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Abstract. We investigate the Nonlinear Schrödinger Equation with a time-

dependent nonlinear coefficient. By means of Painlevé analysis we establish the

integrability of a particular case, when the nonlinear coefficient decays with t−1. The

corresponding soliton solution is shown to be of the self-similar kind. We discuss

implications of the result to the dynamics of attractive Bose-Einstein condensates

under Feshbach-managed nonlinearity and explore the possibility of a managed self-

similar evolution in 1D condensates.
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1. Introduction

The Nonlinear Schrödinger (NLS) Equation

iψt −
β

2
ψxx + γ|ψ|2ψ = 0 , (1)

is one the ubiquitous equations in nonlinear dynamics of spatially extended systems.

It is a (1+1)-dimensional completely integrable equation finding applications in optics,

hydrodynamics, condensed matter physics, to site a few, [1]. Its wide applicability comes

from the fact that it is a normal form in perturbative expansions connected to wave

modulation [2]. Integrability grants the existence of particularly important solutions,

the solitons, which dominate the long-time behavior of the system. Depending on the

sign of the product γβ, the NLS equation has different kinds of solitonic solutions: if

γβ < 0 it has localized, bright soliton, solutions and if γβ > 0 it has the so-called dark

soliton solutions.

In recent years, a new area of applicability for the NLS equation has appeared. The

dynamics of a single-species Bose-Einstein condensate (BEC) is indeed governed in the

mean-field limit by the Gross-Pitaevskii equation (GP), [3], which has many similarities

to NLS equation. GP is a (3+1)-dimensional equation of the NLS kind, supplemented

with an extra term, describing the trapping potential that sustains the condensate. In

GP the second derivative becomes a Laplacian. The coefficient β is in this case β = − h̄
m

,

where m is the mass of the bosons. The parameter γ, is the scattering length and is

connected to the self-interaction of the condensate. It can be both positive (attractive

condensate) or negative (repulsive condensate). In the most frequent case, the potential

is a single-well, harmonic, one.

BECs are very manageable objects in laboratory, allowing for manipulations of

their form and interactions. It is thus possible to obtain effectively lower dimensional

condensates by using an anisotropic trapping that strongly constrains the dynamics in

one or two spatial directions. For instance, we will be interested here in one-dimensional

condensates, that is, condensates where two directions have their dynamics frozen. It is

possible to show that such condensates are governed by a one-dimensonal GP equation

[4], with a rescaled scattering length. Furthermore, if we consider attractive condensates

in one dimension, the dynamics in the “unfrozen” direction can be considered as free –

not subject to the action of the potential – as long as we have the characteristic radius of

the condensate smaller then the linear dimension of the trap. Summing up, an attractive

BEC in a one-dimensional configuration will be described by the usual NLS equation.

The expected solitons have been observed experimentally [5].

Part of the manageability of the BEC system is translated into the fact that γ

can be tuned. The presence of spatially homogeneous magnetic fields acting upon the

condensate modifies the interaction between atoms and affects γ. Besides, γ can be made

time-dependent and can be used to manage the condensate, the so-called, Feshbach-

resonance management [6]. This opens the path analogies with the dispersion managed
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systems of fiber optics [7]. Many interesting effects have been found in this respect,

not only in (1+1)-dimensional case, as for example the stabilization of two-dimensional

solitons [8].

Having thus the freedom to consider γ as a function of time a natural question arises.

Given that Eq. (1) is integrable, are there other integrable cases when we consider a

time-dependent γ(t). For the case of optical fibers, where β, instead of γ is variable, it

is know that one integrable case exist, with an exponentially decaying β, [9].

In this paper we will show that the NLS equation with a time-dependent γ admits

a further integrable case which is decaying with t−1. We will resort to the method

of Painlevé analysis [10], which gives all possible integrable cases. Next we will show

that the integrable case found can be mapped to a constant coefficient NLS by a gauge

transformation. Finally, we will obtain explicit solutions and discuss their properties.

