RESTRICTION OF CHARACTERS TO SUBGROUPS OF
WREATH PRODUCTS AND BASIC SETS FOR THE
SYMMETRIC GROUP

JEAN-BAPTISTE GRAMAIN AND ADRIANA MARCIUK

ABSTRACT. In this paper, we give the decomposition into irreducible char-
acters of the restriction to the wreath product Zp_1 1 &y of any irreducible
character of (Zp % Zp—1) ! Sy, where p is any odd prime, w > 0 is an integer,
and Zjp and Zp_1 denote the cyclic groups of order p and p — 1 respectively.
This answers the question of how to decompose the restrictions to p-regular
elements of irreducible characters of the symmetric group &, in the Z-basis
corresponding to the p-basic set of &, described by Brunat and Gramain in
[1]. The result is given in terms of the Littlewood-Richardson coefficients for
the symmetric group.

1. INTRODUCTION

Let G be a finite group and Irr(G) be the set of irreducible complex characters
of G. Let p be a prime (dividing |G|), and let C be the set of p-regular elements of
G. For each y € ClIrr(G), we define a class function x¢ of G by letting

Ca={ 3 Bes.
One of the fundamental results of Brauer’s Theory is the existence of a surjective
homomorphism, called the decomposition homomorphism,
d: { ZIrr(G) — ZCIBrp(G)
X — X

)

where IBr,(G) is the set of irreducible (p-modular) Brauer characters of G. The
matrix D of d in the bases Irr(G) and IBr,(G) is the (p-modular) decomposition
matriz of G. Up to reordering the rows and columns, the matrix D is diagonal by
blocks, which gives partitions of Irr(G) and IBr,(G) into p-blocks.

While finding the decomposition matrix of a group is a very difficult problem,
basic sets can sometimes help computing Brauer characters and/or the decomposi-
tion matrix D, or at least reduce the problem. We call p-basic set for G any subset
B C Trr(G) such that the family B¢ = {x¢, x € B} is a Z-basis for the Z-module
generated by Ir®(G) = {x¢, x € Irr(G)}. In particular, |B| is the number of p-
regular conjugacy classes of G. One can also define the notion of p-basic set for a
p-block of G, and one shows easily that, if each p-block b of G has a p-basic set By,
then the union of the B,’s is a p-basic set for G.

If B is a p-basic set for G, and if we write x¢ = Z nxd,wc (x € Irr(G), nyy € Z)

veB
and N = (Nyy)yetn(a), ves, and Dp for the (square) sub-matrix of D whose rows
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correspond to B, then we have D = NgDpg, so that computing the matrix Np
reduces the problem of finding D to computing (the smaller matrix) Djp.

In [1], the authors describe, for any integer n and odd prime p, a p-basic set B
for the symmetric group &,,. The object of the present paper is, in this case, to
describe completely the matrix Ng. It should be noted that another p-basic set for
S,, was previously known (see [3, Section 6.3]), but that B has further properties
which allow it to restrict to a p-basic set for the alternating group A,.

Throughout this paper, we let n > 1 be any integer, and p be an odd prime. The
irreducible complex characters of the symmetric group &,, are canonically labelled
by partitions of n, and we write Irr(&,,) = {xa | A F n}. For any A F n, we write
n = |A|, the size of A. The distribution of irreducible characters of &,, into p-
blocks is described by the Nakayama Conjecture (see [3, 6.1.21]). Each partition A
of n is completely and uniquely determined by its p-core v,(A) and its p-quotient
gp(A). The p-core ~,(A) is the partition, of some integer s, obtained by removing
from A all the hooks of length divisible by p, and the p-quotient ¢,(\) is a p-
tuple (A, A2, ..., \P) of partitions whose sizes add up to the integer w (written
(AL A2, ..., AP) Ik w), called the p-weight of A, and such that n = s + pw. Then
two characters xx, x, € Irr(&,,) belong to the same p-block of &,, if and only if
Yp(A) = vp(1). In particular, if that is the case, then A and p have the same p-
weight, and characters in the p-block of &,, corresponding to the p-core v - s are
labelled by the p-tuples of partitions (v*, v2, ..., vP) IF w, where w = (n — s)/p,
and the p-block is said to have p-weight w.

