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Abstract. In this paper, we give the decomposition into irreducible char-
acters of the restriction to the wreath product Zp−1 o Sw of any irreducible
character of (Zp o Zp−1) oSw, where p is any odd prime, w ≥ 0 is an integer,
and Zp and Zp−1 denote the cyclic groups of order p and p − 1 respectively.
This answers the question of how to decompose the restrictions to p-regular
elements of irreducible characters of the symmetric group Sn in the Z-basis
corresponding to the p-basic set of Sn described by Brunat and Gramain in
[1]. The result is given in terms of the Littlewood-Richardson coefficients for
the symmetric group.

1. Introduction

Let G be a finite group and Irr(G) be the set of irreducible complex characters
of G. Let p be a prime (dividing |G|), and let C be the set of p-regular elements of
G. For each χ ∈ C Irr(G), we define a class function χC of G by letting

χC(g) =

{
χ(g) if g ∈ C,
0 otherwise.

One of the fundamental results of Brauer’s Theory is the existence of a surjective
homomorphism, called the decomposition homomorphism,

d :

{
Z Irr(G) −→ Z IBrp(G)

χ 7−→ χC
,

where IBrp(G) is the set of irreducible (p-modular) Brauer characters of G. The
matrix D of d in the bases Irr(G) and IBrp(G) is the (p-modular) decomposition
matrix of G. Up to reordering the rows and columns, the matrix D is diagonal by
blocks, which gives partitions of Irr(G) and IBrp(G) into p-blocks.

While finding the decomposition matrix of a group is a very difficult problem,
basic sets can sometimes help computing Brauer characters and/or the decomposi-
tion matrix D, or at least reduce the problem. We call p-basic set for G any subset
B ⊂ Irr(G) such that the family BC = {χC , χ ∈ B} is a Z-basis for the Z-module
generated by IrrC(G) = {χC , χ ∈ Irr(G)}. In particular, |B| is the number of p-
regular conjugacy classes of G. One can also define the notion of p-basic set for a
p-block of G, and one shows easily that, if each p-block b of G has a p-basic set Bb,
then the union of the Bb’s is a p-basic set for G.

If B is a p-basic set for G, and if we write χC =
∑
ψ∈B

nχψ ·ψC (χ ∈ Irr(G), nχψ ∈ Z)

and NB = (nχψ)χ∈Irr(G), ψ∈B, and DB for the (square) sub-matrix of D whose rows
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correspond to B, then we have D = NBDB, so that computing the matrix NB
reduces the problem of finding D to computing (the smaller matrix) DB.

In [1], the authors describe, for any integer n and odd prime p, a p-basic set B
for the symmetric group Sn. The object of the present paper is, in this case, to
describe completely the matrix NB. It should be noted that another p-basic set for
Sn was previously known (see [3, Section 6.3]), but that B has further properties
which allow it to restrict to a p-basic set for the alternating group An.

Throughout this paper, we let n ≥ 1 be any integer, and p be an odd prime. The
irreducible complex characters of the symmetric group Sn are canonically labelled
by partitions of n, and we write Irr(Sn) = {χλ |λ ` n}. For any λ ` n, we write
n = |λ|, the size of λ. The distribution of irreducible characters of Sn into p-
blocks is described by the Nakayama Conjecture (see [3, 6.1.21]). Each partition λ
of n is completely and uniquely determined by its p-core γp(λ) and its p-quotient
qp(λ). The p-core γp(λ) is the partition, of some integer s, obtained by removing
from λ all the hooks of length divisible by p, and the p-quotient qp(λ) is a p-
tuple (λ1, λ2, . . . , λp) of partitions whose sizes add up to the integer w (written
(λ1, λ2, . . . , λp)  w), called the p-weight of λ, and such that n = s + pw. Then
two characters χλ, χµ ∈ Irr(Sn) belong to the same p-block of Sn if and only if
γp(λ) = γp(µ). In particular, if that is the case, then λ and µ have the same p-
weight, and characters in the p-block of Sn corresponding to the p-core γ ` s are
labelled by the p-tuples of partitions (ν1, ν2, . . . , νp)  w, where w = (n − s)/p,
and the p-block is said to have p-weight w.

