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1 Abstract

2 Cereal foods are commonly contaminated with multiple mycotoxins resulting in 

3 frequent human mycotoxin exposure. Children are at risk of high-level exposure 

4 due to their high cereal intake relative to body weight. Hence this study aims to 

5 assess multi-mycotoxin exposure in UK children using urinary biomarkers. Spot 

6 urines (n=21) were analysed for multi-mycotoxins (deoxynivalenol, DON; 

7 nivalenol, NIV; ochratoxin A, OTA; zearalenone, ZEN; α- zearalenol, α-ZEL; β-

8 zearalenol, β-ZEL; T-2 toxin, T-2; HT-2 toxin, HT-2; aflatoxin B1 and M1, AFB1, 

9 AFM1) using liquid chromatography-coupled tandem mass spectrometry. Urine 

10 samples frequently contained DON (13.10±12.69 ng/mL), NIV (0.36±0.16 ng/mL), 

11 OTA (0.05±0.02 ng/mL) and ZEN (0.09±0.07 ng/mL). Some samples (1-3) 

12 contained T-2, HT-2, α-ZEL and β-ZEL, but not aflatoxins. Dietary mycotoxin 

13 estimation showed that children were frequently exposed to levels exceeding the 

14 tolerable daily intake (52% and 95% of cases for DON and OTA). This 

15 demonstrates that UK children are exposed to multiple mycotoxins through their 

16 habitual diet.

17

18 Keywords: trichothecenes, deoxynivalenol, ochratoxin, zearalenone, tolerable daily 

19 intake, co-exposure, diet
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20 Introduction

21 Mycotoxins are toxic fungal secondary metabolites which are important contaminants in 

22 cereal-based foods and nuts. Mycotoxins have been demonstrated to have a range of 

23 potent toxicities including carcinogenicity (aflatoxins, ochratoxin), intestinal and 

24 immunotoxicity (trichothecenes), and aflatoxins are linked to the development of 

25 hepatocellular carcinoma in adults and impaired growth in children (1,2). Based on 

26 extensive evidence from toxicity studies, the WHO/FAO Joint expert committee on Food 

27 (JECFA) and the European Food Safety Authority (EFSA) have determined tolerable 

28 daily intakes (TDI) for several dietary mycotoxins including trichothecenes, ochratoxin 

29 A, zearalenone, fumonisins and patulin and strict maximum permitted levels for 

30 mycotoxins are set for agricultural commodities and foods by regulatory agencies around 

31 the world (3-5). To estimate human dietary exposure to mycotoxins both food analysis and 

32 biomarker studies are frequently used (6-12). It is difficult to estimate mycotoxin exposure 

33 through food analysis due to the complex nature of the human diet with numerous food 

34 constituents contributing to exposure to several mycotoxins. Furthermore, modified 

35 mycotoxins are often overlooked during dietary mycotoxin exposure assessment (13).  

36 Urinary biomarker studies have been successfully used to estimate total dietary exposure 

37 to multiple mycotoxins including trichothecenes, zearalenone and aflatoxins (recent 

38 examples include 11,14-21). These biomonitoring studies have reported variable levels of 

39 exposure in European adults, with TDI exceedances for DON reported in 13 - 48% of 

40 adults (14,20,22,23).

41 Mycotoxin exposure in children has been reported in Africa (recent examples 

42 include 24,25), but in Europe reports are less common despite children being identified as 

43 an at-risk group for higher exposure due to their low body weight and high relative 

44 consumption of cereal-based foods (26).  
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45 Especially co-exposure to multiple mycotoxins in this vulnerable population group is 

46 understudied (27,28). The aim of the current study was therefore to determine the urinary 

47 biomarker levels for multiple mycotoxins in UK children and to estimate their total 

48 dietary mycotoxin exposure in relation to the tolerable daily intakes for each mycotoxin.