In [1], the authors show that {xx € Irr(&,,) | g,(A) = (A, ..., AP) with A" = 0}
is a p-basic set for &,,, where r = %. To prove this, they construct, for each
w > 0, a generalized perfect isometry between the set of irreducible characters of a
p-block b of p-weight w and the set of irreducible characters of the wreath product
(Zp xZp—-1)1S,,, where Z,, and Z,,_; denote the cyclic groups of order p and p—1
respectively. The irreducible characters of (Z, X Z,_1)1&,, can be parametrized by
the p-tuples v = (v}, ..., vP) I w of partitions of w (see Section 3), in such a way
that a character has the subgroup Zy' of (Z, x Zp 1) 16, = Zy x (Zp-116,,) in
its kernel if and only if it is labelled by v = (¢!, ..., V) IF w such that v" = (). We
write Irr((Zy X Zp—1) 16y) = {x" |vIF w}. We also let B, = {x» € Irr(b) | gp(\) =
(AL, ..., AP) with A7 = 0} be the p-basic set for b constructed in [1]. The results
of [1] show that there is an explicit bijection x\ — x5 from Irr(b) to itself, which
restricts to the identity on By, as well as explicitly determined signs {e(\), xx €
Irr(b)} such that, if we write x§ = Z Ny X;CL (x» € Irr(b), nay € Z), then the

X €8y
coefficients ny, (xx € Irr(b), x, € By) are given by

Ly XLy~ 1 NGy )\ Ly XLy~ 1 NGy "
(1) nap = e(N)e(p) (Resg &' (x V) Res (e (xar i)y s

Note that, by construction, for any x, € By, we have g,(i) = (v!, ..., vP) with
v" = 0. Thus x% has Z, in its kernel, and Res(ZZpiTZZé’;l)zew (x% M) is actually

an irreducible character of Z,_; 1 G,,. Hence, in order to decompose any restriction
to p-regular elements of an irreducible character of &,, as a Z-linear combination
of the restrictions of characters in the basic set B, it is sufficient to compute the
decomposition into irreducible characters of Z,_; { &,, of any irreducible character
of (Zp X Zp—1)1S,,. This decomposition is given by our main result, Theorem 5.1.



The paper is organised as follows. In Section 2, we recall classical results about
the conjugacy classes and irreducible complex characters of wreath products. These
results are then applied to the groups (Z, x Z,_1) 1 &, and Z,_1 1 &,, in Section
3, and the irreducible characters of these groups are parametrized in ways that are
compatible (see Theorem 3.3). In Section 4, we describe the characters of (Z, x
Zy—1)16,, induced by some specific characters of Z,_11S,,. These particular cases
form the basis for the computations of Section 5, where we explicitly decompose
into irreducibles the induction to (Z, X Z,_1) 1 &,, of any irreducible character of
Zp—1 16, (see Theorem 5.1). This in turn provides a formula for any of the scalar
products appearing in Equation (1).

2. CONJUGACY CLASSES AND IRREDUCIBLE CHARACTERS OF WREATH PRODUCTS

Throughout this section, we let N be a finite group and w > 1 be an integer,
and consider the wreath product N1 &,,. That is, N1 &, is the semidirect product
N" x &,, where G,, acts by permutation on the w copies of V. For a complete
description of wreath products and their representations, we refer to [3, Chapter
4].

Let s be the number of conjugacy classes of N, and let g1, ..., gs be representa-
tives for the conjugacy classes of N. Then the conjugacy classes of N &,, can be
parametrized by the s-tuples of partitions of w as follows. The elements of N &,,
are of the form (h; o) = ((hy, ..., hy); o), with hy, ..., hy € N and 0 € &,,. For
any such element, write o = 01 * - - % 0.5, a product of disjoint cycles. Then, for
any 1 < v < ¢(0), we have o, = (j,, 5,00, .., j,0% 1) (where o, is a k,-cycle),
and we define the v-th cycle product of (h; o) by

gl,(h; O') = hju ~hj —1+h, —2-----h. UV—(kV—n.

vOy JvOu Jv

In particular, g,(h; o) € N. We then form s partitions (71, ..., ms) as follows:
each 1 < v < ¢(o) gives a cycle of length k, in m; if the cycle product g, (h; o) is
conjugate to g; in N. The resulting s-tuple of partitions of w describes the cycle
structure of (h; o), and two elements of N ! &, are conjugate if and only if they
have the same cycle structure.

