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Abstract
We exhibit a wild monotone complete C*-algebra which is a hyperfinite

factor but is not an injective C*-algebra.

1 INTRODUCTION

A von Neumann factor is hyperfinite if it is generated by an increasing sequence
of finite dimensional matrix algebras. It is straightforward to show that such a
factor is an injective C∗-algebra. See [14], Chapter XVI Corollary 1.8 or [8].

A much harder result, due to Connes [2], is the converse. If a (small) von
Neumann factor is an injective C∗-algebra then it is hyperfinite.
Let M be a C*-algebra with self-adjoint part Msa. If each upper bounded,

upward directed subset of Msa has a least upper bound then M is said to be
monotone complete. (For a detailed account of monotone complete C*-algebras,
see [11]). Every von Neumann algebra is monotone complete but the converse
is false. However it seemed plausible to conjecture that if a monotone complete
factor is hyperfinite, in a suitable sense, then it is injective. If this could be
established for a particular monotone complete factor ([13] and [4]) then this
would imply a positive solution of the Marzewski problem [18]. (See also [15, 1]).
More precisely, Banach-Tarski paradoxical decompositions can be achieved using
pieces which are measurable with respect to the Baire Property. In an impressive
tour de force, Dougherty and Foreman [3] obtained this conclusion by completely
different methods. This made the injectivity of the Takenouchi-Dyer factor seem
even more plausible. But this is false.
We exhibit a monotone complete C*-algebra which is a hyperfinite factor

but is not injective. See Theorem 10.
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This can be deduced by applying some delicate and intricate arguments
of Hjorth and Kechris [7]. Here we use a different approach which can be
applied more generally. We give an argument which we hope readers will find
transparent; key tools used include Theorem 3.4 [12] and our Lemma 1, (on
properties of the Free Group, F2, and equivariant linear maps).

2 PRELIMINARIES AND BACKGROUND

A commutative unital C*-algebra C(E) is monotone complete if and only if
the compact Hausdorff space E is extremally disconnected. In other words, the
closure of each open subset of E is clopen.
Let T be an Hausdorff topological space. Then T is said to be perfect if it

has no isolated points. Furthermore T is a Polish space if it is homeomorphic to
a complete separable metric space. Let B(T ) be the (commutative) algebra of
bounded complex-valued Borel functions on a perfect Polish space T . LetM(T )
be the ideal of those f in B(T ) for which {t ∈ T : f(t) 6= 0} is meagre. Then
B(T )/M(T ) is isomorphic to B(R)/M(R). This quotient algebra is known as the
Dixmier algebra. It is monotone complete; we denote it by C(S). The compact
extremally disconnected space S has no isolated points but has a countable
dense subset. C(S) is not a von Neumann algebra because it has no normal
states [11].
Let B be any commutative unital C*-algebra. Then B ∼= C(K), where K

is compact Hausdorff. Let θ be a homeomorphism of K onto itself. Define hθ
on C(K) by hθ(f) = f ◦ θ. Then θ → hθ is a group anti-isomorphism from
Homeo(K), (the group of all homeomorphisms ofK ontoK), onto Auto(C(K)),
(the group of all ∗-automomorphisms of C(K)). It follows that θ → h−1θ is an
isomorphism of Homeo(K) onto Auto(C(K)).
Throughout this paper, G will be a countable group. Let X be a perfect

Polish space or a dense Gδ subset of S. (So the Baire category theorem is
valid for X.) Then an action of G on X is a homomorphism α from G into
the group of homeomorphisms of X onto X. Much of what follows is valid for
more general extremally disconnected spaces than S but we shall focus on the
Dixmier algebra, C(S).
Let Z be a G-invariant subset of X. Then the action α is said to be topo-

logically free over Z, if whenever g ∈ G and g is not the identity, then αg has
no fxed points in Z.
The action α is said to be (generically) free, if whenever g ∈ G and g is not

the identity, then the set of fixed points of αg is a closed nowhere dense subset
of X. When this occurs, there is a, G-invariant, dense Gδ subset Z ⊂ X, such
that the action α is topologically free over Z.
The action α is said to be (generically) ergodic if, for some x0 ∈ X, the orbit