49

50 Materials and Methods

51 Study design

52 21 healthy children (12 boys, 9 girls, aged 2-6 years) provided spot samples of early 

53 morning urine. All children followed their normal habitual diet. Anthropometric details 

54 of participating children are summarised in Table 1. This study was approved by the 

55 Rowett Institute’s Ethics Review Panel following favourable consideration by the 

56 Grampian Research Ethics Committee (Reference 01/0306). 

57 Urine analysis

58 This study focusses on six regulated mycotoxins deoxynivalenol (DON), ochratoxin A 

59 (OTA), zearalenone (ZEN), T-2 and HT-2 toxin (T-2, HT-2) and aflatoxin B1 (AFB1) as 

60 well as their important metabolites de-epoxy deoxynivalenol (DOM-1), nivalenol (NIV), 

61 α-zearalenol (α-ZEL), β-zearalenol (β-ZEL) and aflatoxin M1 (AFM1). Mycotoxin 

62 reference standards for all mycotoxin as well as stable isotope labelled internal standards 

63 in acetonitrile (13C15 DON, 13C22 HT-2, 13C18 ZEN, 13C20 OTA, ¹³C₁₇ AFB1) were 

64 purchased from Romer Labs (Tulln, Austria). Urine samples from the Rowett 

65 biorepository were used in this study. Samples were collected in 2004 and stored at -20 

66 ºC prior to analysis. Urine samples were analysed for multiple mycotoxins adapting a 

67 digestion, extraction and LC-MS/MS method published previously (29). In brief, 4 mL of 

68 urine were spiked with a mixture of 13C-labelled internal standards (5 ng/mL 13C15 DON, 
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69 13C22 HT-2; 1.25 ng/mL 13C18 ZEN, 13C20 OTA, ¹³C₁₇ AFB1) and adjusted to pH 6.8. 

70 Samples were then digested over night with β-glucuronidase (Sigma-Aldrich, Ltd., Pool, 

71 UK; 23,000U in 1 mL 75 mM KH2PO4 buffer at pH 6.8), diluted with 16 mL PBS, the 

72 pH adjusted to 7.2 and purified and enriched using immunoaffinity columns (IAC, Myco-

73 6in1, Vicam V100000176, Biocheck, St Asaph, UK). The binding capacities for the 

74 Myco-6in1 IAC are quoted by the manufacturer as 300 ng aflatoxins, 1250 ng DON/NIV, 

75 800 ng FBs, 100 ng OTA, 500 ng T-2/HT-2, 350 ng ZEN. Samples were eluted with 

76 methanol, evaporated to dryness and reconstituted in 250 µL of 10% ethanol, resulting in 

77 a 16-fold concentration of urinary mycotoxins prior to LC-MS/MS analysis. 

78 LC-MS/MS analysis

79 The liquid chromatography separation of mycotoxins was performed on a Shimadzu 

80 Nexera X2 LC system, using an Agilent Poroshell column (3 x 50 mm, 2.7 μm). The 

81 linear gradient comprised of 10 mM ammonium acetate (Sigma-Aldrich, Ltd., Pool, UK; 

82 solvent A) and methanol (solvent B). Starting conditions were 5% B, increasing to 95% 

83 B over 10 minutes, a 30-second hold at 95% B, and then re-equilibrated at 5% B for 1.5 

84 minutes. The injection volume was 10 µL, the column oven was set to 40 ºC and the flow 

85 rate was 400 µL/min. The LC eluent was directed into a Shimadzu 8060 triple-quadrupole 

86 MS. Mycotoxins were quantified using the multiple reaction monitoring (MRM) 

87 technique. Standard solutions of 500 ng/mL were injected into a flow of solvent and their 

88 transition values optimized. 8-point calibration curves (DON 1-500 ng/mL; NIV, HT-2 

