (λ
= 1.54184 Å). The structures were solved by direct methods
and optimized by refinement against |F|2; the H atoms were
geometrically placed and refined as riding atoms.
Crystal data for 1 C16H16N2O3S2, Mr = 348.43, monoclinic,

Cc (no. 9), a = 7.98090 (10) Å, b = 24.9093 (4) Å, c = 24.7994
(3) Å, β = 90.3360 (10)°, V = 4930.00 (12) Å3, Z = 12, R(F) =
0.047, wR(F2) = 0.105, CCDC deposition number = 1915103.
Crystal data for 2 C13H8N2S, Mr = 224.27, monoclinic, P21/

n (no. 14), a = 3.82113 (4) Å, b = 9.12204 (11) Å, c = 29.1165
(3) Å, β = 90.0056 (9)°, V = 1014.899 (19) Å3, Z = 4, R(F) =
0.048, wR(F2) = 0.131, CCDC deposition number = 1915104.

Crystal data for 4 C13H8N2S, Mr = 224.27, triclinic, P1̅ (no.
2), a = 6.7661 (3) Å, b = 9.2454 (6) Å, c = 16.4453 (12) Å, α
= 90.393 (5)°, β = 92.650 (5) °, γ = 99.674 (5)°, V = 1012.92
(11) Å3, Z = 4, R(F) = 0.128, wR(F2) = 0.386, CCDC
deposition number = 1915105.
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