The irreducible complex characters of N { &,, can also be parametrized by the

s-tuples of partitions of w as follows. Let Irr(N) = {w1, ..., ws}. Take any o =
(@', ..., %) IF w and consider the irreducible character [];_, wlabl of the base

group N*. Tt can be extended in a natural way to its inertia subgroup NG q1| x

g
d

<+ X N1G|4s|, giving the irreducible character I, wla . For each 1 <1i < s, the

o
i

cycle products g, (f; 7) (1 < v < ¢(m)), then wlail(f; ) = Hi(:l) wi(gy(f; 7)) (see
[3, Lemma 4.3.9]). Any extension of []}_, wlaz‘ to N1G|q1 X -+ X N1G|qs| is of the

irreducible character w!®'! of N 64| is given as follows: if (f; ) € N1&|4:| has

form Q< = Hle(wlai‘ ® Yq,), where, for each 1 <i <5, Ty, € CIrr(N 21 6)44)) is

3

defined by Yo, (f; ™) = Xa, (f; ) for all (f; 7) € N1G|4i| (and xq, € Irr(&q1)), see

[3, 4.3.15]). Then R* := Indﬁ%flwmglai‘ (Q%) € Irr(N 1 6,,). Different o IF w give

different irreducible characters of N { &,,, and any irreducible character of N &,,
can be obtained in this way (see [3, Theorem 4.3.34|).
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3. PARAMETRIZATIONS OF Irr((Zy, x Zp—1) 1 S,,) AND Irr(Z,_116,,)

From now on, and throughout the paper, we fix an odd prime p, and we let

r = EEL We write I for the set {1,2,...,p}\ {r}. Welet H = Z, ; and

G =7y X Zp—_1, and, for any integer k > 1, we let H, = H 16, and G, = G 1 Sy.

We start by describing the irreducible characters of G and their restrictions to
H. The irreducible complex characters of G are described as follows. We have
Irr(G) = {91, ..., ¥p}, with ¢;(1) = 1 for ¢ € I, and ,(1) = p— 1. More precisely,
writing 71 = 1z, for the trivial character of Z,, we have

Ind§ (1z,) =Y ¢ and Resf (¢) =1z, (i € 1),
el
and
Resg () =nm2+ -+ +np and Tndg () =, (2<i<p),

where {n2, ..., np} = Irr(Z,) \ {1z, }.

Now write Irr(H) = {0;|i € I} = {61 = 1y, 02, ..., 0,_1, 0,41, ..., 0,}. For
any ¢ € I, ¥; has Z, < G in its kernel. Thus, without loss of generality, we can
choose the labelling such that 1); = 0; 0w, where w: G = Zp, X Zp_1 — Zp_1 = H
is the canonical surjection. In particular,

(2) Res% (v;) = 6; for alli e I.

To describe Res$(1),), we start by noticing that ,(g) = 0 for all g € G \ Z,.
Indeed, by the first orthogonality relation, we have

Dbl = Y D mlomi(9) = D > mile)milg) =plp—1).

9EZLy 2<4,j<p gE€Zy 2<i<p g€EZy

Since also Z Ur(9)r(9) = |G| = p(p — 1), this yields

geG
D de@dle) = > e(9) =0,

9geEG\Zyp gEG\Zy
so that ¢,.(¢g) = 0 for all g € G\ Z,,. Since 9,.(1) = p — 1, this gives
(3) Resf (¢,) = (p — 1)1,

where 4; is the indicator function of (the conjugacy class in H of) 1. Now, by the
second orthogonality relation, we have, for any h € H

S 0h) = S 0:(m)0i(1) = [Ca(DIg: () = (p — 1)1 (h).
iel el
Hence

(4) R'eSH wr Z 9

i€l

If we now take any integer w > 1, then the irreducible complex characters of G,
and H,, are constructed as in Section 2.

The irreducible complex characters of G,, = G1S,, are parametrized by the p-tuples

of partitions of w as follows. For any a = (al, ..., o?) IF w, x® € Irr(G,,) is given



@ G /l?;l/\
) =tmdy o C[] o @ g,

1<i<p
where, for any 1 <7 < p and (f; 7) € G|4i| with cycle products g, (f; 7) (1 <v <
e(m)). we have ;"' (f; m) = [TL0) wi(g0 (f: m) and e (f; m) = xa ().
Note for future reference that, in the above notation, if o” = (), then Z}Y C ker(x®).

