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Abstract

’Epigenetic age acceleration’ is a valuable biomarker of ageing, predictive of morbidity and

mortality, but for which the underlying biological mechanisms are not well established. Two

commonly used measures, derived from DNA methylation, are Horvath-based (Horvath-

EAA) and Hannum-based (Hannum-EAA) epigenetic age acceleration. We conducted

genome-wide association studies of Horvath-EAA and Hannum-EAA in 13,493 unrelated

individuals of European ancestry, to elucidate genetic determinants of differential epigenetic

ageing. We identified ten independent SNPs associated with Horvath-EAA, five of which are

novel. We also report 21 Horvath-EAA-associated genes including several involved in

metabolism (NHLRC, TPMT) and immune system pathways (TRIM59, EDARADD). GWAS

of Hannum-EAA identified one associated variant (rs1005277), and implicated 12 genes

including several involved in innate immune system pathways (UBE2D3, MANBA,

TRIM46), with metabolic functions (UBE2D3, MANBA), or linked to lifespan regulation

(CISD2). Both measures had nominal inverse genetic correlations with father’s age at

death, a rough proxy for lifespan. Nominally significant genetic correlations between Han-

num-EAA and lifestyle factors including smoking behaviours and education support the

hypothesis that Hannum-based epigenetic ageing is sensitive to variations in environment,

whereas Horvath-EAA is a more stable cellular ageing process. We identified novel SNPs

and genes associated with epigenetic age acceleration, and highlighted differences in the

genetic architecture of Horvath-based and Hannum-based epigenetic ageing measures.

Understanding the biological mechanisms underlying individual differences in the rate of epi-

genetic ageing could help explain different trajectories of age-related decline.
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Author summary

DNA methylation, an epigenetic process, is known to vary with age. Methylation levels at

specific sites across the genome can be combined to form estimates of age known as ‘epi-

genetic age’. The difference between epigenetic age and chronological age is referred to as

‘epigenetic age acceleration’, with positive values indicating that a person is biologically

older than their years. Understanding why some people seem to age faster than others

could shed light on the biological processes behind age-related decline; however, the

mechanisms underlying differential rates of epigenetic ageing are largely unknown. Here,

we investigate genetic determinants of two commonly used epigenetic age acceleration

measures, based on the Horvath and Hannum epigenetic clocks. We report novel genetic

variants and genes associated with epigenetic age acceleration, and highlight differences

in the genetic factors influencing these two measures. We identify ten genetic variants and

21 genes associated with Horvath-based epigenetic age acceleration, and one variant and

12 genes associated with the Hannum-based measure. There were no genome-wide signif-

icant variants or genes in common between the Horvath-based and Hannum-based mea-

sures, supporting the hypothesis that they represent different aspects of ageing. Our

results suggest a partial genetic basis underlying some previously reported phenotypic

associations.

Introduction

Ageing is associated with a decline in physical and cognitive health, and is the main risk factor

for many debilitating and life-threatening conditions including cardiovascular disease, cancer,

and neurodegeneration [1]. Ageing is a multi-dimensional construct, incorporating physical,

psychosocial, and biological changes. Everyone experiences the same rate of chronological age-

ing, but the rate of ‘biological ageing’, age-related decline in physiological functions and tis-

sues, differs between individuals. Various phenotypic and molecular biomarkers have been

used to study biological ageing, including a number of ’biological clocks’, the best known of

which is telomere length. Telomeres shorten with increasing age, and telomere length has been

found to predict morbidity and mortality [2]. More recently, research into epigenetics–chemi-

cal modifications to DNA without altering the genetic sequence–has yielded another method

for measuring biological age.

DNA methylation is an epigenetic modification, typically characterised by the addition of a

methyl group to a cytosine-guanine dinucleotide (CpG) [3], that can influence gene expression

and is associated with variation in complex phenotypes. This process is essential for normal

development and is associated with a number of key processes including ageing. DNA methyl-

ation levels are dynamic, varying with age across the life course [4,5] and are influenced by

both genetic and environmental factors [6].

Weighted averages of methylation at multiple CpG sites can be integrated into estimates of

chronological age referred to as ‘epigenetic age’. Two influential studies have used this method

to create ‘epigenetic clocks’, which accurately predict chronological age in humans. Hannum

et al. used DNA methylation profiles from whole blood from two cohorts to identify 71 CpG

sites that could be used to generate an estimate of age [7], while Horvath used data from 51 dif-

ferent tissue types from multiple studies to identify 353 CpG sites whose methylation levels

can be combined to form an age predictor [8]. Hannum et al.’s clock is specific to blood sam-

ples, although it can be adjusted for different tissue types using linear models. The Horvath
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clock is widely applicable, with the same CpG set and the same algorithm being used irrespec-

tive of the DNA source.

Although similar penalised regression models were used to select the CpG sites to be

included in each of these epigenetic clocks, there is limited overlap in the CpGs included. The

two measures are clearly related, but are thought to capture slightly different aspects of the

biology of ageing [9]. The Hannum age estimator correlates with proportions of certain blood

cells, reflecting its construction based on blood methylation data [9,10], and it is considered to

track aspects of immunosenescence. The pan-tissue Horvath clock, constructed across a broad

spectrum of tissue and cell types, is relatively uncorrelated with blood cell proportions [11],

and is thought to capture cell-intrinsic changes in DNA methylation which might reflect an

innate ageing process.

Both the Hannum and Horvath epigenetic clocks are strongly correlated (r>0.95) with

chronological age [7,8]. However, despite these high overall correlations, there can be substan-

tial differences between epigenetic and chronological age at the individual level, and it is

unclear what drives these differences. A greater epigenetic age relative to chronological age is

commonly described as ‘epigenetic age acceleration’ (EAA), and implies that a person is bio-

logically older than their years. EAA has been shown to be informative for both current and

future health trajectories [9]. Recently, a growing number of studies have used EAA to investi-

gate age-related disorders, and the epigenetic clock is increasingly being recognised as a valu-

able marker of biological ageing [10,12].

The simplest definition of epigenetic age acceleration is the residual that results from

regressing epigenetic age on chronological age. However, it is well known that the abundance

of different cell types in the blood changes with age [13,14], and hence two broad categories of

EAA measures have been distinguished: those that are independent of age-related changes in

blood cell composition, and those that incorporate and are enhanced by blood cell count infor-

mation [10]. The former group, considered to reflect ‘pure’ epigenetic ageing effects that are

not influenced by differences in blood cell counts, are often referred to as ‘intrinsic’ epigenetic

age measures. The latter group up-weights the contributions of blood cell counts, thus leverag-

ing known age-related changes to blood cell proportions to capture aspects of immunosenes-

cence; these measures are referred to as ‘extrinsic’ epigenetic age measures.

In keeping with previous work, this study focuses on two different epigenetic age measures,

based on the Horvath and Hannum epigenetic clocks [7,8], and uses these to derive variations

of EAA that are either independent of blood cell counts, or enhanced by changes in blood cell

composition. Horvath-based epigenetic age follows the approach by Horvath (2013), and is

defined as the predicted value of age based on the DNA methylation levels of the 353 CpG sites

identified in his study [8]. Horvath-based epigenetic age acceleration (Horvath-EAA) is the

residual term of a multivariate model regressing the Horvath-based epigenetic age estimate on

chronological age and estimates of blood cell counts. It is by definition independent of both

chronological age and age-related changes in the cellular composition of blood. Hannum-

based epigenetic age is based on DNA methylation levels at the 71 CpGs identified by Hannum

et al. (2013) [7]. Hannum-based epigenetic age acceleration (Hannum-EAA) is an enhanced

version of the Hannum estimate which up-weights the contributions of age-associated blood

cells. A weighted average of Hannum-based epigenetic age with blood cells whose abundance

is known to change with age is calculated, and Hannum-EAA is then defined to be the residual

variation from a univariate model regressing the weighted DNA methylation age estimate on

chronological age. Hannum-EAA is independent of chronological age but in addition to cell-

intrinsic epigenetic changes it also tracks age-related changes in blood cells. Full details of the

calculation of Horvath-EAA and Hannum-EAA are given in S1 Text.
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Horvath-EAA, described in previous publications as ‘intrinsic’ epigenetic age acceleration

(IEAA), can be interpreted as a measure of cell-intrinsic ageing that exhibits preservation

across multiple tissues, appears unrelated to lifestyle factors, and probably indicates a funda-

mental cell ageing process that is largely conserved across cell types [8,10]. In contrast, Han-

num-EAA, referred to in previous studies as ‘extrinsic’ epigenetic age acceleration (EEAA),

can be considered a biomarker of immune system ageing, explicitly incorporating aspects of

immune system decline such as age-related changes in blood cell counts, correlating with life-

style and health-span related characteristics, and thus yielding a stronger predictor of all-cause

mortality [10,15].