89 and T-2 0.2-100 ng/m; DOM-1, OTA, ZEN, α-ZEL, β-ZEL, AFB1 0.1-50 ng/mL and 

90 AFM1 0.05-25 ng/mL) including internal standards (80 ng/mL 13C15 DON, 13C22 HT-2; 

91 20 ng/mL 13C18 ZEN, 13C20 OTA, ¹³C₁₇ AFB1) were used to quantify all analytes. 
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92 Method validation

93 Urine mycotoxin analysis is based on the method described (29). Myco-6in1 

94 immunoaffinity columns were used to monitor the specified mycotoxins DON, ZEN, 

95 OTA, T-2, HT-2, AFB1 and AFM1 as well as additional closely related mycotoxins NIV, 

96 DOM-1, α-ZEL and β-ZEL. The retention of DON, NIV and DOM-1 on DON-specific 

97 IAC has been recently demonstrated (30).  LOD and LOQ were determined in solvents and 

98 urine matrix by a signal to noise ratio of 10/1 and 3/1, respectively (Table 2, Figure 1). 

99 Urine matrix effects (signal suppression/enhancement, SSE) were evaluated by 

100 comparing the slopes of matrix matched standard curves (8 levels, in triplicates) with 

101 solvent standard curves calculated as: matrix slope/solvent slope x 100. Matrix effects 

102 were efficiently compensated by using IAC and stable isotope internal standards, 

103 resulting in SSE ranging from 98-119% for all mycotoxins tested (Table 2). As no blank 

104 urine samples could be obtained, recovery experiments were performed in PBS spiked 

105 with a mycotoxin mixture at three different levels (DON 20.0, 5.0, 2.5 ng/mL; NIV, HT-2 

106 and T-2 at 4.0, 1.0, 0.5 ng/ml; DOM-1, OTA, ZEN, α-ZEL, β-ZEL, AFB1 and AFM1 at 

107 2.0, 0.5, 0.25 ng/mL) in triplicate on three different days under repeatability conditions  

108 (31). Recoveries were expressed as % of predicted final concentration (Table 2). 

109 Recoveries and repeatability (RSDr) were within criteria established by EU Reg No 

110 401/2006 (32). All results were corrected for recovery and urinary mycotoxin 

111 concentrations are expressed as ng/mL urine and ng/mg creatinine. Urinary creatinine 

112 was analysed using alkaline picrate solution on an automated clinical analyser 

113 (KONELAB 30, Labmedics, Stockport, UK). Four quality controls of freshly spiked PBS 

114 (5.0 ng/mL DON; 1.0 ng/mL NIV, HT-2, T-2; and 0.5 ng/mL DOM-1, OTA, ZEN, α-

115 ZEL, β-ZEL, AFB1, AFM1) were included in the analysis. 
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116 Estimation of daily urinary mycotoxin excretion

117 Total 24-hour urinary creatinine excretion was calculated as described previously (29) 

118 using a clinical calculator 

119 (http://www.clinicalculator.com/english/nephrology/excrea/excrea.htm) on the basis of 

120 anthropometric data (Table 1) as follows:

121 Creatinine excretion females (mg/d) = (22 – age/9) x BW 

122 Creatinine excretion males (mg/d) = (28 – age/6) x BW 

123 BW = body weight

124 Daily urinary mycotoxin excretion was calculated as:

125 Urinary mycotoxin (ng/mg creatinine) x Total 24-hour creatinine excretion (mg/d)

126 Urinary mycotoxin excretion is presented as ng/mL urine, ng/mg creatinine and µg/d in 

127 table 3. 

128 Estimation of dietary mycotoxin exposure

129 Dietary mycotoxin intake was calculated as:

130 Daily urinary mycotoxin excretion (µg/d)/CR 

131 CR = urinary clearance rate for DON 72.3%/day (7), OTA 5% (33) and ZEN 9.4% (23). 

132 Dietary mycotoxin exposure was then expressed as % of the tolerable daily intake (TDI):

133 %TDI = Daily mycotoxin intake (µg/d) / BW x 100 / TDI 

134 TDI = Tolerable daily intake (µg/kg BW/d)

135 Statistical analysis

136 All results are presented as average concentration of 21 urine samples. Data for boys 

137 (n=12) and girls (n=9) were analysed by using an independent t-test (SPSS version 24) 

138 and no significant differences (p>0.05) were found for urinary mycotoxin excretion or 
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139 dietary exposure between boys and girls for any mycotoxin tested. Hence, all results are 

140 presented as average for all children.