Indeed, for all 1 < ¢ < p, i # r, we have Resgp (i) = 1z,; thus Rebal\a” (wlail) _

G
= Ind
H1<1<p G\ai|

1_ua, 50 that 6} (g) = 6l*(1) for all g € Z5", and (1™ @ pa,)(g) = (B ®

©Ya,;)(1) for all g € Zi,ail. Since Z;) < G 4GS, we easily get that, for all g € Z7,
x*(g) = x*(1). In particular, if a” = (), then x® = £ o @ for some ¢ € Irr(H,),
where : Gy = (Zp)" X (Zp-116y) — Zp—11S,, = H,, is the canonical surjection.
The irreducible complex characters of H,, = H1&,, are parametrized by the (p—1)-

tuples of partitions of w as follows. For any a = (o, ..., a"" % oL ..., oP) IF w,
&> € Irr(H,,) is given by

Hy, el Hy, ’\;ﬂ )
I _Indnqele(G )—IndHlEIH‘ . ]1(73 ® Cai)s
1€

where, for any i € I and (f; 7) € H|:| with cycle products g, (f; 7) (1 < v < ¢(n)),
we have 0;°(f: m) = [T 6:(g, (/3 7)) and Gas (f: ) = s (),

The following result will be useful when we next consider the restriction to H,,
of some irreducible characters of G,.

Lemma 3.1. For any integer k > 1,1 € I and A+ k, we have
Resgi (YF) =0F and Resgi (px) = G-
Proof. Take any (f; m) € Hy (ie. (f;m)

= (1,
f € H¥ and 7 € &), and let g,(f; ) (1 < v
(f; m). Note that, for all 1 < v < ¢(n), g,(f; 7)
H). Since, by (2), Res (¢;) = 0;, this yields

c(m) c(m) .
Vr(fi sz gu(f; ™) = [ 69 (f; 7)) = 65(f; 7),
v=1

( )) € Zk x Hy = Gy, where
< ¢(m)) be the cycle products of
€ H (as a product of elements of

as claimed. The second part is immediate, as, for any (f; 7) € Hy, we have

ox(f; ™) = xalm) = G(f; 7).
0

We will also need the following in Section 4.

Lemma 3.2. For any integer k > 1 and any (f; n) € Hy with cycle products
gu(f; m) (1 <v <)), we have

;va(f; ﬂ_){ (p— 1)) if g, (f; 7) =1 for all1 < v < c(n),

0 otherwise.
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Proof. Take any (f; w) € Hy, as in the proof of Lemma 3.1 and again note that, for
all 1 <wv <e(m), g.(f; m) € H. We therefore have

. c(m) c(m)
OF(fsm) = ] wrlgo(fs ™) = T Resf () (9 (5 7).

The result immediately follows from (3). O

We can now show how our parametrizations for Irr(G,,) and Irr(H,,) are related.

Theorem 3.3. Take any (o, ..., a" 1 0, o™ ... a?) IF w.
If we let a = (o, ...,a" 1 o™ . aP) and & = (at, ...,a" " 0, "L ... aP),
then we have

Resgw (X‘S‘) = £

w

Proof. Leta = (at, ...,a"" Y o™ ...aP)and & = (at, ...,a" "1 0, o™t ... aP)

b ) 9 )
be as above. Then

& _ G &\ G a
x% = Ind lgiSpG\aH(\Ij )= Indniel GW‘(\II ),
where U* = leail ® Qi
i€l
Let 01, ..., om be left coset representatives for the Young subgroup [[;c; &4
of 6. In particular, (1; o1), ..., (1; 0,,) are also left coset representatives for

[Lic; Hiai| in Hy, and for [],.; G|qi| in Gy (where, in the first instance, (1; 0;) =
(1g; 0;) for 1 <4 < m and, in the second, (1; ;) = (1¢; 0;) for 1 <1i <'m). Since
it will always be clear which group we are working in, we will denote all these coset
representatives as o1, ..., o,.