In particular, we will show the possibility of existence Feshbach-managed expanding

self-similar solutions of an attractive condensate.

2. Painlevé Analysis

Consider a variable coefficient NLS equation in the form:

iψt −
β

2
ψxx + γ(t)|ψ|2ψ = 0. (2)

We now apply the well established Painlevé analysis to Eq. (2) to derive the

parametric condition on γ(t) for which the NLS equation (2) is completely integrable

[10]. To proceed further with the Painlevé analysis, we introduce a new set of variables

a(= ψ) and b(= ψ∗). By Eq. (2), a and b can be written as

iat −
β

2
axx + γ(t)a2b = 0, (3)

−ibt −
β

2
bxx + γ(t)b2a = 0. (4)

Next, expand a and b in generalized Laurent series as:

a =
∞
∑

r=0

arϕ
r+µ, b =

∞
∑

r=0

brϕ
r+δ, (5)

with a0, b0 6= 0, where µ and δ are negative integers, ar and br are a set of expansion

coefficients which are analytic in the neighborhood of the non-characteristic singular

manifold ϕ(x, t) = 0. Standard Painlevé analysis consists of looking at the leading order,

when a ≈ a0ϕ
µ and b ≈ b0ϕ

δ are substituted in Eqs. (3). Upon balancing dominant

terms, the following results are obtained:

µ = δ = −1 and a0b0 = ϕ2
xβ/γ(t) . (6)
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Substituting the full Laurent series (5) in Eqs. (3) and considering the leading order

terms, the resonances are found to be r = −1, 0, 3, 4. The resonance at r = −1 represents

the arbitrariness of the singularity manifold and r = 0 corresponds to the fact that either

a0 or b0 is arbitrary. Collecting and balancing the coefficients of the different powers

of ϕ show that a sufficient number of arbitrary functions exists only for the following

parametric condition on γ(t):

d2γ(t)

dt2
γ(z) − 2

[

dγ(t)

dt

]2

= 0. (7)

On solving this equation, we have:

γ(t) =
γ0

t+ t0
, (8)

where γ0 and t0 are integration constants.

Thus the Painlevé analysis implies that the nonlinear coefficient must vary in the

manner given by Eq. (8) for the system equation (2) to be completely integrable. Thus

the integrable form of Eq. (2) can be written as

iψt −
β

2
ψxx +

γ0

t+ t0
|ψ|2ψ = 0, (9)

3. Soliton Solutions and Transformations

We would now like to point out a conjecture regarding the resonance values derived

in the Painlevé analysis. The resonances r = −1, 0, 3, 4 obtained here for the variable

coefficient NLS equation (2) are the same as those for the constant coefficient NLS

equation. Past experience has shown that such coincidences usually imply that the

newly derived integrable nonlinear evolution equation could be connected to existing

systems of equations. This is in fact true and there is a connection between the variable

coefficient NLS equation (9) and the conventional NLS equation. We consider the

following dependent variable scaling

ψ =
√

2(t+ t0)ψ
′, (10)

which maps the variable coefficient NLS equation (9) into the following variable

coefficient NLS equation (with β = −2, for convenience):

iψ′

t + ψ′

xx + 2γ0|ψ′|2ψ′ +
i

2(t+ t0)
ψ′ = 0. (11)

This variable coefficient NLS equation (11) has been analyzed for its integrability

through Painlevé analysis and possesses a transformation connecting it to constant

coefficient NLS equation [11]. Thus the above mentioned conjecture about the resonance

values of the Painlevé analysis holds good as there is a connection between the integrable
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nonlinearity varying NLS equation (9) and the conventional constant coefficient NLS

equation.

Using standard mathematical techniques the 1-soliton solution of the variable

coefficient NLS equation (11) can be derived as

ψ′(x, t) =

√

2

γ0

ζ

t+ t0
sech

(√
2ζx

t+ t0

)

exp
[

i

t+ t0
(x2/4 − 2ζ2)

]

. (12)

where ζ is an arbitrary constant.