141

142 Results and Discussion

143 Prevalence of mycotoxins in urine

144 In this study spot urine samples from 21 children were analysed for 11 mycotoxins. Of 

145 these mycotoxins, DON and ZEN were detected in all urine samples. OTA and NIV were 

146 also frequently detected (95 and 81% of all samples, respectively), while α-ZEL, β-ZEL, 

147 DOM-1, T-2 and HT-2 were only present in 1-3 samples (Table 3). AFB1 and AFM1 were 

148 not detectable in any of the samples. Urinary DON was highly prevalent (100% of 

149 samples, mean 39.7 ng/mg creatinine or 13.1 ng/mL) and two samples also contained 

150 DOM-1, the microbial metabolite of DON, at low levels (Table 3). Both prevalence and 

151 urinary concentration of DON are comparable to a recent UK-based pediatric study (16) 

152 which found 100% of urine samples from 40 children aged 3-9 to be contaminated with 

153 DON at a mean concentration of 41.6 ng/mg creatinine. Similarly, a large study in 155 

154 Belgian children (27) and a small study in 16 Spanish children (28) report DON and DON-

155 glucuronide, the major urinary metabolite, to occur in 100% and 56% of urine samples, 

156 respectively. Urinary DON+DON-glucuronide was reported at 83.1 ng/mg creatinine or 

157 74.2 ng/mL urine (Belgium) and 27.8 ng/mg creatinine (Spain). DON was also frequently 

158 detected in adults from Austria (96% of 27 samples, mean 19.5 ng/mg creatinine, 22), Italy 

159 (96% of 52 samples, mean 11.9 ng/mL, 34), Portugal (78% of 94 samples, median 4.0 

160 ng/mg creatinine, 35) and pregnant women from Croatia (98% of 40 samples, 93.7 ng/mg 

161 creatinine, 20) and less frequently in Nigerian children (18% of 120 samples, mean 2.4 

162 ng/mL, 36) and adults from Cameroon (42% of 175 samples, mean 5.9 ng/mL, 37). DON-

163 glucuronides are the main urinary DON metabolites detected (9), and our method of urine 
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164 analysis including an enzymatic β-glucuronidase pre-digestion detects the sum of free 

165 and glucuronidated DON in the same analysis. DOM-1 was detectable in two urine 

166 samples (9% prevalence, at approximately 1% of the urinary DON concentration) which 

167 is lower than our previous studies in UK adults (20 – 40% prevalence of DOM-1, 14,29).  

168 DOM-1 is a microbial metabolite of DON produced by the human gut microbiota of some 

169 individuals, but not others, and our previous work found the frequency of DOM-1 

170 production to range between 10-20% in faecal microbiota from adults (14,29,39). To date, 

171 no work has been published on the activity of children’s microbiota towards mycotoxin 

172 degradation, but profiles of children’s microbiota resemble that of adults from an early 

173 age (40). A recent study in UK children did not detect any urinary DOM-1 (16), and the 

174 Spanish study reports DOM-1 in 1/16 samples (28). In contrast, the Belgian cohort reports 

175 DOM-1 in 17% of samples at very high concentrations (101 ng DOM-1 glucuronide/mg 

176 creatinine), which even exceeded the detected sum of DON and DON-glucuronide (27). In 

177 adults, DOM-1 has been detected in 96% of Spanish adults (DOM-1 at 8.9 ng/mg 

178 creatinine, 38), 28% of Portuguese adults spot urine (26 ng/mg creatinine, 35), but not in 

179 Austrian (22) or Italian subjects (34). In addition to DON and DOM-1, DON-3-suflate has 

180 been identified as a novel urinary DON metabolite in humans (41) with an excretion rate 

181 of 4% of dietary DON. DON-3-sulfate was not analysed in the current study and could 

182 further increase the estimate of dietary DON.