It should be noted that as both the Horvath and Hannum epigenetic clocks correlate well

with age, in a population with a wide age range they are guaranteed to correlate with each

other. However, Horvath-based and Hannum-based epigenetic age acceleration estimates, i.e.

the degree of divergence of epigenetic age from chronological age, are not guaranteed to be

correlated.

Previous studies have identified relationships between epigenetic ageing and numerous

traits, including several age-related health outcomes, for example Alzheimer’s disease pathol-

ogy [16], cognitive impairment [16], and age at menopause [17]. Higher EAA has been associ-

ated with poorer measures of physical and cognitive fitness [9] and higher risk of all-cause

mortality [12]. Many associations are specific to either Horvath-EAA or Hannum-EAA, a dis-

cordance that may reflect the differences in the two estimates and supports the theory that

they represent different aspects of ageing [15,18,19].

While EAA has been associated with various markers of physical and mental fitness, the

mechanisms underlying epigenetic ageing remain largely unknown. There has been little

research conducted thus far on genetic contributions to epigenetic age acceleration. However,

Lu et al. (2018) recently published results of the first genome-wide association analysis of

blood EAA in a sample of 9,907 individuals, identifying five genetic loci associated with Hor-

vath-EAA and three Hannum-EAA-associated loci [20].

This current study, with a sample size of 13,493 individuals, constitutes the largest study

of the genetic determinants of DNA methylation-based ageing to date. Single nucleotide

polymorphism (SNP)-based and gene-based approaches were used to identify genes and

loci associated with Hannum-based and Horvath-based estimates of EAA. Functional map-

ping and annotation of genetic associations were performed, alongside gene-based and

gene-set analyses, in an attempt to elucidate the genes and pathways implicated in differen-

tial rates of epigenetic ageing between individuals and shed light on the underlying biologi-

cal mechanisms. We report novel SNPs and genes associated with epigenetic age

acceleration, and highlight differences in the genetic architectures of the Horvath-based

and Hannum-based EAA measures.

Results

Estimation of epigenetic age and epigenetic age acceleration in the

Generation Scotland sample

A summary of the estimated epigenetic age variables in Generation Scotland (GS) is given in

S1 Table. Both the Horvath- and Hannum-based estimates of biological age were highly corre-

lated with chronological age (r = 0.94, SE = 0.005 and r = 0.93, SE = 0.005 respectively). The

two DNA methylation age estimates were also highly correlated with each other (r = 0.93,

SE = 0.005); however, the two estimates of epigenetic age acceleration, Horvath-EAA and Han-

num-EAA, were only weakly correlated (r = 0.30, SE = 0.013) (Fig 1).
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Fig 1. Scatter plots of A) Horvath-based epigenetic age versus Hannum-based epigenetic age, and B) Horvath-EAA vs

Hannum-EAA, for the Generation Scotland sample.

https://doi.org/10.1371/journal.pgen.1008104.g001
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GWAS of Horvath-EAA and Hannum-EAA in GS and replication of

previously identified loci

The genome-wide association study (GWAS) for the GS cohort yielded two significant

(P<5x10-8) variants for Horvath-EAA, but no SNPs achieved genome-wide significance for

association with Hannum-EAA (minimum P-value 7.85x10-8) (S2 Table, full output available

online at https://doi.org/10.7488/ds/2631). There was a moderate genetic correlation between

the two traits in the GS sample (rG = 0.597, SE = 0.279), and both measures had high genetic

correlations with the previously reported findings of Lu et al. (rG = 0.724, SE = 0.312 and rG =

1.021, SE = 0.356 for Horvath-EAA and Hannum-EAA respectively). All the significant SNPs

from the Lu et al. analysis of Horvath-EAA had the same direction of effect in GS (S3 Table),

with one attaining genome-wide significance (rs143093668, P-value = 3.53x10-8; remaining

SNPs had P-values between 5.76x10-2 and 1.34x10-4). Two of the three significant SNPs from

Lu et al.’s GWAS of Hannum-EAA had the same direction of effect in GS, although not at

genome-wide significance levels in this smaller sample (P-values 1.76x10-3 and 1.75x10-4).

Miami plots demonstrating a comparison between the EAA SNP association profiles in the GS

and Lu et al. samples are shown in Fig 2 (Horvath-EAA) and Fig 3 (Hannum-EAA). Quantile-

quantile plots (QQ plots) for the GWAS of Horvath-EAA and Hannum-EAA in GS are shown

in S1 Fig.

GWAS meta-analysis

We conducted genome-wide association meta-analyses of Horvath-EAA and Hannum-EAA

using 13,493 European-ancestry individuals aged between ten and 98 years from 12 cohorts,

adjusting for sex. Manhattan plots for Horvath-EAA and Hannum-EAA are shown in Fig 4,

Fig 2. Miami plot for GWAS of Horvath-EAA in the GS and Lu et al. cohorts. SNP-based Miami plot comparing the results of genome-wide association analyses of

Horvath-based epigenetic age acceleration in GS (top, n = 5,100) and Lu et al. (bottom, n = 8393), with—log10 transformed P-values for each SNP plotted against

chromosomal location. The red line indicates the threshold for genome-wide significance (P<5×10−8) and the blue line for suggestive associations (P<1×10−5).

Independent significant SNPs are annotated.

https://doi.org/10.1371/journal.pgen.1008104.g002
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with QQ plots of the observed P-values versus those expected shown in Fig 5. We did not find

apparent evidence for genomic inflation in either the GS study (Horvath-EAA: genomic infla-

tion factor λGC = 1.017, Linkage Disequilibrium (LD) score regression intercept (SE) = 1.002

(0.007); Hannum-EAA: λGC = 1.023, intercept (SE) = 0.998 (0.006), S4 Table) or the meta-

analysis (Horvath-EAA: λGC = 1.035, intercept (SE) = 1.006 (0.008), Hannum-EAA: λGC =

1.044, intercept (SE) = 1.002 (0.007)); Lu et al. previously reported no evidence for genomic

inflation for any of the individual studies making up their meta-analysis [20].

We identified 439 variants with a genome-wide significant association (P<5×10−8) with

Horvath-EAA, of which ten were independent (r2<0.1 within a 250kb window). The signifi-

cantly associated variants mapped to nine genomic loci on six chromosomes (Table 1, full

details in S5 Table). Of the ten independent significant variants identified here, five were

novel, that is, not within ± 500 Kb of a significant variant (P<5×10−8) reported by Lu et al.

[20]. The novel findings were a SNP on chromosome 1q24.2 in the C1orf112 gene, three SNPs

on chromosome three, at 3q21.3 (nearest gene: GATA2-AS1), 3q22.3 in the PIK3CB gene, and

3q25.1 in the LINC01214 gene, and a SNP on chromosome 12q23.3 (nearest genes: RP11-
412D9.4 and TMEM263). The risk alleles at these loci conferred between 0.33 (SE = 0.054) and

1.34 (SE = 0.127) years higher Horvath-EAA (Table 1). These ten independent lead SNPs

showed complete sign concordance for association with Horvath-EAA across GS and the Lu

study (S6 Table). Comparing the genomic loci identified in the current study with the five

reported by Lu et al., only one locus that was previously reported was not identified at

genome-wide significance here (rs11706810 at 3q25.33, meta-analysis P-value 8.68x10-8). S2

Fig shows the regional association plots for the independent signals, visualised in LocusZoom

[21]. Of the ten independent SNPs achieving genome-wide significance, none associated with

any other phenotype in currently published GWAS available via the NHGRI-EBI catalog.

Fig 3. Miami plot for GWAS of Hannum-EAA in the GS and Lu et al. cohorts. SNP-based Miami plot comparing the results of genome-wide association analyses of

Hannum-based epigenetic age acceleration in GS (top, n = 5,100) and Lu et al. (bottom, n = 8393), with—log10 transformed P-values for each SNP plotted against

chromosomal location. The red line indicates the threshold for genome-wide significance (P<5×10−8) and the blue line for suggestive associations (P<1×10−5).