{αg(x0) : g ∈ G} is dense in X. When this occurs, it follows from Lemma 1.1
[12] that there is a, G-invariant, dense Gδ subset Y ⊂ X such that for every
y ∈ Y , the orbit {αg(y) : g ∈ G} is dense in Y .
Let A be any commutative monotone complete C*-algebra. Let Γ be a
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countable group of ∗-automorphisms of A. So A ∼= C(E), where E is compact
Hausdorff and extremally disconected.
We recall that a ∗-automorphism, h of A is said to be properly outer if there

does not exist a nonzero projection e in A such that the restriction of h to eA
is the identity map. The action of Γ on A is said to be free if every element of
Γ, other than the identity, is a properly outer automorphism. The action of Γ
on A is said to be ergodic if, given a projection p, g(p) = p for all g implies that
p = 0 or p = 1.
Let Γ be a countable infinite group of ∗-automorphisms of C(S) which acts

freely and ergodically. There is a corresponding monotone cross-product C*-
algebra, M(C(S),Γ). (For monotone cross-products see [9, 10, 5, 11, 12, 13]).
This algebra is a TypeIII factor which contains the Dixmier algebra as a max-
imal abelian ∗-subalgebra and hence is not a von Neumann algebra [9, 10]. See
also [16, 17]. By Theorem 3.4 [12] this algebra is unique. Every free, ergodic
action of an infinite countable group G on C(S) gives rise to the same factor.
By [12] this algebra is hyperfinite. It corresponds, modulo meagre sets, to a
canonical hyperfinite Borel equivalence relation on a perfect Polish space. We
shall show that it is not injective.
The strategy is as follows. Let A = C(S) and let B be a commutative

monotone complete C*-algebra withA a subalgebra ofB. LetG be a (countable)
group of ∗-automorphisms of B which are also automorphisms of A. Then, by
Proposition 2.3 [18], ifM(A,G) is injective there exists a G-equivariant, positive
linear projection Φ of B onto A. On putting B = `∞(G) and taking G to
be the free group on two generators, it will follow from our technical lemma,
Lemma 1, that Φ vanishes on B. But this is impossible since Φ(1) = 1. So this
contradiction shows that the hyperfinite factor, M(C(S), G) is not injective.

3 EQUIVARIANT LINEARMAPSOVERTHE
FREE GROUP

Let G be a countable group. Let `∞(G) be the commutative C∗-algebra of
all complex valued, bounded sequences on G. Let γg be the automorphism of
`∞(G) defined by

(γgf)(h) = f(g−1h) for each g, h ∈ G and f ∈ `∞(G).

Let F2 be the free group on two generators a and b. Let < a > be the subgroup
of F2 generated by a (so < a >∼= Z). Let e be the empty word. For each reduced
word x, let W (x) be the set of reduced words beginning with x.
There are many ways known of obtaining paradoxical decompositions of F2.

Wagon [15] gives a lucid and elegant exposition.See in particular his Theorem
4.2 and the related discussions. For our purposes, it is convenient to use the
following decomposition.
For each i ∈ Z we put

Hi =
⋃
{W (aibi1) : i1 6= 0}.
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Then we have Hi ∩Hj = ∅ if i 6= j. Moreover, we have

F2 =< a > ∪
⋃
i∈Z

Hi

where each Hi∩ < a >= ∅.
Observe that the map λa : x 7→ ax (x ∈ F2) satisfies

λaHi = Hi+1 for each i ∈ Z.

Also the map λb : y 7→ by (y ∈ F2) satisfies λbHi ⊂ H0 (i 6= 0) and λb < a >⊂
H0.
Observe that, for each E ⊂ F2, χE ∈ `∞(F2) and for each g ∈ F2,

(γgχE)(h) = χE(g−1h) = χλgE(h) for each h.

Let T be a Hausdorff topological space with no isolated points. Let g → αg be
a group homomorphism from a countable group G into Homeo(T ), the group of
homeomorphisms of T . Let t0 be a point such that {αg(t0) : g ∈ G} is a dense
orbit. Also suppose the orbit is free, that is, the map

g → αg(t0)

is a bijection from G onto the orbit.
Let αg(f)(t) = f(αg−1t). Then g → αg is a group isomorphism of G into

Aut(CB(T )), the group of all automorphisms of CB(T ), the C∗-algebra of all
bounded, complex-valued continuous functions on T .
There is a natural embedding J of CB(T ) into `∞(G) given by

Jf = (f(αh(t0)))h∈G.