In [1], the authors show that {χλ ∈ Irr(Sn) | qp(λ) = (λ1, . . . , λp) with λr = ∅}
is a p-basic set for Sn, where r = p+1

2 . To prove this, they construct, for each
w ≥ 0, a generalized perfect isometry between the set of irreducible characters of a
p-block b of p-weight w and the set of irreducible characters of the wreath product
(ZpoZp−1) oSw, where Zp and Zp−1 denote the cyclic groups of order p and p− 1
respectively. The irreducible characters of (ZpoZp−1) oSw can be parametrized by
the p-tuples ν = (ν1, . . . , νp)  w of partitions of w (see Section 3), in such a way
that a character has the subgroup Zwp of (Zp o Zp−1) oSw = Zwp o (Zp−1 oSw) in
its kernel if and only if it is labelled by ν = (ν1, . . . , νp)  w such that νr = ∅. We
write Irr((Zp oZp−1) oSw) = {χν | ν  w}. We also let Bb = {χλ ∈ Irr(b) | qp(λ) =
(λ1, . . . , λp) with λr = ∅} be the p-basic set for b constructed in [1]. The results
of [1] show that there is an explicit bijection χλ 7−→ χλ̃ from Irr(b) to itself, which
restricts to the identity on Bb, as well as explicitly determined signs {ε(λ) , χλ ∈
Irr(b)} such that, if we write χCλ =

∑
χµ∈Bb

nλµ · χCµ (χλ ∈ Irr(b), nλµ ∈ Z), then the

coefficients nλµ (χλ ∈ Irr(b), χµ ∈ Bb) are given by

(1) nλµ = ε(λ)ε(µ)〈Res
(ZpoZp−1)oSw
Zp−1oSw (χqp(λ̃)),Res

(ZpoZp−1)oSw
Zp−1oSw (χqp(µ̃))〉Zp−1oSw .

Note that, by construction, for any χµ ∈ Bb, we have qp(µ̃) = (ν1, . . . , νp) with
νr = ∅. Thus χqp(µ̃) has Zwp in its kernel, and Res

(ZpoZp−1)oSw
Zp−1oSw (χqp(µ̃)) is actually

an irreducible character of Zp−1 oSw. Hence, in order to decompose any restriction
to p-regular elements of an irreducible character of Sn as a Z-linear combination
of the restrictions of characters in the basic set B, it is sufficient to compute the
decomposition into irreducible characters of Zp−1 oSw of any irreducible character
of (Zp oZp−1) oSw. This decomposition is given by our main result, Theorem 5.1.
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The paper is organised as follows. In Section 2, we recall classical results about
the conjugacy classes and irreducible complex characters of wreath products. These
results are then applied to the groups (Zp o Zp−1) oSw and Zp−1 oSw in Section
3, and the irreducible characters of these groups are parametrized in ways that are
compatible (see Theorem 3.3). In Section 4, we describe the characters of (Zp o
Zp−1) oSw induced by some specific characters of Zp−1 oSw. These particular cases
form the basis for the computations of Section 5, where we explicitly decompose
into irreducibles the induction to (Zp o Zp−1) oSw of any irreducible character of
Zp−1 oSw (see Theorem 5.1). This in turn provides a formula for any of the scalar
products appearing in Equation (1).

2. Conjugacy classes and irreducible characters of wreath products

Throughout this section, we let N be a finite group and w ≥ 1 be an integer,
and consider the wreath product N oSw. That is, N oSw is the semidirect product
Nw o Sw, where Sw acts by permutation on the w copies of N . For a complete
description of wreath products and their representations, we refer to [3, Chapter
4].

Let s be the number of conjugacy classes of N , and let g1, . . . , gs be representa-
tives for the conjugacy classes of N . Then the conjugacy classes of N oSw can be
parametrized by the s-tuples of partitions of w as follows. The elements of N oSw

are of the form (h; σ) = ((h1, . . . , hw); σ), with h1, . . . , hw ∈ N and σ ∈ Sw. For
any such element, write σ = σ1 ∗ · · · ∗ σc(σ), a product of disjoint cycles. Then, for
any 1 ≤ ν ≤ c(σ), we have σν = (jν , jνσν , . . . , jνσ

kν−1
ν ) (where σν is a kν-cycle),

and we define the ν-th cycle product of (h; σ) by

gν(h; σ) = hjν · hjνσ−1
ν
· hjνσ−2

ν
· · · · · h

jνσ
−(kν−1)
ν

.

In particular, gν(h; σ) ∈ N . We then form s partitions (π1, . . . , πs) as follows:
each 1 ≤ ν ≤ c(σ) gives a cycle of length kν in πi if the cycle product gν(h; σ) is
conjugate to gi in N . The resulting s-tuple of partitions of w describes the cycle
structure of (h; σ), and two elements of N o Sw are conjugate if and only if they
have the same cycle structure.