183 Nivalenol was detectable in 81% of urine samples in the current study, but at very 

184 low levels (mean 1.1 ng/mg creatinine, Table 3). NIV was not detectable in children from 

185 Spain (28), but the Spanish study reports urinary NIV in 18.7% of young adults and 18.2% 

186 of adults at mean concentrations of 13.3 and 16.7 ng/mg creatinine, respectively. Other 

187 studies did not determine NIV in children’s urine. Our current method uses IAC cleanup 

188 and enrichment which facilitates a low detection limit (LOQ 0.125 ng/mL) which is 
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189 superior to methods which report NIV in children’s urine below LOQ (e.g. LOQ 1 ng/mL, 

190 28). NIV excretion in urine is reported in adults in Africa (10,37,42) but reports in children 

191 are rare (36) and further studies are needed to assess dietary exposure. Type A 

192 trichothecenes T-2 and HT-2 were each detected once (0.03 and 6.1 ng/mg creatinine, 

193 respectively; Table 3), but not in the same urine sample. This low incidence of T-2 and 

194 HT-2 is comparable to the Spanish cohort (HT-2 in 1/16 sample at 12.6 ng/mg creatinine, 

195 28) and no T-2 or HT-2 were found in Belgian children (27), Nigerian children (43) or adults 

196 from Cameroon (37). OTA was detected in 95% of samples in the current study at low 

197 levels (mean concentration of 0.15 ng/mg creatinine) which is higher than the Belgian 

198 cohort of children (51% of samples contained OTA at 0.08 ng/mg creatinine, 27). In adults, 

199 studies report a wide range of urinary OTA concentrations (0.006 ng/mg creatinine, 35; 

200 0.019 ng/mg creatinine, 38; 0.15 ng/mg creatinine, 21).

201 Zearalenone and its metabolites are potent xenoestrogens and exposure to these 

202 compounds is of great concern, especially in girls. Alternariol is another estrogenic 

203 mycotoxin with potential synergistic effects to ZEN (44). In the current study, ZEN was 

204 detected in all urine samples at mean levels of 0.3 ng/mg creatinine (Table 3), with no 

205 significant difference between boys and girls. The hepatic metabolites α-ZEL and β-ZEL 

206 were detected less frequently (3/21 and 2/21 samples, respectively), but at higher mean 

207 levels compared to ZEN (0.5 and 0.6 ng/mg creatinine, respectively; Table 3). α-ZEL and 

208 β-ZEL only co-occurred in samples which were also contaminated with ZEN at ratios of 

209 66-82% for α-ZEL and 77-116% for β-ZEL. Prevalence of urinary ZEN is higher in our 

210 study (100% of samples) compared to a study in 163 US girls aged 9-10 (55%, 45) but the 

211 mean urinary concentration is lower (0.1 ng/mL urine in the current study compared to 

212 1.3 ng/mL in US girls. Two European studies (27,28) and one study from Nigeria (43) report 

213 ZEN and ZEL as not detectable in children’s urine whereas another study from Nigeria 
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214 reports ZEN in 82% and α- and β-ZEL in 4 and 6% of urine samples from children and 

215 adults (36).

216 AFB1 and AFM1 were not detected in any urine samples from children in this 

217 study, which is in agreement with other studies in European cohorts (27). Urinary aflatoxin 

218 excretion reflects recent, acute dietary exposure, whereas aflatoxin-lysin adducts in 

219 plasma are validated biomarkers for chronic aflatoxin exposure (46).  Aflatoxins are 

220 frequently detected in cohorts of children and adults in Africa (14 – 72% of samples 

221 positive for urinary AFM1 36,43) where aflatoxin exposure is linked to impaired growth 

222 (47). However, strict regulations for aflatoxins in food in Europe and low consumption of 

223 high-risk foods such as peanuts lead to a negligible exposure to aflatoxins in children and 

224 adults.