Then γg restricted to J [CB(T )] coincides with the automorphism of J [CB(T )]
induced by αg.
Indeed, for f ∈ CB(T ) and g, h ∈ G, we have

(γgJf)(h) = (Jf)(g−1h) = f(αg−1ht0) = f(αg−1αht0) = (αg(f))(αht0) = Jαg(f)(h),

which implies γgJ = Jαg for all g ∈ G.
Now specialise by putting G = F2 and require T to be compact and ex-

tremally disconnected. Then CB(T ) = C(T ). Extremal disconnectedness im-
plies that whenever D is a dense subset of T then the Stone-Čech compactifi-
cation of D can be identified with T . (See Theorem 6.2.7 in [11]) Each element
of J [CB(T )] restricts to a bounded continuous function defined on the orbit
(αh(t0))h∈G, equipped with the relative topology induced by T . Conversely, by
Stone-Čech, each such function is the restriction of a unique continuous function
in C(T ).

Lemma 1 Let φ be a positive linear map from `∞(F2) to J [C(T )] such that

γg ◦ φ = φ ◦ γg for each g ∈ F2.

4



Further suppose that the sub orbit {αant0 : n ∈ Z} =< a > [t0] is dense in T .
We recall that T has no isolated points. Then the linear map φ is identically
zero.

Proof. We have

γaφ(χHi) = φ(γaχHi) = φ(χλaHi) = φ(χHi+1) for each i ∈ Z.

This implies that

(γa)nφ(χHi) = φ(χHi+n) for all i, n ∈ Z.

We have

φ(χF2)(t0) ≥ φ
(

m∑
i=−m

(χHi)

)
(t0) =

m∑
i=−m

φ(χHi)(t0)

≥
m∑

i=−m
(γa)i(φ(χH0

))(t0) for each m ∈ N.

So (γa)n(φ(χH0
))(t0)→ 0 as |n| → ∞. But

(γa)n(φ(χH0
))(t0) = φ(χH0

)(a−nt0) for each n ∈ Z.

So φ(χH0
)(a−nt0) → 0 as |n| → ∞. So, for any given positive number ε, there

is an m0 ∈ N such that

|(γa)n(φ(χH0
))(t0)| = |φ(χH0

)(a−nt0)| < ε for all n with |n| ≥ m0.

Since T has no isolated points, {an(t0) : |n| ≥ m0} is dense in T . It follows that
|φ(χH0

)(an(t0))| ≤ ε for all n. By applying the Stone-Čech compactification
theorem, φ(χH0

) has a unique extension to a continuous function on T which
is norm bounded by ε for all ε > 0. So φ(χH0

) = 0. By positivity, if S ⊂ H0

then φ(χ
S
) = 0. Also 0 = γgφ(χ

S
) = φ(γg(χ

S
)) = φ(χ

λgS
). We now recall

λbHi ⊂ H0 (i 6= 0). So

λb

⋃
i 6=0

Hi

 ⊂ H0.

So φ vanishes on the characteristic function χ⋃
i6=0Hi

. Similarly, λb < a >⊂ H0

implies that φ vanishes on the characteristic function of < a >= {an : n ∈ Z}.
Hence φ is identically zero.

4 CONSTRUCTINGFREEGROUPACTIONS
WITH DENSE SUB-ORBITS

In this section we construct actions of the free group, F2, that we shall need
when applying Lemma 1.
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First we shall consider the Cantor space over F2 with the shift action induced
by F2. See [6]. We equip, 2F2 with the product topology. Then it is a compact
Hausdorff space which is a perfect Polish space, that is, it is homeomorphic
to a complete seperable metric space with no isolated points. (In fact it is
homeomorphic to the Cantor set.) The action of F2 on 2F2 is defined, for each
g ∈ F2 by

(αg(x))(h) = x(g−1h) for x ∈ 2F2 and h ∈ F2.

When there is no risk of ambiguity, we put g · x = αg(x). So

(g · x)(h) = x(g−1h) for x ∈ 2F2 and h ∈ F2.

Let us recall that for each g ∈ F2, this map 2F2 3 x 7→ g · x ∈ 2F2 is a
homeomorphism from 2F2 onto itself and the action F2 3 g 7→ αg ∈ Homeo(2F2)
is a group homomorphism such that for g1, g2 ∈ F2 and x ∈ 2F2 ,

((g1g2) · x)(h) = x(g−12 g−11 h) = (g2 · x)(g−11 h) = [g1 · (g2 · x)](h) for each h ∈ F2.

Take g ∈ F2 \ {e} and let

F (g) = {x ∈ 2F2 : g · x = x}.