Independent significant SNPs are annotated.

https://doi.org/10.1371/journal.pgen.1008104.g003
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The Hannum-EAA GWAS meta-analysis identified 324 genome-wide significant

(P<5×10−8) associated variants mapping to a single genomic locus at 10p11.21 with one index

SNP (Fig 4, Table 1, full details of index SNP in S5 Table). ZNF25, a transcription factor

Fig 4. Manhattan plots for genome-wide meta-analyses (n = 13,493) of Horvath-based and Hannum-based epigenetic age acceleration. SNP-based Manhattan

plots for Horvath-EAA and Hannum-EAA, with—log10 transformed P-values for each SNP plotted against chromosomal location. The red line indicates the threshold

for genome-wide significance (P<5×10−8) and the blue line for suggestive associations (P<1×10−5). Independent significant variants are annotated.

https://doi.org/10.1371/journal.pgen.1008104.g004

GWAS of epigenetic age acceleration

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008104 November 18, 2019 8 / 30

https://doi.org/10.1371/journal.pgen.1008104.g004
https://doi.org/10.1371/journal.pgen.1008104


associated with osteoblast differentiation of human skeletal stem cells [22], is the closest gene

to this variant, at a distance of 20 Kb. At this Hannum-EAA-related locus, the risk allele con-

ferred 0.53 (SE = 0.070) years higher Hannum-EAA. We replicated two of the three variants

significantly associated with Hannum-EAA in the Lu et al. study; however, based on our

clumping criteria with r2<0.1, we report only one as an independent significant SNP. Condi-

tional analysis revealed no secondary signal at this locus. The third locus reported in the previ-

ous study was not associated at genome wide significance in this larger sample (P = 3.74x10-3).

A regional association plot for 10p11.21 is shown in S2J Fig.

Of the ten independent variants associated with Horvath-EAA, nine exhibited sign-consis-

tent associations with Hannum-EAA, of which five attained at least nominal significance with

association P-values less than 0.05 (most significant P = 6.9x10-5) (S7 Table). The single inde-

pendent SNP associated with Hannum-EAA also exhibited a nominal and sign-consistent

association with Horvath-EAA (P = 0.011).

Methylation quantitative trait loci

Multiple studies have found that individual genotypes at specific loci can influence patterns of

DNA methylation (e.g. [23,24]). These loci, referred to as methylation quantitative trait loci

(mQTL) can influence methylation across extended genomic regions [23,24], and may under-

lie some SNP-phenotype associations. To evaluate whether mQTL are driving the observed

associations between SNPs and epigenetic age acceleration in our analysis, we assessed whether

any of the independent significant SNPs from the Horvath-EAA and Hannum-EAA GWAS

meta-analysis are mQTL for any CpGs included in the Horvath or Hannum epigenetic clocks,

using the methylation quantitative trait loci database (mQTLdb, [25]).

The single Hannum-EAA genome-wide significant SNP, rs1005277, is an mQTL for 38 dif-

ferent CpGs across the five assessed time points (birth, childhood, adolescence, middle age,

Fig 5. QQ plots for the meta-analyses of Horvath-based and Hannum-based epigenetic age acceleration. Quantile-quantile plots for the

genome-wide meta-analyses of Horvath-EAA and Hannum-EAA, showing the expected distribution of GWAS test statistics, -log10(p), versus

the observed distribution.

https://doi.org/10.1371/journal.pgen.1008104.g005
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pregnancy). For 11 of these CpGs the mQTL is cis-acting (where the genetic variation occurs

close to the methylation site), while it acts in trans (where variation occurs elsewhere in the

genome) for the other 27 CpGs. None of these CpGs, however, are included in either the Hor-

vath or Hannum epigenetic clocks.

Nine of the ten Horvath-EAA independent significant SNPs are mQTL, for a total of 74 dif-

ferent CpGs in the mQTL database. Two of these CpGs, cg26297688 and cg01459453, are

included in the Horvath clock only, while one, cg22736354, intersects with both the Hannum

and Horvath clocks. Four of the Horvath-EAA SNPs are cis-acting mQTL for these clock

CpGs at multiple time points, with two SNPs acting as mQTL for the same CpG (S8 Table).

These results suggest a potential mechanism of action whereby these SNPs influence biological

ageing through their effect on methylation levels. A summary of the CpGs linked to each

mQTL is shown in S9 Table.

Heritability

In order to characterise the genetic contribution to accelerated epigenetic ageing, SNP-based

heritability was estimated using univariate LD score regression [26], which requires only

GWAS summary statistics rather than full genotype data. The SNP-based heritabilities of Hor-

vath-EAA and Hannum-EAA were estimated to be 0.154 (SE = 0.042) and 0.194 (SE = 0.040)

respectively (S4 Table), providing evidence for a genetic component to differential epigenetic

ageing rates. These figures are comparable to previous SNP-based heritability estimates but

lower than estimates based on pedigree relationships [20].

Table 1. Independent variants with a meta-analysis genome-wide significant association with Horvath-based or Hannum-based epigenetic age acceleration.

Phenotype Index SNP Chromosome Position A1/

A2

Freq Beta SE P-value Genea function Previously

reported

Horvath-

EAA

rs1011267 1q24.2 169677720 A/G 0.503 -0.327 0.054 1.579E-

09

C1orf112 intron variant novel

rs79070372 3q21.3 128510481 A/G 0.111 0.505 0.087 6.074E-

09

GATA2-AS1 non coding transcript

variant

novel

rs388649 3q22.3 138777967 A/T 0.495 -0.338 0.055 6.054E-

10

PIK3CB intron variant novel

rs6440667 3q25.1 150287063 C/G 0.161 0.440 0.075 4.28E-09 LINC01214 intron variant novel

rs2736099 5p15.33 1287225 A/G 0.367 0.373 0.061 8.58E-10 TERT intron variant yes

rs7744541 6p22.3 18104469 A/T 0.418 0.439 0.055 1.93E-15 intergenic variant yes

rs76244256 6p22.3 18140332 T/C 0.046 -1.341 0.127 6.231E-

26

TPMT intron variant yes

rs4712953 6p22.2 25671618 A/T 0.725 0.346 0.059 3.604E-

09

SCGN intron variant yes

rs10778517 12q23.3 106947886 T/G 0.565 0.335 0.054 4.46E-10 RP11-412D9.4/
TMEM263

unknown novel

rs62078811 17q22 55031815 A/G 0.218 -0.369 0.065 1.158E-

08

STXBP4 intron variant yes

Hannum-

EAA

rs1005277 10p11.21 37929331 A/C 0.301 0.533 0.070 2.173E-

14

unknown yes

Genome-wide significance defined as having a P-value of P<5x10-8. A1 and A2 refer to the reference allele and non-reference allele for the index SNP, respectively. Freq

(allele frequency), Beta (effect size), and SE (standard error of effect size) columns pertain to the reference allele, A1. Chromosome and position (in Mb) denote the

location of the index SNP, and are given with regards to the GRCh38 assembly.

a Genes are listed if located within +/- 10 kb of a listed SNP.

https://doi.org/10.1371/journal.pgen.1008104.t001

GWAS of epigenetic age acceleration

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008104 November 18, 2019 10 / 30

https://doi.org/10.1371/journal.pgen.1008104.t001
https://doi.org/10.1371/journal.pgen.1008104


SNP functional annotation

We used FUMA [27] to functionally annotate SNPs in LD (r2�0.6) with the independent sig-

nificant SNPs for each of the epigenetic age acceleration measures. For Horvath-EAA, this

resulted in functional annotation of 825 SNPs (S10 Table). The vast majority of the SNPs were

intergenic (44.85%) or intronic (47.88%), with only five (0.61%) exonic SNPs. 25 SNPs had

CADD (Combined Annotation Dependent Depletion) scores greater than 12.37, surpassing

the suggested threshold to be considered deleterious and thus providing evidence of pathoge-

nicity [28]. The highest CADD scores were found in three exonic SNPs: rs1800460 and

rs1142345 of TPMT and rs10949483 of NHLRC1 (CADD scores 28.40, 28.30 and 18.92 respec-

tively), indicating potentially deleterious protein effects. Six SNPs (rs413147, rs12631035,

rs9851887, rs12189658, rs6915893, rs12199316) had RegulomeDB scores below 2, suggesting

that variation at these SNPs is likely to affect gene expression [29]. Almost all SNPs (98.18%)

were in open chromatin regions.

For Hannum-EAA, functional annotation of 1,382 candidate SNPs indicated a high propor-

tion of intergenic SNPs (60.49%), while 11.79% were intronic and only three SNPs were

located in exons (S11 Table). 14 SNPs had CADD scores above 12.37, indicating that variation

at these SNPs is potentially deleterious. Although 42.04% of the SNPs were located in open

chromatin regions, there is little evidence that the Hannum-EAA-associated locus contains

regulatory regions, as analysis using RegulomeDB, which integrates a larger collection of regu-

latory information encompassing protein binding, motifs, expression quantitative trait loci

(eQTL), and histone modifications as well as chromatin structure, revealed only one SNP

(rs2474568) with a score below 2.

eQTL and colocalisation analysis

For each independent SNP associated with Horvath-EAA or Hannum-EAA, evidence of eQTL

was explored using the Genotype Tissue Expression (GTEx) v7 database [30]. Seven of the ten

independent significantly associated SNPs for Horvath-EAA were identified as potential eQTL

(S12 Table). Notably, rs388649 is associated with expression of ESYT3, which has a role in

lipid transport and metabolism pathways [31,32], expression of FAIM, which is associated

with apoptosis and autophagy [33], in a number of skin and brain tissues, and PIK3CB, which

regulates vital cell functions including proliferation and survival [34,35]. rs76244256, the vari-

ant most strongly associated with Horvath-EAA, shows eQTL evidence for NHLRC1 expres-

sion, which is associated with glycogen metabolism [36], across multiple tissues. We found no

evidence for the Hannum-EAA-associated SNP, rs1005277, regulating gene expression.