225 Estimation of dietary mycotoxin exposure

226 Children were exposed to substantial amounts of DON through their diet (average 26.5 

227 µg/d, Table 4). When dietary exposure was compared to the tolerable daily intake for 

228 DON, the TDI was exceeded in 52% of children (Figure 2). Average DON exposure in 

229 all 21 children was 136% of TDI and the proportion of TDI exceedances for DON in 

230 children in this study is much higher than in adults where we previously found 7% of TDI 

231 exceedances in 15 subjects (14). Our results are in line with a recent study (16) reporting up 

232 to 63% of UK children exceeding the TDI for DON, and this high frequency of TDI 

233 exceedances in children is of great concern. Similarly, cohorts in other countries also 

234 report higher frequency of TDI exceedances in children (22% Spain, 28; 69% Belgium, 

235 27) than adults (4% Spain 28; 29% Belgium, 27; 10% Portugal, 35; 40% Italy, 34; 33% 

236 Austria, 22; 48% Croatia, 20). Exposure assessment through urinary OTA biomarkers has 

237 been performed in adults (34,35,38). In adults TDI exceedances for OTA are reported 
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238 frequently (14% of subjects median 27% of TDI from Portugal, 35; 94% of subjects mean 

239 818% of TDI from Italy, 34; and 96% of subjects mean 185% of TDI from Spain, 38). 

240 Vidal et al. (38) also state that exposure estimate from urinary biomarkers greatly exceed 

241 estimates from dietary approaches. In UK adults, dietary OTA exposure was estimated at 

242 average 1.5 ng/kg bw/d based on plasma levels or 0.9 ng/kg bw/d based on duplicate diet 

243 analysis (48). This exposure is significantly lower than our estimates of 74.1 ng/kg bw/d 

244 (Table 4) in children based on urinary OTA excretion. Based on this exposure estimate, 

245 95% of children in the current study exceeded the TDI for OTA (Figure 2). TDI 

246 exceedances for ZEN were less common in children in the current study (5% of children) 

247 and have not been reported in the literature. In adults, 24% of subjects exceeded the TDI 

248 for ZEN in a recent study (35). Further work is needed to better elucidate the exposure and 

249 potential health risk associated with this mycotoxin in children. Dietary co-exposure to 

250 several mycotoxins is highly likely as several mycotoxins are frequently detected in 

251 important food commodities including cereal grains (trichothecenes, ZEN, OTA), corn 

252 (ZEN and fumonisins) and dried fruits (OTA) (1). Co-exposure to the mycotoxins DON, 

253 OTA and ZEN was also evident in this study (Figure 3). Children exceeding the TDI for 

254 DON or ZEN also exceeded the TDI for OTA and this co-exposure puts them at an even 

255 greater risk of mycotoxin toxicity. Cereals and cereal based foods have been identified as 

256 main contributors to mycotoxin exposure in the UK (49) and our study confirms the 

257 prediction that children might be at high risk to exceed TDI. For carcinogenic mycotoxins 

258 such as aflatoxins, no tolerable daily intakes are set and a benchmark dose is calculated 

259 instead (50). However, this does not apply to the current study as no aflatoxins were 

260 detected in urine. Urinary biomarker analysis for mycotoxin exposure is an important 

261 approach for estimating dietary exposure. Urinary DON is a well validated biomarker for 

262 recent dietary exposure, whereas biomarkers for other mycotoxins such as ZEN and OTA 
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263 are less strong in predicting dietary exposure due to the low urinary excretion rate (9.4 

264 and 5%, respectively) and complex metabolism in humans (18,35,51,52). Hence, future 

265 studies are needed to confirm the present finding of frequent and substantial TDI 

266 exceedances for OTA in UK children.