Since αg is a homeomorphism, F (g) is closed. So its compliment

O(g) = {x ∈ 2F2 : g · x 6= x}

is open. Since F2 acts on 2F2 as the shift action, O(g) 6= ∅.
Moreover, we have y ∈ F (hgh−1) iff hgh−1 · y = y iff g · (h−1 · y) = h−1 · y

iff h−1 · y ∈ F (g) iff y ∈ h · F (g). So

h ·O(g) = O(hgh−1) for each h ∈ F2.

We claim O(g) is dense. To do this, take a non-empty open subset O. We may
assume that O is a basic open subset and so we may assume

O = {x ∈ 2F2 : x(h) = ιh if h ∈ F}

for some non-empty finite subset F of F2 and ιh ∈ {0, 1} for h ∈ F . Since
F ∪ gF is finite, there is h0 ∈ F2 such that h0 /∈ F and g−1h0 /∈ F . Let

x(h) =


0 if h = h0

1 if h = g−1h0

ιh if h ∈ F
0 if h ∈ F2 \ (F ∪ {h0, g−1h0}).

Clearly x ∈ O. On the other hand, we have

(g · x)(h0) = x(g−1h0) = 1 but x(h0) = 0
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and so g · x 6= x, that is, x ∈ O(g). Hence it follows that O ∩ O(g) 6= ∅ for all
non-empty open subsets O. So, O(g) is dense in 2F2 . By the Baire category
theorem,

⋂
g∈F2\{e}O(g) is also dense in 2F2 .

Since for each g, h ∈ F2 \ {e}, h ·O(g) = O(hgh−1),⋂
g∈F2\{e}O(g) is F2-invariant.

Let X =
⋂
g∈F2\{e}O(g). Then X is a dense Gδ subset of the perfect Polish

space 2F2 . So X is a perfect Polish space. Also X is an F2-invariant subset of
2F2 such that for any x ∈ X, g · x 6= x for every g ∈ F2 \ {e}. In other words,
the action of F2 is topologically free on X.

Lemma 2 There exists x0 ∈ 2F2 such that the orbit {αg(x0) : g ∈ F2} is free
and the suborbit {an · x0 : n ∈ Z} is dense in 2F2 .

Proof. Since the action on X is topologically free, for any x1 ∈ X, the orbit
{g · x1 : g ∈ F2}is free.
Take any pair of basic clopen subsets of 2F2 . Call them W1 and W2 with

W1 = {x ∈ 2F2 : x(g) = ig for g ∈ S1} and W2 = {y ∈ 2F2 : y(g) = jg for g ∈ S2}

where S1 and S2 are non-empty finite subsets of F2 and ig ∈ {0, 1} for g ∈ S1 and
jg ∈ {0, 1} for g ∈ S2. Since S2S−11 is a finite set and < a >= {am : m ∈ Z}
(subgroup of F2) is infinite, there exists k0 ∈ N such that an /∈ S2S

−1
1 for

|n| > k0, that is, anS1 ∩ S2 = ∅.
Let y ∈ 2F2 be defined by

y(h) =


ia−nh when h ∈ anS1
jh when h ∈ S2
1 otherwise

.

Then y ∈W2. Suppose h ∈ S1. Then anh ∈ anS1. Since

(a−n · y)(h) = y(anh) = ia−nanh = ih,

it follows that a−n · y ∈W1, which implies that y ∈ an ·W1.
Hence (an ·W1) ∩W2 is a non-empty clopen subset of 2F2 for |n| > k0.
This definition of y makes sense because anS1 ∩ S2 = ∅. Since X is a dense

subset of 2F2 it follows that

(an · (X ∩W1)) ∩ (X ∩W2) = X ∩ ((an ·W1) ∩W2) 6= ∅.

Let W be the colllection of all sets of the form W1. Then W is a countable base
for the topology of 2F2 . We remark that each W ∈ W is clopen.

Then V = {W ∩X : W ∈ W} is a base for the topology of X. Then V is a
countable base, of non-empty clopen sets. Let (V1, V2, · · · ) be an enumeration
of V.
Since X is Polish it may be regarded as a separable metric space (with

complete metric d). Let D be a countable dense subset of X. Let B be the
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collection of all open balls with rational radius and centred on points of D.
Then B is a countable base for the topology of X.
Given any ε > 0 and any V ∈ V there is B ∈ B such that B ⊂ V and the

diameter of B is less than ε. Since V is also a base for the topology there is
U ∈ V with U ⊂ B. So diameter U is less than ε and U ⊂ V .