By the formula for character induction, for all g € H,,, we have

Vo) = 3 T (rgor ),

k=1
where
0 if ngo,;l ¢ HGlai|7
P (ngo'lzl) _ . ) . icl
U (opgo, ) if orgo,” € HGW’l'
i€l

Now, if g = (f; p) € Gy, (with f € HY < GY), then, for all 1 < k < m, we have
(see [3, 4.2.6]),

orgoy, ' = (1; 0k)(f; p)(L; 0k) = (for; okpoy '),

where, if f = ((1, f1), (1, f2), ..., (1, fw)) € G* (with (f1, ..., fw) € H"), then
for, = ((17f(7;1(1)), (1,fo_;1(2)), cel (1,f01;1(w))). In particular, f,, € H", and
akgak_l = (for; okpcr,;l) € H,. Hence, for all 1 < k < m, we have crkgak_1 €
HGWI if and only if ngok_l € HH\Q"I' If that is the case, then we can write
il iel

akgak_l = [Lics(gi; pi), where (gi; p;) € Hqi) for all i € I, and, still in that case,



we obtain

—

Ve (okgoy ') = H [wiail ® Soai:| (945 pi)

ier b
- lewl(gi; Pi) * Pai (935 Pi)
i€l -
G at ot G i
= IIResq] (wi ') (95 p1) - Resy”| (9ai) (955 p2)
iel
= Hgia‘l(gi; pi) - Cai(gis pi) (by Lemma 3.1)
iel
= 11 [9{“' ® Caf} (9i5 pi)
iel
= He\zaﬂ ®C(x1 (O.kgo_k—l)
icl

= O%orgo; ).

We therefore have, for any 1 < k < m,

0 if ngalzl ¢HH|M-|,
U (opgoy b)) = el
k)= - . _
0% (orgoy by if Jkgokl € HH|Q1:|.
il
Since o1, ..., o, are also left coset representatives for [[;.; Hjai| in Hy, we get,

for all g € Hy,

X (9) = 3 U (0rgor ) = 3. 0% (orgor ) = ndllr L, (©7)(g) = €°(g),

lot|

as claimed.

O

Remark 3.4. In view of the observation we made when parametrizing the irre-
ducible characters of G,,, the statement of Theorem 3.3 can be rephrased as: if
X € Irr(Gy,) is labelled by (at, ...,a""1 0, o™t ...aP), then y = £ o %, where
¢ € Irr(H,) is labelled by (o, ...,a" L o™ .. aP) and ©: G, — H,, is the
canonical surjection.

4. INDUCTION OF SOME SPECIAL CHARACTERS

In this section, we fix any integer £ > 1, and we will describe the induced
characters Indgi <Hf ® Ca> for i € I and a - k (see Theorem 4.5). We start by
some results on multiplicities.

Lemma 4.1. For any ¢ € I, the multiplicity of the irreducible character 05 m
Resg’; (wff) is 1.
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Proof. Take any i € I, and let A; , be the multiplicity of 9’“ in Res (W“) Then

Ai,r = |H | Z wk f’ 95(]2 ﬂ_)
(f;m)EH -
B |H | Z Z (p— 1) - 0¥(f; ) (by Lemma 3.2).
Hl res, feHF such that

gu (f; m)=1for all 1<v<e(w)
And, whenever (f; m) € Hy, is such that g, (f; 7) =1 for all 1 <v < ¢(m), we have
e(m) e(m)

gkf’ H0 gl/f; :H1:1
v=1
Hence

Air = (n— 1)k k! Z Z (p— 1)

TES feHF such that
guv (f; m)=1for all 1<v<e(m)

= 3 = G,

TES

where, for any 7 € &y, G(m) = {f € H* | g, (f; 7) = 1 for all 1 <v < ¢(m)}.

Now, if we write m = w1 * - -+ * T.(r), a product of disjoint cycles, we see that
f € G(n) if and only if, after reordering the “coordinates” of f according to the cycles
of m, f is of the form (fi, ..., fe(x)), where each f, is a |m,|-tuple of elements of
(the abelian group) H whose product is ¢, (f,7) = 1. So, for each 1 < v < ¢(7), we
can choose the first |m,| — 1 coordinates of f, to be anything we want in H, and
the last coordinate is imposed by the condition g, (f,7) = 1. This means that, for
each 1 < v < ¢(r), we have (p — 1)I™I=1 choices for f,, so that

)

IR | (RN

v=1

We therefore have

e(m) e(m)

p-DF kA, = Y -0 J[e-n™t = -1

TESE v=1 eSS, v=1
c(7r)
= Y p-p==lml= N p-DF = (p-1)" K
TESE TESE

and A;, =1, as claimed.

Note that our argument shows that, for any m € Gy,

(5) D k(S m) 0 (fim) = (p - DY
feHk

We will use this to prove the next result.