The Hirota bilinear transform for 1- and 2-soliton solutions:-

The 1- and 2-soliton expressions can also be derived by the Hirota bilinear

transformation, a method proven to be effective over the years in handling multi-soliton

for nonlinear evolution equations (NEEs). To simplify the presentation, we consider

iψ′

t + ψ′

xx + 2γ0|ψ′|2ψ′ +
iσψ′

t
= 0, (13)

where we have set t0 = 0 as the time origin is immaterial. Remarkably, the bilinear

map will dictate the constant σ to be 1/2, consistent with earlier analysis. Recently, a

modified bilinear method has been proposed to treat NEEs with variable coefficients.

The main ideas are (a) to separate an appropriate chirp factor and (b) to employ time

or space dependent wave numbers [12, 13, 14].

Our goal is to demonstrate that a similar algorithm will also succeed in the present

case. To begin, one starts with transformation

ψ′ = exp

[

iB(x)

t

]

u

t
. (14)

A remark on the present choice of chirp factor is in order. For the GP / NLS equations

with a quadratic potential in the spatial coordinate x, a quadratic factor in x with

modifications / modulations in time t form the successful combination [12, 13, 14]. In

the present case with a reciprocal in t being the inhomogeneous term in (13), it is

plausible to seek this same format in t modified by a suitable phase factor in x.

The standard bilinear transform for envelope type equations, namely,

u =
g

f
, f real, (15)

is now implemented and the resulting, decoupled bilinear equations are (D is the usual

Hirota differentiation operator [15])

[

iDt +D2

x +
2iBx

t
Dx +

B

t2
− i

t
+
iBxx

t
− B2

x

t2
+
iσ

t

]

g · f = 0, (16)

D2

xf · f =
2γ0gg

∗

t2
. (17)

To achieve a 1-soliton, an expansion with time dependent wave number is sought:
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g = exp[xh1 + h0], h1 = h1(t), h0 = h0(t), (18)

f = 1 +m11 exp[x(h1 + h∗1) + h0 + h∗0]. (19)

The entity m11 may be a function of t in general, even though we shall prove shortly

that it will be a constant in the present situation. Equation (17) now immediately yields

2m11(h1 + h∗1)
2 =

2γ0

t2
. (20)

The coefficient of exp(xh1 + h0) in (16) gives

i(xh′1 + h′0) + h2

1 +
2iBxh1

t
+
B

t2
− i

t
+
iBxx

t
− B2

x

t2
+
iσ

t
= 0. (21)

Both the real and imaginary parts of this expression must of course vanish independently.

The real part is

h2

1 +
B

t2
− B2

x

t2
= 0,

or h2

1t
2 = B2

x −B = constant (22)

= r2

Elementary separation of variables arguments imply now both sides of (22) must be

constant. Furthermore, h1 is real (as B is real), and this separation constant is positive

(r2). The differential expression governing B is

dB

dx
=

√
B + r2. (23)

This separable equation gives

B =
x2

4
− r2. (24)

With

h1 =
r

t
, (25)

we deduce from expression (20) that m11 is not a function of t,

m11 =
γ0

4r2
. (26)

The imaginary part of (21) now generates

h′0 = −
(

σ − 1

2

)

t
. (27)

The other term in the bilinear equation (4) now gives

h′0 = −
(

σ − 1

2

)

t
. (28)
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Equations (27) and (28) now force us to conclude that σ must be 1/2, and h0 must be

zero (a constant that can be easily scaled out). This formulation can be readily shown

to reduce to the 1-soliton solution (12). Extension to 2-soliton from (18) and (19) is

straightforward.