We shall now obtain a sequence (Un) in V such that
(i) for each n, a−m(n) · Un ⊂ Vn for some m(n) ∈ N,
(ii) diameter(Un) < 1

2n and
(iii) Un ⊂ Un−1 for n > 1.
Take V1. Then we can find B ⊂ V1, where B is an open ball of diameter less

than 1
2 . Now let U1 ∈ V be a subset of B. Clearly (ii) is satisfied. So also is (i)

on putting m(1) = 0.
Now suppose that (U1, U2, ..., Un) have been constructed.
Now take Vn+1. Arguing as above, there exists a (clopen) Z ∈ V such that

Z ⊂ Un and its diameter is less than 1
2n+1 . Then one has m ∈ N such that

(am · Vn+1) ∩ Z 6= ∅.

Since (am · Vn+1) ∩ Z is a non-empty open subset, one has a non-empty clopen
set Un+1 in V such that

Un+1 ⊂ (am · Vn+1) ∩ Z.

Since Un+1 ⊂ Z ⊂ Un, the diameter of Un+1 is less than that of Z which
is less than 1

2n+1 and Un+1 ⊂ Un. Also we have Un+1 ⊂ am · Vn+1, that is,
a−m · Un+1 ⊂ Vn+1.

We now obtain a sequence in X by choosing xn from each Un. Clearly (xn) is
a Cauchy sequence. Since the metric space is complete, the sequence converges
to a point x0.
We claim {am · x0 : m ∈ Z} is dense in X.
Take any non-empty open subset O of X, one has Vn ∈ V such that Vn ⊂ O.

By (i), there exists m ∈ Z with m ≥ 0 such that

am · Un ⊂ Vn ⊂ O.

Since x0 ∈ Un, am · x0 ∈ O, which means that < a > x0 is dense in X. Since X
is dense in 2F2so also is < a > x0.

Corollary 3 (i)There exists Y , a dense Gδ subset of X, such that, for every
y ∈ Y , the sub-orbit < a > y is dense in X and hence dense in 2F2 .
(ii) There exists Z, a dense Gδ subset of 2F2 , such that, for every z ∈ Z,

the sub-orbit < a > z is dense in 2F2 . Furthermore we may suppose that Z is
invariant under the action of F2.

Proof. (i) This follows from Lemma 1.1 [12]. Alternatively, apply Proposition
6.5.5 and Lemma 6.4.7 [11].
(ii) By the Baire category theorem, the intersection of countably many dense

Gδ subsets of 2F2 , is a dense Gδ subset. Put Z = ∩{gY : g ∈ F2}.
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We wish to obtain similar results for actions of the free group on the structure
space, S, of the Dixmier algebra. We shall do this by applying results on induced
actions given in Section 6.4 of [11]. Although this can be done more generally,
we shall focus on the Dixmier algebra.
Let K be a perfect Polish space which is compact, for example 2F2 . Then

there is a natural injective ∗-homomorphism j from C(K) intoB(K)/M(K)∼=C(S),
the Dixmier algebra. Using the familiar duality between commutative (unital)
C∗-algebras and compact Hausdorff spaces, there is a continuous surjection
ρ : S → K such that j(f) = f ◦ ρ.
Let θ be a homeomorphism ofK ontoK. As in the beginning of Section 2, let

hθ be the corresponding ∗-automorphism of C(K). Also f 7−→ f ◦ θ induces an
automorphism ĥθ of B(K)/M(K). Since B(K)/M(K) can be identified with
C(S), there exists θ̂ in Homeo(S) corresponding to ĥθ. Clearly, ĥθ restricts
to the automorphism, hθ, of C(K). It can be shown that ĥθ is the unique
extension of hθ to a ∗-automorphism of C(S). Then θ → θ̂ is an injective
group homomorphism from Homeo(K) into Homeo(S).

Lemma 4 For each s ∈ S, θ(ρs) = ρ(θ̂ s).

Proof. See Corollary 6.4.3 [11].
To apply this lemma we now put K = 2F2 and recall the action, g → αg,

of F2 on 2F2 . Here this action is an injective group homomorphism of F2 into
Homeo(2F2). It follows that g → α̂g, is an injective group homomorphism of
F2 into Homeo(S). So we can define an induced action α̂ on S by α̂g = α̂g for
g ∈ F2.

Proposition 5 There exists s0 ∈ S such that the orbit {α̂g(s0) : g ∈ F2} is free
and the suborbit {an · s0 : n ∈ Z} is dense in S. Here we define a · s = α̂as.