To further investigate the possibility that these SNPs act via regulating the expression of

genes, we carried out colocalisation analysis using a Bayesian statistical method implemented

in the ’coloc’ package in R [37], which uses an approximate Bayes factor to estimate the poste-

rior probability (PP) that a given variant is causal in both the GWAS and eQTL studies. We

integrated our GWAS data with cis-eQTL data from the eQTLGen Consortium (https://www.

eqtlgen.org/) [38] and analysed pairwise colocalisation within a +/- 200 kb window of each sig-

nificant SNP. These analyses provide no evidence that the effect of these SNPs on accelerated

epigenetic ageing is mediated through cis gene expression. There was no evidence for colocali-

sation of any Horvath-EAA or Hannum-EAA-associated SNP with cis-eQTL (PP for shared

causal variant 8.31x10-15–0.030, S13 Table). Rather, in all but one case, the results support the

hypothesis that there are two distinct causal variants affecting epigenetic age acceleration and

transcript levels in the region (PP>0.95). In the +/-200 kb region surrounding variant

rs2736099, there is strong evidence (PP>0.95) for a causal variant affecting gene expression,

but not EAA.
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Gene-based analysis

MAGMA (Multi-marker Analysis of GenoMic Annotation) v1.6 was used to identify gene-

level associations with each EAA measure [39]. SNPs were mapped to 17,798 protein coding

genes, with genome-wide significance defined at P = 0.05/17,798 = 2.809x10-6. A total of 21

genes attained genome-wide significance for association with Horvath-EAA (Table 2, full

details in S14 Table). As expected, many of these genes were located in the same regions as the

lead SNPs. Three genes at 6p22.3, NHLRC1, TPMT, and KDM1B, had the lowest P-values of

1.251x10-23, 4.639x10-23, and 7.68x10-11 respectively; all these genes are involved in metabo-

lism-related pathways [36,40,41]. Although containing no genome-wide significant SNPs,

3q25.33 appears to be an important genomic region for Horvath-EAA, with four significantly

Table 2. Results of MAGMA gene-based association analysis for Horvath-based and Hannum-based epigenetic age acceleration.

Phenotype Gene Chr N_SNPs P-value Function/related pathways

Horvath-EAA SELP 1 148 1.6883E-07 Immunoglobulin E responsiveness

EDARADD 1 516 4.2627E-07 Innate immune system, cytokine signalling in immune system

GATA2 3 72 1.0663E-07 Stem cell maintenance and hematopoietic development

ESYT3 3 93 6.5973E-07 Metabolism, lipid transport

CEP70 3 164 1.0891E-06 Organelle biogenesis and maintenance

FAIM 3 49 2.4177E-08 Apoptosis and autophagy; regulates B-cell signalling and differentiation

PIK3CB 3 175 2.52E-08 Coordinates cell functions e.g. proliferation, survival, migration

IFT80 3 150 1.2622E-07 Organelle biogenesis and maintenance; intraflagellar transport

SMC4 3 77 9.8909E-07 Changes in chromosome structure during mitotic segregation

TRIM59 3 105 1.7737E-07 Multifunctional regulator for innate immune signalling pathways

KPNA4 3 104 2.9437E-07 Cytokine signalling in immune system; protein transporter activity

TERT 5 90 4.0455E-08 Roles in ageing and apoptosis; regulation of telomerase.

NHLRC1 6 76 1.2512E-23 Clearance of toxic polyglucosan and protein aggregates; metabolism pathways

TPMT 6 151 4.6385E-23 Drug metabolism—cytochrome P450; thiopurine S methyltransferase activity

KDM1B 6 248 7.6758E-11 Metabolism of proteins, regulates histone lysing methylation

SCGN 6 202 3.8379E-10 Calcium binding protein; neuroscience, Ca, cAMP and lipid signalling pathways

TMEM72 10 123 1.1154E-06 Transmembrane protein

RFX4 12 299 9.4786E-07 Transcriptional regulatory network in embryonic stem cell

RIC8B 12 155 1.0988E-06 Can activate some G-alpha proteins; odorant signal transduction.

C12orf23/TMEM263 12 98 6.321E-09 Transmembrane protein

ZNF70 22 79 2.7934E-06 Transcriptional regulation; gene expression pathways

Hannum-EAA TRIM46 1 27 2.66E-06 Innate immune system; cytokine signalling in immune system

MUC1 1 15 7.33E-07 Cytokine signalling in immune system; bacterial infections in CF airways

MANBA 4 190 1.31E-06 Glycosaminoglycan metabolism; innate immune system

UBE2D3 4 154 1.19E-06 Metabolism of proteins; innate immune system

CISD2 4 54 1.18E-06 Regulator of autophagy; life span control; glucose/energy metabolism pathways

SLC9B1 4 217 2.56E-06 Sperm motility and fertility, ion channel transport

MTRNR2L7 10 52 5.20E-07 Neuroprotective and antiapoptotic factor

ZNF248 10 204 2.22E-07 Transcriptional regulation; gene expression pathways

ZNF25 10 99 1.23E-08 Transcriptional regulation; gene expression pathways

ZNF33A 10 159 8.29E-09 Transcriptional regulation; gene expression pathways

ZNF37A 10 146 3.79E-10 Transcriptional regulation; gene expression pathways

DNTT 10 131 2.51E-07 DNA double-strand break repair; hematopoietic cell lineage

Genome-wide significant results after Bonferroni correction for multiple testing (P<2.809x10-6) are reported. N_SNPs is the number of SNPs in the gene.

https://doi.org/10.1371/journal.pgen.1008104.t002
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associated genes including TRIM59 and KPNA4, which play roles in the immune system

[42,43]. Two further significant genes are FAIM and TERT, whose functions include apoptosis

and autophagy [33], and telomere length-associated ageing and apoptosis [44,45] respectively.

Twelve genes were significantly associated with Hannum-EAA (Table 2, S14 Table). Genes of

interest include MTRNR2L7, a neuroprotective and anti-apoptotic factor [46,47], and TRIM46
and MUC1, both located at 1q22, and which are involved with innate immune system path-

ways [42,48]. The 4q24 cytogenetic band houses several genes significantly associated with

Hannum-EAA: MANBA and UBE2D3 have metabolic and innate immune system functions

[32,49] while CISD2 regulates autophagy and is involved in life span control [50,51]. Compar-

ing the results of the gene-based association analyses of Horvath-based and Hannum-based

EAA, there was no overlap in significantly associated genes. Manhattan plots and QQ plots for

the gene-based analysis of both epigenetic age acceleration measures are shown in S3 Fig and

S4 Fig.

Gene-set and pathway analysis

Using a competitive test of enrichment implemented in MAGMA v1.6, we did not identify any

gene sets that were significantly associated with either Horvath-EAA or Hannum-EAA after

Bonferroni correction for multiple testing. S15 Table and S16 Table show the top 100 gene-

sets for Horvath-EAA and Hannum-EAA respectively.

Genetic correlations

Several large-scale cohort studies have previously reported phenotypic associations

between epigenetic age acceleration and a number of traits or health outcomes. To investi-

gate whether these observed associations may be partly due to shared genetic variants influ-

encing the traits, we conducted cross-trait LD score regression analysis of summary-level

data [52], implemented in the online software LD Hub [53], to determine genetic correla-

tions between Horvath-EAA/Hannum-EAA and a number of health and behavioural vari-

ables. The SNP-based genetic correlation between Horvath-EAA and Hannum-EAA was

0.571 (SE = 0.132, P = 1.605x10-5), suggesting a moderate overlap in the genetic factors

influencing these two measures of epigenetic age acceleration. Of the 218 other health and

behavioural traits investigated, none had a statistically significant genetic correlation

(PFDR<0.05) with either Horvath-EAA or Hannum-EAA after applying false discovery rate

correction (most significant correlation with Horvath-EAA: father’s age at death, PFDR =

0.160; with Hannum-EAA: waist-to-hip ratio, PFDR = 0.065). This correction, however,

may be overly conservative, as not all the tested traits are independent, with several being

highly correlated. Nominally significant correlations (Puncorrected<0.05) were found with a

number of traits (Table 3).