With a minor modification, the appropriate expansions for a 2-soliton wave profile

are then

ψ′ = exp

(

ix2

4t

)

g2

f2

, (29)

g2 = exp(φ) + exp(χ) + n1 exp(φ+ χ+ χ∗) + n2 exp(χ + φ+ φ∗),

f2 = 1 +m11 exp(φ+ φ∗) +m12 exp(φ+ χ∗) +m21 exp(χ+ φ∗)

+m22 exp(χ + χ∗) +M exp(φ+ φ∗ + χ+ χ∗),

where

φ =
rx

t
− ir2

t
, χ =

Rx

t
− iR2

t
, (30)

with r, R being real constants. The parameters mij, ni, and M can be computed in

manners very similar to earlier references [15]:

m11 =
γ0

4r2
, m22 =

γ0

4R2
, m12 = m21 =

γ0

(r +R)2
, (31)

n1 =
γ0(R − r)2

4R2(r +R)2
, n2 =

γ0(R− r)2

4r2(r +R)2
, M =

γ2
0(r − R)4

16r2R2(r +R)4
. (32)

Gauge transformation:-

For completeness in the following we present the gauge transformation

ψ′(x, t) =
(

t0 − T

t0

)

Q(X, T ) exp

[

iX2

4(t0 − T )

]

,

t =
(

t0
t0 − T

)

T ,

x =
(

t0
t0 − T

)

X,

which connects the variable coefficient NLS equation (11) to the following constant

coefficient NLS equation

iQT +QXX + 2γ0|Q|2Q = 0. (33)
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Figure 1. Plots showing the evolution of two single solitons with γ0 = 1, ζ = 10 and

t0 = 500. Dashed curves represent the initial solitons and solid curves represent the

solitons after evolution of t = 125 ((a1) & (a2)) and t = 250 ((b1) & (b2)).

4. Numerical Simulations

Given the situation described above, the possibility arises of having two Feshbach-

managed attractive BEC expanding and interfering. The two-soliton soliton is however

much more general than this. Therefore to explore the possibility of merging two BEc

in the conditions described, we numerically integrate the equations with the adequate

initail conditions.

Figures 1 show the evolution |ψ|2 for two single solitons initially separated by a

distance of x = 350 and the other parameters γ0 = 1, ζ = 10 and t0 = 500. Dashed

curves represent the initial solitons and solid curves represent the solitons after evolution.

The solid curve in Fig. 1 (a1) corresponds to the solitons evolved after t = 125. Whereas

the solid curve in Fig. 1 (b1) corresponds to the solitons evolved after t = 250. For more

insight in Figs. 1 (a2) and (b2) we have zoomed in the interacting tail part of the solitons

corresponding to Figs. 1 (a1) and (b1), respectively.

As is clear from the above plots, an interference pattern can readily be observed.
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5. Conclusions

The solution given by Eq. (12) implies a self-similar dynamics for the condensate density.

Indeed, if we plug it into Eq. (10) and calculate the modulus squared of ψ we will get

the following function:

|ψ|2 =
4ζ2

γ0(t+ t0)
sech2

(√
2ζx

t+ t0

)

, (34)

which has the form

|ψ|2 =
1

t+ t0
F (x/(t+ t0)) . (35)

This represents an expanding condensate with typical width ζ ∼ t+ t0. Therefore, if we

associate an expansion front to the condensate, it progresses with constant speed. The

amplitude drops with t−1 and the evolution maintains the shape of the BEC.

We have thus an attractive condensate that expands under Feshbach-resonance

control. Expansion is possible because the scattering length drops with time, allowing

for larger condensates. The self-similarity of the solution is, however, the effect of

the precise time-dependence of the scattering length with time. If, for instance, we

had a different time-behavior of the scattering length we could still have an expanding

condensate but not obeying a shape preserving evolution as the one found in the above

results.

Self-similar evolution of BEC has been studied before [16] in different settings. In

general, expansion is the effect of repulsion and self-similar evolution can occur for in

small or large condensate limits [17]. On the the hand, self-similar evolution is also

connected to collapsing attractive condensates [18]. In the present case, however, we

would like to point out the possibility of a managed self-similar evolution, arising from

the interplay of controlled nonlinearity and dispersion. Furthermore, we can have shown

that a self-similar merging of two BEC is possible, leading to interference.
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