Proof. Let x0 be as in 2. There exists s0 in S such that ρs0 = x0 because ρ is a
surjective map from S onto 2F2 . By Lemma 4 θ(x0) = ρ(θ̂s0), whenever θ = αg.
It now follows from Proposition 6.4.4 [11] that the sub-orbit {an · s0 : n ∈ Z}
is dense in S.
Also, by Proposition 6.4.5 [11], the orbit {α̂g(s0) : g ∈ F2} is free.

Corollary 6 There exists a F2-invariant Y , which is a dense Gδ subset of S,
such that, for g ∈ F2 and g 6= e, α̂g has no fixed point in Y . Also s0 ∈ Y .

Proof. This follows from Lemma 6.4.7 [11].
By applying Lemma 1.1 (3) [12] (see also Proposition 6.5.5 [11]) we obtain:

Corollary 7 There exists a F2-invariant Z, which is a dense Gδsubset of S,
such that, for g ∈ F2 and g 6= e, α̂g has no fixed point in Z. Also for y ∈ Z, the
sub-orbit {an · y : n ∈ Z} is dense in Z.
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5 CONCLUSIONS

In Lemma 1 we replace T by S and observe that Proposition 5 implies that we
can suppose the dense sub-orbit hypothesis is satisfied. This gives:

Proposition 8 Let φ be a positive linear map from `∞(F2) to J [C(S)] such
that

γg ◦ φ = φ ◦ γg

for each g ∈ F2. Then the linear map φ is identically zero.

In the above, the action g → γg of F2 on J [C(S)] is free and ergodic. To see
this we can argue as follows.

Take g ∈ G with g 6= e, the neutral element of G. If γg were not properly
outer, one would have a G-invariant non-empty clopen subset E of S such that
γg
∣∣
C(S)χE

is the identity. Then we would have γgJχEJf = JχEJf for all
f ∈ C(S) which means that

(χEf)(αg−1αhs0) = χEf(αhs0) for all f ∈ C(S) and h ∈ G.

Since Gs0 is dense and E is non-empty clopen, one has h ∈ G such that hs0 ∈ E.
Since αg−1αhs0 6= αhs0, one has f ∈ C(S) such that f(αg−1αhs0) 6= f(αhs0).
Since αhs0 ∈ E, αg−1αhs0 ∈ E and so we have f(αg−1αhs0) = f(αhs0). But
this would be a contradiction. So, the action g 7→ γg is free on J [C(S)]. Next
take any f ∈ C(S) and suppose γg(Jf) = Jf for all g ∈ G. Then we have
f(αg−1αhs0) = f(αhs0) for all g, h ∈ G and so in particular, f(αhs0) = f(s0)
for all h ∈ G. Since Gs0 is dense in S and f is continuous, it follows that
f(s) = f(s0) for all s ∈ S and so f = f(s0)1. So, the action γ is ergodic.
Let G be a countably infinite group which acts freely and ergodically as

∗-automorphisms of C(S). Then there exists a corresponding monotone cross-
product C*-algebra M(C(S), G) which is a wild factor. Then Theorem 3.4
[12] tells us that M(C(S), G) is isomorphic to the Takenouchi-Dyer factor, for
every choice of G, provided the action is free and ergodic. It is also isomorphic
to M(C(S),⊕Z2). In particular M(C(S),F2) ∼= M(C(S),⊕Z2).Each of these
monotone cross-products corresponds to a hyperfinite Borel equivalence relation
on a perfect Polish space (see [12]). See Example 6.1.4 [11]. For more details
and generalisations, see Chapter 7 [11]. We have that the factor M(C(S),F2) is
hyperfinite. We shall show that it is not an injective C*-algebra. (For monotone
cross-products see [9, 10, 5, 11, 12, 13]).

Lemma 9 Let A and B be commutative monotone complete C*-algebras. Let
A be embedded as a C*-subalgebra of B. Let G be a countable group of ∗-
automorphisms of B, each of which maps A into A. Let M(A,G) be injective.
Then there exists a positive linear projection (conditional expectation) Φ from
B onto A with the following properties. For each g ∈ G, and x ∈ B,

Φg(x) = gΦ(x).

Proof. This follows from Proposition 2.3 [18].
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Theorem 10 The hyperfiniteTakenouchi-Dyer factor is not injective.

Proof. {sketch} In Lemma 9 put B = `∞(F2) and put A = J [C(S)].
Asssume that M(C(S),F2) is an injective C*-algebra. Then, by Lemma 9,

there exists an equivariant positive linear projection from B onto A. Then, by
Proposition 8, Φ vanishes on B. But this is impossible since Φ1 = 1.
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