Both epigenetic age acceleration measures had nominally significant positive genetic corre-

lations with a range of traits pertaining to adiposity, and negative correlations with father’s age

at death and childhood IQ. Nominally significant genetic correlations were observed between

Hannum-EAA, but not Horvath-EAA, and a wide range of traits including measures relating

to education, smoking behaviour, various lipid- and cholesterol-related measures, diabetes

and related glycemic measures, and parent’s age at death. Some of these results have previously

been reported [19,20], but many are novel. The current study did, however, fail to replicate a

number of previously reported correlations, including with age at menopause [20]. Details of

the genetic correlations of all the tested traits with Horvath-EAA and Hannum-EAA are given

in S17 Table and S18 Table, respectively.
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Table 3. Nominally significant genetic correlations (Puncorrected<0.05) between Horvath-EAA/Hannum-EAA and other health and behavioural traits.

Phenotype Trait Genetic Correlation SE P-value

Horvath-EAA Fathers age at death -0.472 0.144 0.001

Urate 0.278 0.089 0.002

Waist-to-hip ratio 0.194 0.064 0.002

Waist circumference 0.178 0.064 0.005

ICV -0.403 0.163 0.013

Forced expiratory volume in 1 second (FEV1)/Forced Vital capacity(FVC) -0.170 0.078 0.030

Extreme waist-to-hip ratio 0.306 0.146 0.036

Child birth weight -0.274 0.131 0.037

Childhood IQ -0.317 0.152 0.037

Leucine 0.450 0.222 0.043

Glycoprotein acetyls; mainly a1-acid glycoprotein 0.360 0.183 0.049

Hannum-EAA Waist-to-hip ratio 0.225 0.062 0.0003

Waist circumference 0.210 0.067 0.002

Parents age at death -0.455 0.148 0.002

Type 2 Diabetes 0.331 0.114 0.004

Years of schooling 2013 -0.231 0.083 0.005

Years of schooling 2016 -0.162 0.058 0.006

Birth weight 0.211 0.079 0.007

HDL cholesterol -0.210 0.082 0.010

Former vs Current smoker -0.330 0.130 0.011

Forced expiratory volume in 1 second (FEV1) -0.239 0.095 0.012

Forced expiratory volume in 1 second (FEV1) -0.371 0.149 0.013

Hip circumference 0.163 0.066 0.013

Intelligence -0.169 0.070 0.016

Cigarettes smoked per day 0.326 0.138 0.018

Ever vs never smoked 0.202 0.088 0.022

College completion -0.195 0.086 0.023

Age of first birth -0.156 0.070 0.026

HOMA-B 0.305 0.137 0.026

Fasting insulin main effect 0.237 0.107 0.027

HbA1C -0.277 0.126 0.028

Childhood IQ -0.286 0.130 0.028

Fathers age at death -0.287 0.131 0.028

Triglycerides 0.136 0.065 0.036

Phospholipids in medium LDL -0.410 0.200 0.040

Free cholesterol in large LDL -0.485 0.237 0.041

Anorexia Nervosa -0.152 0.074 0.041

Amyotrophic lateral sclerosis 0.363 0.178 0.042

Obesity class 1 0.135 0.067 0.042

Years of schooling (proxy cognitive performance) -0.171 0.084 0.042

Phospholipids in large LDL -0.471 0.232 0.043

Phospholipids in very small VLDL -0.373 0.184 0.043

Free cholesterol in IDL -0.439 0.220 0.046

Celiac disease -0.265 0.134 0.047

Extreme waist-to-hip ratio 0.285 0.145 0.048

(Continued)
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Discussion

This study investigated genetic markers of epigenetic ageing in a sample of 13,493 individuals

of European ancestry. We examined genetic determinants of both Horvath-based (adjusted for

the composition of age-related blood cells) and Hannum-based (immune system-associated)

epigenetic age acceleration, sometimes referred to as ‘intrinsic’ and ‘extrinsic’ epigenetic age

acceleration, to gain insight into the regulation of epigenetic ageing. We report several novel

findings in addition to replicating a sub-set of previous results. The meta-analysis of Horvath-

EAA identified ten independent associated SNPs, doubling the number reported to date, and

highlighted 21 genes involved in Horvath-based epigenetic ageing. A single genome-wide sig-

nificant variant was identified for Hannum-EAA, along with 12 implicated genes. We uncov-

ered limited evidence of functionality within some associated genomic loci, with many SNPs

located in regions of open chromatin and a smaller number in regulatory regions. Some loci

also contained regions where genetic variation is predicted to be deleterious.

It has been hypothesised that in some cases DNA methylation could be a candidate mecha-

nism for mediating genetic effects on ageing-related phenotypes [54]. Intriguingly, four of the

ten Horvath-EAA-associated SNPs are mQTL for CpGs used in the Horvath/Hannum epige-

netic clocks. A possible interpretation of this is that the functional mechanism by which these

SNPs influence the rate of biological ageing is via altering methylation levels.

A number of the genes significantly associated with Horvath-EAA are related to metabo-

lism (NHLRC1, TPMT, KDM1B, and ESYT3), consistent with several studies reporting pheno-

typic associations between Horvath-based EAA and metabolic syndrome characteristics and

supporting the suggestion of a role in tracking metabolic ageing [15,19]. Others are involved

in immune system pathways (TRIM59, KPNA4, EDARADD), while several have roles in cellu-

lar processes linked to ageing: apoptosis and autophagy (FAIM), ageing and autophagy

(TERT), and coordinating vital cell functions (PIK3CB). PIK3CB plays a role in the signal

transduction of insulin and insulin-like pathways [55], and genetic variants at this locus have

been related to insulin-like growth factor levels in plasma, and human longevity [56].

Genes associated with Hannum-based EAA, often referred to as immune system ageing,

include several involved in innate immune system pathways (e.g. TRIM46 and MUC1) or with

metabolic and immune system functions (MANBA, UBE2D3). Other associated genes of inter-

est include those with roles relating to ageing and longevity: MTRNR2L7 is a neuroprotective

and anti-apoptotic factor, and CISD2 regulates autophagy and is a fundamentally important

regulator of lifespan. Mouse studies indicate that CISD2 ameliorates age-associated degenera-

tion of skin, skeletal muscle, and neurons, protects mitochondria from age-related damage

and functional decline, and attenuates age-associated reduction in energy metabolism [57],

while CISD2 deficiency leads to a number of phenotypic features suggestive of premature age-

ing [58].

Our LD score regression analysis replicated the positive genetic correlations with central

adiposity reported by Lu et al. (2018) at nominal significance levels, supporting the suggestion

Table 3. (Continued)

Phenotype Trait Genetic Correlation SE P-value

Total cholesterol in large LDL -0.430 0.219 0.049

Genetic correlations were determined using bivariate Linkage Disequilibrium score regression implemented in the online software LD Hub. SE is the standard error of

the genetic correlation estimate; P-value is the association P-value for the genetic correlation estimate; ICV–intracranial volume; LDL–low density lipoprotein; IDL–

intermediate density lipoprotein; VLDL–very low density lipoprotein.

https://doi.org/10.1371/journal.pgen.1008104.t003
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that observed phenotypic associations [15,19] may result in part from a shared genetic aetiol-

ogy. We did not, however, replicate previously reported correlations between Horvath-EAA

and metabolic disease-related traits or diabetes, and found these traits to be correlated with

Hannum-EAA at only nominal significance levels in our larger sample [20]. We also found no

correlation between epigenetic age acceleration and age at menopause. Nominally significant

genetic correlations between Hannum-based, but not Horvath-based, epigenetic age accelera-

tion, and lifestyle factors such as smoking behaviour and education level, provide some evi-

dence for a genetic basis underlying the phenotypic results we reported previously [19], and

provide tentative support for the hypothesis that Hannum-based epigenetic ageing is relatively

sensitive to changes in environment and lifestyle. Father’s age at death, a rough proxy for life-

span [59], was nominally significantly correlated with both EAA measures, and parents’ age at

death was additionally correlated with Hannum-EAA, consistent with a body of work demon-

strating robustly that EAA predicts life span [10,12]. Aside from these, genetic correlations

with age-related traits were surprisingly few: it is possible that this could reflect an overly con-

servative correction for the multiple tests carried out, or low statistical power, rather than a

genuine lack of correlations (S4 Table). While the mean χ2 values (1.059 and 1.054 for Hor-

vath-EAA and Hannum-EAA respectively) indicate a sufficient level of polygenicity within the

dataset for use with LD score regression, the heritability Z-scores for Horvath-EAA and Han-

num-EAA are 3.69 and 4.91 respectively. The recommendation is that genetic correlation anal-

ysis should be restricted to GWAS with a heritability Z-score of 4 or more, on the grounds of

interpretability and power [53], so the Horvath-based results particularly should be interpreted

with caution.