Lemma 4.1 can be extended as follows:



9

Lemma 4.2. For any i € I and any partitions a and 3 of k, the multiplicity of
the irreducible character 0% ® (, in Resg’; (1/1,’? ® @5) 05 0a,8-

Proof. Take any ¢ € I and any partitions o and 3 of k, and let B;, o 3 be the
multiplicity of 6% @ ¢, in Resg’; (1/),’? ® gpg). Then

Birap = ﬁ > YE(f5 m) - 05 (f; ™) - 0p(f5 ) - Calfs )
(f;m)EH
= ﬁ S xalmxalm - | S GE(F @) - 08 (f; 7)
) TEG, feHk
= T > xs(m@xalm@) - (p—1F (by (5))
W%?k )
-1
- P e T v
TESE
= (X8, Xa)&,
= 6@57
as claimed.

O

To prove our next result on multiplicities, we will use the following, which is
an easy corollary of Mackey’s Theorem (see [2, Theorem (5.6)]) and Frobenius
Reciprocity.

Theorem 4.3 (Mackey). Let K, H < G be finite groups, and 1, ..., T, be repre-
sentatives for the (H, K)-double cosets in G (i.e. G = Hx KU - -UHz,,K). Then,
for any class functions S and T of H and IC respectively, we have

m

(Ind (S), dZ(T))g = D> _(Resiiei i (57), Reshins (1)) pscr,
i=1
where the class function S% of H* = x; ' Hax; is defined by S (u) = S(wvux; ")
forallue H* (1<i<m).

We can now prove the following

Theorem 4.4. Foranyi €1, any0<j <k, and anyatk, B+ j and~vy+ k—j,
we have
<1nd§'; (95 ® ca) ,IndGr ¢, ((wi ® ¢g> X (%k-—j ® %» >G =5,
k

the Littlewood-Richardson coefficient for the symmetric group &y, (see [3, Theorem
2.8.13]).

Remark: in the above statement, and in the rest of the paper, we denote some
tensor products by X instead of ® to emphasize the fact that they are outer tensor
products.

Proof. We start by noticing that, if j = 0 or j = k, then G; x Gj—; = Gj. For any
a, B, v F k, we let, in a natural way, cg‘v = dqa,y and cgﬂ = 0q,8. Then, if j =0,
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the claim becomes

(affs (0 @) wt©0y) . =iy =0,
which is true for any «, v F k& by Theorem 3.3 and Frobenius Reciprocity. If, on
the other hand, j = k, then the claim becomes

<Indgi (95 ® Ca) 5 wi ® (,05>G = ng(b = 6@,67
k

which is true for any «, 5 F k by Lemma 4.2 and Frobenius Reciprocity.
From now on, we therefore fix any 0 < j < k. Take any a F k, S F j and v F k — 7,
and let

Ciopn = <Indgi CEIS R ((wi ® <,05> X (wf‘j ® ¢7>>> .
G

We will apply Theorem 4.3 to the groups G = Gk, H = Hj, and K = G x Gj_;.
Since Hy, contains (a copy of) &g, which itself contains representatives for the left
cosets of G x Gi_; in Gy, (which are the same as representatives for the left cosets
of &5 x 6;_; in &), there is a single (Hy, G x Gj_;)-double coset in Gj. Thus
we have G = Hy, - (G; X G—;) and, with the notations of Theorem 4.3, m =1
and T = 1. AlSO7 H]} N (GJ X Gk,j) = Hk N (GJ X kaj) = Hj X kaj- Hence, by
Theorem 4.3, we have

Cijapr = (Resy g, (0F ©Ca), Resgjigij((wi D0p) R (W @0y)) by x ;-

Now, for any (f; m) € H;x Hj_;, we can write (f; 7) = (f9); 7O (fF=9); glk=i))

in such a way that

_ c(m)
Ok (f; ) Hei(gu(ﬁ ™))

c(:r(j)) e(m =)
= H 0: (g, (F9; 7)) . H 0; (g, (F =9 k=i)))
v=1 v=1

= GI(fO); w0y . R (f ki), ki)

(we only have to be careful, when seeing 7 = 7()+7(*~7) as an element of &, x &},_;,
that &, and S_; do act on the indices we want).
This shows that

(6) Resyi, g, (6F) = 6/ K6,
Now, by the Littlewood-Richardson Rule (see [3, Theorem 2.8.13]), we have
(7) Resg:ka—j (Xa) = Z Cz,v Xup X Xv-

nkg
vhk—j

Since <Resg5><Hj_k(Coé)7 CH&CV>HJ' ><Hk—j = <Resg§><6k,j (Xa)7 XM&XV>GJ‘ XGk—j and
Ca(l) = xa(1), this easily gives
(8) Resg?xHj,k(Ca) = Z Cff,u GGy

nhg
vhk=j
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Using (6) and (8), we obtain

(9) Resy, o, (08 @C) = D e, (0] @ QIR (6, @)
pkg
vk—j

We also have

—

(10) Res§/ 5 (e@ps) U ©p,)) = ResS ($hops) BResG: (6 7 900,).