267 In conclusion, our data clearly demonstrate that children are exposed to high 

268 levels of some mycotoxins through their habitual diet and that maximum permitted levels 

269 for mycotoxins in food do not fully protect them from exceeding the TDI. Regulators 

270 need to consider further action to ensure consumer safety of all population groups to avoid 

271 high exposure and potential toxic effects. 
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Figure captions

Figure 1. LC-MS/MS chromatograms for the quantification of 11 mycotoxin in urine 

matrix. Mycotoxin concentrations in urine: DON 3.13 ng/mL; NIV, HT-2 and T-2 0.63 

ng/mL; DOM-1, OTA, ZEN, α-ZEL, β-ZEL, AFB1 0.31 ng/mL; AFM1 0.16 ng/mL.

Figure 2. Estimated dietary mycotoxin exposure in children. Data are calculated as DON 

equivalents (sum of DON+DOM-1) and ZEN equivalents (sum of ZEN+α-ZEL+β-ZEL) 

and all calculations are based on 21 urine samples. Results are calculated as % of TDI for 

each toxin and grouped in five TDI categories (0-25%; 25-50%; 50-75%; 75-100%, 

>100%). Pie charts summarise the proportion of children in each TDI bracket. 

Abbreviations: deoxynivalenol (DON); de-epoxy deoxynivalenol (DOM-1); ochratoxin 

A (OTA); zearalenone (ZEN); α-zearalenol (α-ZEL); β-zearalenol, (β-ZEL); tolerable 

daily intake (TDI).

Figure 3. Co-exposure to DON, OTA and ZEN in children. Data are calculated as DON 

equivalents (sum of DON+DOM-1) and ZEN equivalents (sum of ZEN+α-ZEL+β-ZEL). 

Results are presented as percentage of TDI for each mycotoxin in each individual child. 

Abbreviations: deoxynivalenol (DON); de-epoxy deoxynivalenol (DOM-1); ochratoxin 

A (OTA); zearalenone (ZEN); α-zearalenol (α-ZEL); β-zearalenol, (β-ZEL); tolerable 

daily intake (TDI).
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Tables

Table 1. Anthropometric Details of Participating Children.

Gender Boys, n = 12 Girls, n = 9

Age (years) 4.6 ± 1.3 4.6 ± 1.0

Body weight (kg) 18.4 ± 2.8 20.3 ± 6.9

BMI (kg/m2) 15.9 ± 1.3 17.3 ± 2.6

Urinary creatinine (mg/d) 501.2 ± 72.7 435.7 ± 146.1

All data are expressed as average ± SD.
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Table 2. Method Performance Parameters of the LC-MS/MS Method.

RT=retention time. LOD=Limit of detection, LOQ=Limit of quantification, SSE=Signal suppression/enhancement. For all analytes the retention 

time shifts between standards and samples were ≤ 0.2% and the relative response ratios quantifier/qualifier ion were within the target range (31,32). 

LOD/LOQ levels were determined using 8-point calibration curves prepared in urine matrix. All LOD/LOQ levels are expressed as ng/mL urine, 

taking into account the 16-fold concentration of urine during processing. Matrix effects (SSE) were obtained by comparing the slopes obtained 

from matrix-matched standard curves with slopes from solvent standard curves. Recovery was determined in PBS spiked at 3 levels in triplicates 

in 3 repeat experiments.  DOM-1 transitions (qualifier and quantifier ion) are shown in Supplemental Figure 1.