This study of epigenetic age acceleration benefits from having a large sample size. Increas-

ing GWAS sample size increases the power to detect associated loci, and is often achieved, as

in this case, by combining smaller studies in a meta-analysis. Meta-analytic GWAS are, how-

ever, sometimes hampered by differences in how a trait is measured between individual stud-

ies. In this instance, use of the online calculator to calculate the EAA measures and using the

same algorithm and output columns for each study, mitigates this. The current study com-

prises only individuals of European ancestry, which confers a further advantage as epigenetic

ageing rates have been shown to differ between ethnicities [60].

Despite the large sample overlap, some results of this study differ from those reported by Lu

et al. (2018). One reason for this could be that only European-ancestry individuals were

included in this analysis whereas the Lu study reports results from a mixed ancestry sample.

Another likely contributing factor is the age ranges involved: the GS cohort, not included in

Lu’s analysis but which makes up 38% of the total sample in the current study, has a mean age

of 48.5 years, 14.4 years younger than the mean age of the remaining cohorts. Given that epige-

netic age changes over the life course, although not necessarily in parallel with chronological

age, this could help explain the discrepancies between the studies.

There are a number of limitations which should be considered when interpreting the results

of this study. This is the largest meta-analysis of genetic determinants of epigenetic age acceler-

ation to date, however, while large for these phenotypes, the size of the sample studies here is

still small in terms of genome-wide analysis of polygenic traits. As only European-ancestry

individuals were included, the results are not generalisable to other ethnicities. The MAGMA

gene-based analysis identified a number of biologically plausible associated genes for both

EAA measures; however, while many of these genes are located in the same genomic regions

as the significantly associated SNPs, this should not be taken as evidence that the SNP associa-

tion is effected through the gene. Identifying effector transcripts for GWAS variants is a diffi-

cult and as yet unresolved problem, and our knowledge of how these genes may affect the

activity of the SNPs is limited. In addition, MAGMA does not take into account information
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from methylation QTL to help identify relevant genes; future work should place more empha-

sis on the role of mQTL. The lack of significant genetic correlations between EAA and age-

related traits may reflect low statistical power (the heritability Z-score of 3.69 for Horvath-

EAA falls below the recommended lower threshold of 4 for genetic correlation analysis) or

overly stringent correction for multiple comparisons (FDR correction was applied over the

218 tested traits, however not all of these were independent) rather than a true absence of

shared genetic aetiology. Finally, while we have identified a number of SNPs and genes signifi-

cantly associated with EAA, including genes already known to be related to ageing, the analy-

ses presented here fall short of providing a mechanistic explanation for how these variants and

genes act to influence biological age. This study should be considered as ’discovery’ research,

with a comprehensive investigation of the functional and biological mechanisms behind the

SNP and gene associations being a direction for future work.

Horvath-based and Hannum-based epigenetic age acceleration are thought to represent

different aspects of ageing. Hannum-EAA has been described as a biomarker of immune

system ageing, and has been found to be associated with a wide range of traits [15,19], indi-

cating a sensitivity to variations in environment and lifestyle. By contrast, Horvath-EAA is

considered to be a fundamental, intrinsic cellular ageing process, largely unrelated to life-

style factors, although associations with a range of metabolic syndrome characteristics sug-

gest a role in tracking metabolic ageing processes. Our results reflect this to a large degree,

with more nominally significant genetic correlations found with Hannum-EAA than Hor-

vath-EAA, including items relating to education, smoking, intelligence, and various choles-

terol measures. Meanwhile the greater number of significant variants, genomic loci, and

genes associated with Horvath-EAA are consistent with the hypothesis that this measure of

’cell-intrinsic’ ageing is less related to lifestyle and more under genetic control, and thus

more likely to remain relatively stable. Despite these differences, however, our results indi-

cate some common features. The significant genetic correlation of 0.57 between the two

measures suggests a moderate overlap in the genetic factors influencing the two phenotypes

despite the biomarkers being based on almost entirely distinct CpG sets. Both also appear to

be influenced by genes associated with metabolic and immune system pathways, although

the specific genes involved are different.

Conclusions

This study provided insight into the genetic determinants of differential biological ageing

through the identification of genes and genetic variants associated with epigenetic age acceler-

ation. We doubled the number of SNPs associated with Horvath-EAA reported to date, and

report 21 genes significantly associated with this phenotype, including PIK3CB, linked to

human longevity. We identified 12 Hannum-EAA-associated genes, one of which, CISD2, has

a fundamental role in lifespan control. Our results also highlighted differences in the genetic

architecture of the Horvath-based and Hannum-based EAA measures, with no genome-wide

significant SNPs or genes common to the two, providing substantial support for the hypothesis

that they represent different aspects of ageing.

While the genetic information coded by our DNA sequence remains largely fixed through-

out the lifetime, the expression of our genes is primarily regulated by epigenetic factors, which

change over time. Epigenetic age increases with, but not in parallel with, chronological age;

individual differences in the rate of epigenetic ageing potentially explain why trajectories of

ageing differ between individuals. Understanding what causes these differences could poten-

tially inform therapeutic interventions to delay the onset of age-related decline and improve

ageing outcomes.
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Methods

Ethics statement

Generation Scotland received ethical approval from the NHS Tayside Committee on Medical

Research Ethics (REC Reference Number: 05/S1401/89). GS has also been granted Research

Tissue Bank status by the Tayside Committee on Medical Research Ethics (REC Reference

Number: 10/S1402/20), providing generic ethical approval for a wide range of uses within

medical research. All participants provided written informed consent. Details of ethics

approval and consent to participate for the cohorts included in the Lu et al. (2018) study can

be found in their publication.

Generation Scotland cohort

We carried out genome-wide association analyses of Horvath-EAA and Hannum-EAA in a

subset of individuals (n = 5,100) from the Generation Scotland: Scottish Family Health Study

(GS) for whom both genetic and DNA methylation data were available. GS is a family- and

population-based cohort recruited via general medical practices across Scotland; the recruit-

ment protocol and sample characteristics are described in detail elsewhere [61,62]. In brief, the

full cohort comprises 23,960 individuals aged between 18 and 98 years. Pedigree information

was available for all participants, detailed socio-demographic and clinical data were collected,

and biological samples were taken for genotyping.

DNA methylation and derivation of epigenetic age acceleration variables in

GS

DNA methylation data were obtained from peripheral blood (n = 5,091) or saliva (n = 10) sam-

ples for 5,101 individuals from GS, with quality control checks carried out using standard

methods outlined in S1 Text, and described in full elsewhere [19]. After quality control (QC),

the dataset comprised beta-values for 860,928 methylation loci. Methylation-based age esti-

mates (DNAm age) and epigenetic age acceleration variables (Horvath-EAA and Hannum-

EAA, described in S1 Text) were obtained from the online DNA Methylation Age Calculator

(https://dnamage.genetics.ucla.edu/) developed by Horvath [8]. Normalised DNA methylation

beta-values were submitted to the calculator, using the ’Advanced Analysis for Blood Data’

option, and undergoing further normalisation within the calculator algorithm to make the

data comparable to the training data of the epigenetic clock. One individual was flagged by the

calculator as having a gender mismatch, and was therefore omitted from downstream analysis,

leaving a total of 5,100 individuals for the GWAS of Horvath-EAA and Hannum-EAA in GS.

Blood cell abundance measures were also estimated by the online calculator, based on DNA

methylation levels, as described previously [63].

Genotyping, imputation, and quality control in GS

An overview of biological sample collection, DNA extraction, genotyping, imputation using

the Haplotype Research Consortium reference panel (v1.1), and quality control for GS is

included in S1 Text; full details have been described previously [64]. A total of 20,032 individ-

uals passed all quality control thresholds. Following the removal of monomorphic or multialle-

lic variants and SNPs with a low imputation quality or a minor allele frequency below 1%, an

imputed dataset with 8,633,288 hard called variants remained to be used in the genome-wide

association analysis.
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GWAS of Horvath-EAA and Hannum-EAA in GS

GWAS of Horvath-EAA and Hannum-EAA in GS were conducted using mixed linear model

based association (MLMA) analysis [65], implemented in GCTA (Genome-wide Complex

Trait Analysis) (v1.25) [66], and adjusting for sex to account for the higher epigenetic age

acceleration in men than in women [7,12,60]. In order to account for population stratification,

it is common to conduct ancestry-informative principal components analysis on the popula-

tion in question, and use a number of the top-ranking principal components (PCs) from this

analysis as covariates in the GWAS. However, as GS is a family-based sample, we employed a

different approach to capture population structure. In place of PCs, two genomic relationship

matrices (GRMs) were included in the GWAS, as this method has been shown to account for

potential upward biases due to excessive relationships, and thus allows the inclusion of closely

and distantly related individuals in genetic analyses [67]. The first GRM included pairwise

relationship coefficients for all individuals, while the second had off-diagonal elements <0.05

set to 0; full details of the methods involved and construction of the GRMs is given elsewhere

[68]. The results of univariate LD score regression analysis [26] (S4 Table) indicate that the

two GRMs adequately accounted for population stratification, so it was not necessary to

include ancestry-informative PCs in the GWAS.