Together, (9) and (10) yield that C; ;4. 3,4 is equal to

o ~ o G g Gy k=g
(D e, (0] )05 @(,), Resyy! (v @) RResgy ™ (U @03)) 1, xty
=g
vhk—j

which in turn is the same as

o ~. G, Gr—j Dy
(11) Z C;L,V.<91J®CH7RQSH;(¢$'®QPB)>H]' < ®CV7RQS .- (/(/)f j®(p7)>Hk—j'
pkg
vk j

Now, by Lemma 4.2, we have, for all u F 7,

(12) (0] @ G, Resyy) (Y1 © 93)) i, = Oy 6.

Also, by Lemma 3.1, we have

G —; Grej ) hej Grs oy
Res; k—j (wf ) (p,y) = ResHZ,Jj (¢f J) ® ReSHZ,Jj (‘pv) — 95 i C'Y'

Hence, for all v - k — j, we have

—_—

(13) <9k ’® CVaReSGk ’ (¢f_j ® SD’Y)>Hk—j = <9£€_j ® CV,Qf_j ® C’Y>Hk—j = Oy

(since both are irreducible characters of Hy_;, the same if and only if v = 7).
Finally, using (11), (12) and (13), we obtain

CijaBy = Z Chw OB - Oy = €3,

vk g

as claimed. O

We can now finally state and prove the main result of this section.

Theorem 4.5. For any i € I, any integer k > 1 and o F k, we have
k

- ~ = =
mdf (650 G) =20 D2 ey Mg, ((w% ® ps) B (¥ ww) :
=0 BFi
yEk—j

Proof. Since the characters appearing on the right-hand side are pairwise distinct
irreducible characters of Gi, Theorem 4.4 shows that all we have to prove is that
the left-hand side and right-hand side characters have the same degree.
For the left-hand side, we easily see that

d§: (60} © ¢) (1) = [Grs Hid - (08 © C)(1) =[G Hi] - Ca(1) = 1 xa(1):
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Now, for any 0 < j < k and any g+ j and v F k — j, we have

Ajpn = TdS g ((ﬁwm@f?@w) W

—

= [Ghi Gy x Grg] - 0l(1) (1) - 07 (1) - i, (1)
= (D) pa(1) - o, (1)
= (5) =17 ) ).

We therefore obtain, for the right-hand side,

8= XY @i, (HemBa T ow))

=0 Bkrj
= L]

= Z Z Cg,'y 'Aj,ﬁ,v

=0 BFJj
yEk—j

_ Z > g (5) om0 e 0w

|

S
kol

>
Q
—

—
S~—

k
(since pF = ((p — 1) + 1)* Z ( ) 1)7). This concludes the proof.
7=0

5. MAIN RESULT

We can now state and prove our main result (Theorem 5.1). Take any pos-
itive integer w. Recall that the coefficients we wish to find are the multiplic-
ities of the irreducible characters of H,, in the restriction to H, of any irre-
ducible character of G,,. Equivalently, we want to decompose into irreducibles
of G,, the induced character Indg’l‘; (&) of any ¢ € Irr(H, ). Hence we take any
a=(al,...,a" 1 o™ ... aP) I w, and consider £* € Irr(H,,). Recall that £
is given by

e =nate ([0 o),

el
or, letting Hy, = [[;c; Hat| and © = [[,.; 91“ | © Coi, by €% = Ind 1w ().