Compound
RT m/z precursor ion Polarity m/z product 

ions
Relative 
response 
ratio

LOD/LOQ 
urine (ng/mL)

Matrix effect 
(SSE%±RSD)

Recovery 
(%±RSDr)

DON 2.9 355.25[M+CH2COO]- -ve 295.2/265.3 67.9 0.156/0.328 97.8±6.1 111.8±6.8
DOM-1 3.8 339.25[M+CH2COO]- -ve   59.1/249.2 42.2 0.063/0.158 103.2±3.3 94.8±14.7
NIV 2.2 371.20[M+CH2COO]- -ve 281.2/311.2 66.7 0.066/0.125 105.5±0.6 113.0±10.8
OTA 6.9 404.15[M+H]+ +ve 239.1/221.1 43.1 0.003/0.006 106.7±2.2 101.6±13.7
ZEN 8.1 317.20[M-H]- -ve 175.3/131.2 59.6 0.016/0.033 112.2±2.5 91.2±13.0
α-ZEL 7.9 319.20[M-H]- -ve 275.3/160.3 50.0 0.033/0.063 106.6±4.2 95.4±12.8
β-ZEL 7.4 319.20[M-H]- -ve 275.3/160.3 51.5 0.033/0.063 109.6±4.1 94.3±14.3
HT-2 7.2 442.30[M+NH4]+ +ve 263.3/215.3 70.9 0.013/0.031 106.4±3.1 126.8±13.2
T-2 7.8 484.20[M+NH4]+ +ve 215.2/305.2 99.2 0.006/0.013 119.0±1.7 91.8±8.9
AFB1 6.1 313.10[M+H]+ +ve 285.1/241.0 84.3 0.003/0.006 112.9±8.9 100.9±10.0
AFM1 5.3 329.10[M+H]+ +ve 273.2/229.2 51.0 0.003/0.008 108.9±6.4 91.0±15.6
DON 13C15 2.9 370.20[M+CH2COO]- -ve
OTA 13C20 6.9 424.20[M+H]+ +ve
ZEN 13C18 8.1 335.20[M-H]- -ve
HT-2 13C22 7.2 464.30[M+NH4]+ +ve
AFB1 13C17 6.1 330.20[M+H]+ +ve
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Table 3. Urinary Excretion of Multiple Mycotoxins in 21 UK Children.

Mycotoxin Number 

(%) positive 

samples

Mean of positive

samples (range)

ng/mL urine

Mean of positive 

samples (range)

ng/mg creatinine

Mean of positive

samples (range)

µg/d

DON 21 (100%) 13.10 (0.69-42.03) 39.68 (1.88-152.99) 19.13 (0.87-76.96)

DOM-1 2 (9%) 0.15 (0.15,0.15) 0.40 (0.25,0.56) 0.21 (0.14,0.28)

NIV 17 (81%) 0.36 (0.13-0.58) 1.13 (0.42-2.43) 0.54 (0.11-1.19)

HT-2 1 (5%) 1.77 6.13 2.73

T-2 1 (5%) 0.02 0.03 0.01

OTA 20 (95%) 0.05 (0.02-0.11) 0.15 (0.06-0.33) 0.07 (0.03-0.15)

ZEN 21 (100%) 0.09 (0.03-0.25) 0.28 (0.09-1.20) 0.14 (0.04-0.65)

α-ZEL 3 (14%) 0.18 (0.11-0.22) 0.50 (0.19-0.92) 0.26 (0.12-0.49)

β-ZEL 2 (9%) 0.16 (0.10,0.22) 0.63 (0.33,0.93) 0.37 (0.24,0.50)

AFB1 0 <LOD <LOD <LOD

AFM1 0 <LOD <LOD <LOD

LOD = limit of detection
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Table 4. Dietary Intake Estimates of Major Mycotoxins by 21 UK Children.

Mean dietary intake 

(range)

µg/kg bw/d

Mean total dietary 

intake (range) 

µg/d

Mean % TDI (range)

DON 1.36 (0.07-5.77) 26.49 (1.20-106.86) 135.62 (7.13-577.31)

ZEN 0.10 (0.02-0.70) 2.20 (0.40-17.34) 40.73 (8.4-278.7)

OTA 0.07 (0.00-0.18) 1.39 (0.05-2.94) 435.88 (19.50-1071.39)
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Figure 2

Page 27 of 29

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



28

Figure 3
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