GWAS meta-analysis of Horvath-EAA and Hannum-EAA

We obtained summary statistics from the largest European-ancestry analysis of epigenetic age

acceleration to date (n = 8,393, Lu et al., 2018, summary information in S19 Table), and meta-

analysed these with GS (details above). We chose not to include available data from non-Euro-

pean samples, despite the advantages of increased sample size, as different ethnicities have

been shown to have different epigenetic ageing rates [60]. Association summary statistics from

the GWAS of the two EAA phenotypes in GS and the Lu et al. study were meta-analysed using

the inverse variance-weighted approach, which weights effect sizes by sampling distribution.

This analysis was implemented in METAL [69], conditional on each variant being available in

both samples. As SNPs which co-located with CpGs from the Hannum- or Horvath-based

DNAm age predictors had already been excluded from Lu et al.’s analysis, it was not necessary

to repeat this step. This resulted in 5,932,107 genetic variants for Horvath-EAA and 5,931,171

variants for Hannum-EAA, in a meta-analysis dataset containing 13,493 participants.

The meta-analytic summary statistics produced by METAL were uploaded to FUMA

(fuma.ctglab.nl) [27], which identified index SNPs and genomic risk loci related to epigenetic

age acceleration. FUMA selects independent significant SNPs based on their having a genome-

wide significant P-value (P<5x10-8) and being independent from each other (r2<0.6 by

default) within a 250kb window. The European subset of the 1000 Genomes phase 3 reference

panel [70] was used to map LD. SNPs in LD with these independent significant SNPs (r2�0.6)

within a 250kb window, and which have a minor allele frequency (MAF)>1% within the 1000

Genomes reference panel, were included for further annotation and used for gene prioritiza-

tion. A subset of the independent significant SNPs, those in LD with each other at r2<0.1

within a 250kb window, were identified as lead SNPs. Genomic risk loci, including all indepen-

dent signals that were physically close or overlapping in a single locus, were identified by

merging any lead SNPs that were closer than 250kb apart (meaning that a genomic risk locus

could contain multiple lead SNPs, with each locus represented by the lead SNP with the lowest

P-value in that locus).

Conditional analysis was implemented using GCTA software [66] to ascertain whether

associated genetic loci harboured more than one independent causal variant, conditioning on

the lead SNP at the locus and using GS as the reference panel for inferring the LD pattern.
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SNPs which remained significantly associated (P<5x10-8) with the phenotype after condition-

ing on the lead SNP were considered to be further independent associated variants.

Manhattan plots and quantile-quantile plots were generated in R version 3.2.3 using the

’qqman’ package, and regional SNP association results were visualised with LocusZoom [21].

SNPs which surpassed the threshold for genome-wide significance in our meta-analyses were

checked against the NHGRI-EBI catalog of published GWAS [71,72] (www.ebi.ac.uk/gwas/) to

determine whether they had previously been observed in association analysis.

Methylation quantitative trait loci

To ascertain whether the genome-wide significant associations from the Horvath-EAA and

Hannum-EAA GWAS are confounded by methylation quantitative trait loci, we checked for

SNP-CpG pairings in the mQTL database, a catalogue of the genetic influences on DNA meth-

ylation (mQTLdb, [25]). The independent significant SNPs from both GWAS were input to

the database, using the MatrixEQTL database setting, which contains all associations below

1x10-7, and assessing all five time points (birth, adolescence, childhood, middle age, and preg-

nancy). A distance greater than or equal to 1 Mb was considered to be trans.

Heritability analysis

To estimate the SNP-based heritability for Horvath-EAA and Hannum-EAA, univariate Link-

age Disequilibrium score regression [26] was applied to the GWAS summary statistics for both

measures. This method also provides metrics to evaluate the proportion of inflation in the test

statistics caused by confounding biases such as residual population stratification, relative to

genuine polygenicity. We used pre-computed LD scores, estimated from the European-ances-

try samples in the 1000 Genomes Project [73].

SNP functional annotation

Functional annotation, using all SNPs located within the genomic risk loci which were nomi-

nally significant (P<0.05), had a MAF�1%, and were in LD of r2�0.6, was carried out in

FUMA v1.3.0 [27]. In order to investigate the functional consequences of variation at these

SNPs, they were first matched (based on chromosome, base pair position, reference and non-

reference alleles) to a database containing functional annotations from a number of

repositories:

• ANNOVAR (Annotate Variation) categories [74], used to identify a SNP’s function and

determine its position within the genome.

• Combined Annotation Dependent Depletion (CADD) scores [28], a measure of the deleteri-

ousness of genetic variation at a SNP to protein structure and function, with higher scores

indicating more deleterious variants.

• RegulomeDB (RDB) scores [29], based on data from eQTL as well as chromatin marks, with

lower scores given to variants with the greatest evidence for having regulatory function.

• Chromatin states [75–77], indicating the level of accessibility of genomic regions, described

on a 15 point scale, where lower chromatin scores indicate a greater level of accessibility to

the genome at that site; generally, between 1 and 7 is considered an open chromatin state.
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Gene-based analysis

Gene-based analysis was performed for each phenotype using the results of our association

analysis, using default settings in MAGMA v1.6 [39], integrated within the FUMA web appli-

cation. Summary statistics of SNPs located within protein-coding genes were aggregated to

assess the simultaneous effect of all SNPs in the gene on the phenotype. The European panel of

the 1000 Genomes phase 3 data was used as a reference panel to account for LD [70]. Genetic

variants were assigned to protein-coding genes obtained from Ensembl build 85, resulting in

17,798 genes being analysed. After Bonferroni correction (α = 0.05/17,798), a threshold for

genome-wide significant genes was defined at P<2.809×10−6.

eQTL and colocalisation analysis

The independent genome-wide significant SNPs identified in the meta-analyses of Horvath-

EAA and Hannum-EAA were assessed to determine whether they were potential eQTL, by

mapping SNPs to genes if allelic variation at the SNP is associated with expression levels of the

gene. This analysis was carried out using data from the Genotype Tissue Expression portal

(GTEx) v7 [30], integrated within the FUMA web application. GTEx uses gene expression data

from 48 different types of human tissue, linked to genotype data to provide information on

eQTL. Since Horvath-EAA is derived from the pan-tissue Horvath epigenetic clock, eQTL

analysis of the ten Horvath-EAA-associated SNPs used all the available tissue types in GTEx.

Analysis for the Hannum-EAA SNP, however, was restricted to only the blood tissue types, as

the Hannum epigenetic clock is specific to blood samples. eQTL mapping carried out within

FUMA maps SNPs to genes which likely affect expression of those genes within 1Mb, i.e. cis-
eQTL. Although FUMA contains all SNP-gene pairs of cis-eQTL, including non-significant

associations, we limited our analysis to significant SNP-gene pairs, with a false discovery rate

(FDR)� 0.05 used as the cut-off to define significant eQTL associations.

To further investigate the potential regulatory functions of the identified SNPs, we carried

out colocalisation analysis to determine whether the SNPs are mediated through gene expres-

sion. We integrated our GWAS results with cis-eQTL data from the eQTLGen Consortium

(https://www.eqtlgen.org/) [38], using a Bayesian method, ’coloc’ [37], which evaluates

whether the GWAS and eQTL associations best fit a model in which the same SNP is associ-

ated with both EAA and cis gene expression. This method, implemented in the ’coloc’ package

in R, tests pairwise colocalisation of SNPs in significant genomic regions in the GWAS with

eQTLs, and generates posterior probabilities for each locus by weighing the evidence for com-

peting hypotheses of no causal variants for either trait, causal variants for one trait only, inde-

pendent causal variants influencing the two traits, or a shared causal SNP. We extracted

summary statistics from the Horvath-EAA/Hannum-EAA meta-analytic GWAS results for all

SNPs in a +/- 200 kb region around each genome-wide significant SNP, and extracted equiva-

lent summary data for the same region in the eQTL analysis. Using the default prior probabili-

ties in ‘coloc’, pairwise colocalisation was then tested between each GWAS-eQTL pair, with a

posterior probability of�0.95 considered to be strong evidence in favour of a given

hypothesis.