The diagram below explains our strategy.
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Ind$” (€a) G «—— H, ¢ =Indj” (©%)
éE Go = Hie] G|ai‘ — H, = Hie[ H\oﬂ'| e

Starting from ©% € Irr(H,), instead of going right around the above diagram
to compute Inde (Indgz (©%)), we will go left to compute (the same character)

IndG“’ (IndG ((90‘)). Now, since H\,i| < G|q:| for all 7 € I, we have

9o — mdSe (0°) _Ind%z H <H9iw' @(,ﬂ) HInd ol < glo| @CM).

i€l el

By Theorem 4.5, we therefore obtain

6 = [Imdy" (9"”@@)
i€l

P

o’ _ N
ot G|a’ ; at|—i
- H Z Z Cayy° IndGLng‘_j ((W ® pg) B (11 @ <p7)>

i€l j=0 B

Yot |—j
- : Ga’| e . |t~ .
= > > e mdgle, (o) BN ep,)
0<j; <|at| pirj; i€l '
GED  yik|at|—j;
(i€l)
- Y3 () e
0<71<“'¥1| /3”—71 el
(i€T) ~yiklat|—j;
(ien
where we have
Oapy = HlndGL‘?XGmi\—j.((w’z ®<p51)®(¢la‘ 7@ p))
iel ) ‘
_ oallies Gia'l i o\ (gl =
= Indl—[iz Gj; %G iy, (]1(¢£ ®§05z)® (1/)Z ®Q0Vi)> .
i€

Inducing to G,, we now have

Indgz(ga)zlndgz(éa): Z Z (Hcgjﬁqlndgg(@am),

0<j;<lat| Biri,; el
(i€I) Yik|at|—j;
(iel)
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where, if we write J = (ji, ..., Jr—1, Jra1s -5 Jp)s |J| = Doierdi and a — J =
(al _jlv RN a’r71 _j'r‘flv ar+1 _jT+17 AR af _jp)a we have

dG” (Oa,s,7) = Indfy”_ . G <HW1 ® pg) B (179 @ w)>

el
= G i ml
Indnlel Gh ><H1€I lat | —si; (H(wg ® ‘PBt) & H(wz J ® @»f))
el el
i, (I 0@ [T 6 )
el el
Gy XGae n? Tail—gs
= Indg", ., , (Indafxxaa_,f <H(wﬁ ® o) B [T ®w)>)
el el
=dg” q. (md M (H(W ®¢5i)> = ] [ @@71))
el icel

And, iterating [4, Proposition 4.1], we have

o (T L
Indg m (H(ﬂji ®S0ﬂ")) = Z 02,31',1‘61)' ) ‘®<P'y ),

i€l |

where C?ﬁi,iel) = (Xyr, Indn“;‘lQj (Ilier xsi))e,,, is the coefficient obtained by
iterating the Littlewood-Richardson Rule.
We therefore obtain

G 7 o~
Ind 7[3,7 Z C,gl iel) -In dGMxGa,J (( | |®<P7 &H W 1 & Pnyi ))

|| iel
; w R ]
Z C‘(Yﬁi’iel) ' IndGM \XH eI <(w . ® SOW') & H(w’i’y ® §071)> )
vl icl

whence

Guw(@ ~.)— " Ln?
IndG(, (@04757"/) = Z C?Bi7i€1) 'X(W "),
Y HIJ|

Finally, this yields

STCEID YD VD S 1) C R AR

0<j; <lat| Birj; lo% inel Ji \i€l
GED  yirjai|—j
(i€l)

which is the decomposition of Ind%ﬂ“) (£%) into irreducible characters of G,,. Note
that each irreducible X(Wl’“'ﬁp) appears (with multiplicity) several times, corre-
sponding to the choice of the §%’s (i € I). This can now be rewritten as

Theorem 5.1. For any integer w > 0 and o = (o, ..., a" 71, ™ ... aP) Ik w,
we have

Ind§ (£%) = > ko X7,

y=(r1, s yP)IFw
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where, for any v = (¥4, ..., ¥P) IF w,
= ¥ al .a"
kaﬂ - Hcﬂwl Cpi,icI)’
pirlai|—|yi| \i€l
(i€1)

In particular, ko = 0 unless |v'| < |a’| for alli € I.

Remark 5.2. We recover from Theorem 5.1 the fact that our basic set {x” €
Irr(Gy) |v" = 0} corresponds to Irr(H,,) (see Theorem 3.3 and Remark 3.4). In-
deed, for £% to appear in Resg“:; (x"), we must have |a‘| > |y¢| for all i € I. But, if

p
~" = 0, then we already have Z |vi| = Z lvi| = w = Z |a;|, so that we can only
iel i=1 i€l

have || = |y!| for all i € I. We then get ko, = l_lcg‘7 'C?(Z) ) = Hdai),\/i,
el i€l
so that ko = da, (With the notation of Theorem 3.3).
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