Gene-set analysis

To assess whether the Horvath-EAA and Hannum-EAA GWAS meta-analysis results are

enriched for various gene-sets and provide insight into the involvement of specific biological

pathways in the genetic aetiology of the phenotype, the gene-based analysis results were used

to perform competitive gene-set and pathway analysis using default parameters in MAGMA

v1.6, integrated within FUMA. The reference genome was 1000 genomes phase 3. This analysis
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used gene annotation files from the Molecular Signatures Database v5.2 for "Curated gene

sets", covering chemical and genetic perturbations, and Canonical pathways, and "GO terms",

covering three ontologies: biological process, cellular components, and molecular function. A

total of 10,894 gene-sets were examined for enrichment in Horvath-EAA and Hannum-EAA,

with a Bonferroni correction applied to control for multiple testing. Thus genome-wide signif-

icance was defined at P = 0.05/10,894 = 4.59x10-6.

Genetic correlations

Cross trait LD score regression [52] was used to calculate genetic correlations between Hor-

vath-based and Hannum-based EAA in our meta-analysis, and then between Horvath-EAA/

Hannum-EAA and 218 other behavioural and disease-related traits for which GWAS sum-

mary data were available through LD Hub [53]; traits derived from non-Caucasian or mixed

ethnicity samples were removed prior to analysis. This method exploits the correlational struc-

ture of SNPs across the genome and uses test statistics provided from GWAS summary esti-

mates to calculate the genetic correlations between traits [52]. We checked whether our meta-

analysis datasets had sufficient evidence of a polygenic signal, indicated by a heritability Z-

score of>4 and a mean χ2 statistic of>1.02 [52]. By default, a MAF filter of>1% was applied,

and indels and strand ambiguous SNPs were removed. We filtered to HapMap3 SNPs, and

SNPs whose alleles did not match those in the 1000 Genomes European reference sample were

removed. LD scores and weights for use with European populations were downloaded from

(https://github.com/bulik/ldsc). We did not constrain the intercepts in our analysis, as we

could not quantify the exact amount of sample overlap between cohorts. False discovery rate

correction was applied across the 218 traits to correct for multiple testing [78].
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S1 Fig. QQ plots for the GWAS of Horvath-EAA and Hannum-EAA in GS, showing the

expected distribution of GWAS test statistics, -log10(p), versus the observed distribution.
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S2 Fig. Regional association plots for Horvath-EAA and Hannum-EAA associated SNPs.

Regional association plots for nine independent significantly associated SNPs for Horvath-

EAA (A-I) and the single independent significantly associated SNP for Hannum-EAA (J),

showing LD with SNPs in the surrounding region. Plots were produced in LocusZoom. The

SNP association P-value is given on the y-axis, and SNP position, with gene annotation, on the

x-axis. LD calculations are taken from hg19/1000 Genomes European build. Individual SNPs

are coloured according to the strength of LD (r2) with the lead SNP. The highest association

signal in each panel, highlighted in violet, are as follows:

A: rs1011267, an intronic SNP in C1orf112 on chromosome 1; B: rs79070372, a non-coding

transcript variant on chromosome 3 (closest genes GATA2/AS1); C: rs388649, an intronic

SNP in PIK3CB on chromosome 3; D: rs6440667, an intronic SNP in LINC01214 on chro-

mosome 3; E: rs2736099, an intronic SNP in TERT on chromosome 5; F: rs76244256, an

intron variant in TPMT on chromosome 6 and the top ranking SNP for association with

Horvath-EAA �This genomic locus contains a second independent associated SNP, inter-

genic variant rs7744541 (nearest gene NHLRC1), which remained significantly associated

(P<5x10-8) with Horvath-EAA after conditioning on the lead SNP; G: rs4712953, an intro-

nic SNP in SCGN on chromosome 6; H: rs10778517, a SNP of unknown function on chro-

mosome 12 (nearest genes RP11-412D9.4 and TMEM263); I: rs62078811, an intron variant

in STXBP4 on chromosome 17; J: rs1005277, the single independent Hannum-EAA signifi-

cant associated SNP, a SNP of unknown function on chromosome 10 (nearest gene

ZNF25).
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S3 Fig. Manhattan plots for the MAGMA gene-based association analysis for the GWAS

meta-analysis (n = 13,493) of Horvath-based epigenetic age acceleration and Hannum-

based epigenetic age acceleration, with—log10 transformed P-values for each gene plotted

against chromosomal location. The dotted line denotes genome-wide significance, defined at

P = 0.05/17798 = 2.809x10-6. Genes whose P-value reached genome-wide significance are

labelled on the plots.
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S4 Fig. QQ plots for the gene-based association analyses of Horvath-EAA and Hannum-

EAA, showing the expected distribution of test statistics, -log10(p), versus the observed

distribution.

(DOCX)

Acknowledgments

We are grateful to the families and individuals who took part in all the cohort studies included

in this meta-analysis: the Framington Heart Study, TwinsUK, Women’s Health Initiate, Euro-

pean Prospective Investigation into Cancer–Norfolk, Baltimore Longitudinal Study of Aging,

Invecchiare in Chianti, aging in the Chianti Area Study, Brisbane Systems Genetics Study,

Lothian Birth Cohorts of 1921 and 1936, and Generation Scotland. We further acknowledge

all those involved in participant recruitment, data collection, sample processing, and quality

control procedures, including project managers, interviewers, clinical staff, laboratory techni-

cians, clerical workers, research scientists, and statisticians.

GWAS of epigenetic age acceleration

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008104 November 18, 2019 24 / 30

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008104.s021
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008104.s022
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008104.s023
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008104.s024
https://doi.org/10.1371/journal.pgen.1008104


Author Contributions

Conceptualization: Andrew M. McIntosh, Heather C. Whalley, Riccardo E. Marioni.

Data curation: Kathryn L. Evans, Rosie M. Walker, Mairead L. Bermingham, Stewart W. Mor-

ris, Archie Campbell.

Formal analysis: Jude Gibson.

Investigation: Jude Gibson.

Methodology: Robert F. Hillary.

Resources: Caroline Hayward, Alison D. Murray, David J. Porteous, Steve Horvath, Ake T.

Lu.

Software: Steve Horvath.

Supervision: Toni-Kim Clarke, David M. Howard, Andrew M. McIntosh, Heather C. Whalley,

Riccardo E. Marioni.

Validation: Toni-Kim Clarke, David M. Howard.

Visualization: Jude Gibson.

Writing – original draft: Jude Gibson.

Writing – review & editing: Tom C. Russ, Toni-Kim Clarke, David M. Howard, Kathryn L.

Evans, Rosie M. Walker, Mairead L. Bermingham, Stewart W. Morris, Archie Campbell,

Caroline Hayward, Alison D. Murray, David J. Porteous, Steve Horvath, Ake T. Lu, Andrew

M. McIntosh, Heather C. Whalley, Riccardo E. Marioni.

References
1. Niccoli T, Partridge L. Ageing as a Risk Factor for Disease. Curr Biol [Internet]. 2012 Sep 11 [cited 2018

Jun 4]; 22(17):R741–52. Available from: https://www.sciencedirect.com/science/article/pii/

S0960982212008159?via%3Dihub https://doi.org/10.1016/j.cub.2012.07.024 PMID: 22975005

2. Rode L, Nordestgaard BG, Bojesen SE. Peripheral Blood Leukocyte Telomere Length and Mortality

Among 64 637 Individuals From the General Population. JNCI J Natl Cancer Inst [Internet]. 2015 Jun 1

[cited 2018 Sep 25]; 107(6). Available from: https://academic.oup.com/jnci/article-lookup/doi/10.1093/

jnci/djv074

3. Beck S, Rakyan VK. The methylome: approaches for global DNA methylation profiling. Trends Genet

[Internet]. 2008 May 1 [cited 2018 May 14]; 24(5):231–7. Available from: https://www.sciencedirect.

com/science/article/pii/S0168952508000577?via%3Dihub https://doi.org/10.1016/j.tig.2008.01.006

PMID: 18325624

4. Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, et al. Decline in genomic DNA methyla-

tion through aging in a cohort of elderly subjects. Mech Ageing Dev [Internet]. 2009 Apr [cited 2018 May

14]; 130(4):234–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19150625 https://doi.org/10.

1016/j.mad.2008.12.003 PMID: 19150625

5. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and Envi-

ronmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context.
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