The irreducible complex characters of N o Sw can also be parametrized by the
s-tuples of partitions of w as follows. Let Irr(N) = {ω1, . . . , ωs}. Take any α =

(α1, . . . , αs)  w and consider the irreducible character
∏s
i=1 ω

|αi|
i of the base

group Nw. It can be extended in a natural way to its inertia subgroup N oS|α1| ×

· · · ×N oS|αs|, giving the irreducible character
∏s
i=1 ω̃

|αi|
i . For each 1 ≤ i ≤ s, the

irreducible character ω̃|α
i|

i of N oS|αi| is given as follows: if (f ; π) ∈ N oS|αi| has

cycle products gν(f ; π) (1 ≤ ν ≤ c(π)), then ω̃|α
i|

i (f ; π) =
∏c(π)
ν=1 ωi(gν(f ; π)) (see

[3, Lemma 4.3.9]). Any extension of
∏s
i=1 ω

|αi|
i to N oS|α1|×· · ·×N oS|αs| is of the

form Ωα =
∏s
i=1(ω̃

|αi|
i ⊗Υαi), where, for each 1 ≤ i ≤ s, Υαi ∈ C Irr(N oS|αi|) is

defined by Υαi(f ; π) = χαi(f ; π) for all (f ; π) ∈ N oS|αi| (and χαi ∈ Irr(S|αi|), see
[3, 4.3.15]). Then ℵα := IndN oSw∏s

i=1N oS|αi|
(Ωα) ∈ Irr(N o Sw). Different α  w give

different irreducible characters of N oSw, and any irreducible character of N oSw

can be obtained in this way (see [3, Theorem 4.3.34]).
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3. Parametrizations of Irr((Zp o Zp−1) oSw) and Irr(Zp−1 oSw)

From now on, and throughout the paper, we fix an odd prime p, and we let
r = p+1

2 . We write I for the set {1, 2, . . . , p} \ {r}. We let H = Zp−1 and
G = Zp o Zp−1, and, for any integer k ≥ 1, we let Hk = H oSk and Gk = G oSk.

We start by describing the irreducible characters of G and their restrictions to
H. The irreducible complex characters of G are described as follows. We have
Irr(G) = {ψ1, . . . , ψp}, with ψi(1) = 1 for i ∈ I, and ψr(1) = p−1. More precisely,
writing η1 = 1Zp for the trivial character of Zp, we have

IndGZp(1Zp) =
∑
i∈I

ψi and ResGZp(ψi) = 1Zp (i ∈ I),

and
ResGZp(ψr) = η2 + · · · + ηp and IndGZp(ηi) = ψr (2 ≤ i ≤ p),

where {η2, . . . , ηp} = Irr(Zp) \ {1Zp}.
Now write Irr(H) = {θi | i ∈ I} = {θ1 = 1H , θ2, . . . , θr−1, θr+1, . . . , θp}. For

any i ∈ I, ψi has Zp / G in its kernel. Thus, without loss of generality, we can
choose the labelling such that ψi = θi ◦$, where $ : G = ZpoZp−1 −→ Zp−1 = H
is the canonical surjection. In particular,

(2) ResGH(ψi) = θi for all i ∈ I.

To describe ResGH(ψr), we start by noticing that ψr(g) = 0 for all g ∈ G \ Zp.
Indeed, by the first orthogonality relation, we have∑

g∈Zp

ψr(g)ψr(g) =
∑

2≤i,j≤p

∑
g∈Zp

ηi(g)ηj(g) =
∑

2≤i≤p

∑
g∈Zp

ηi(g)ηi(g) = p(p− 1).

Since also
∑
g∈G

ψr(g)ψr(g) = |G| = p(p− 1), this yields

∑
g∈G\Zp

ψr(g)ψr(g) =
∑

g∈G\Zp

|ψr(g)|2 = 0,

so that ψr(g) = 0 for all g ∈ G \ Zp. Since ψr(1) = p− 1, this gives

(3) ResGH(ψr) = (p− 1)δ1,

where δ1 is the indicator function of (the conjugacy class in H of) 1. Now, by the
second orthogonality relation, we have, for any h ∈ H∑

i∈I
θi(h) =

∑
i∈I

θi(h)θi(1) = |CH(1)|δ1(h) = (p− 1)δ1(h).

Hence

(4) ResGH(ψr) =
∑
i∈I

θi.

If we now take any integer w ≥ 1, then the irreducible complex characters of Gw
and Hw are constructed as in Section 2.
The irreducible complex characters of Gw = GoSw are parametrized by the p-tuples
of partitions of w as follows. For any α = (α1, . . . , αp)  w, χα ∈ Irr(Gw) is given
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by

χα = IndGw∏
1≤i≤pG|αi|

(Ψα) = IndGw∏
1≤i≤pG|αi|

(
∏

1≤i≤p

ψ̃
|αi|
i ⊗ ϕαi),

where, for any 1 ≤ i ≤ p and (f ; π) ∈ G|αi| with cycle products gν(f ; π) (1 ≤ ν ≤

c(π)), we have ψ̃|α
i|

i (f ; π) =
∏c(π)
ν=1 ψi(gν(f ; π)) and ϕαi(f ; π) = χαi(π).

Note for future reference that, in the above notation, if αr = ∅, then Zwp ⊆ ker(χα).

Indeed, for all 1 ≤ i ≤ p, i 6= r, we have ResGZp(ψi) = 1Zp ; thus ResG
|αi|

Z|α
i|

p

(ψ
|αi|
i ) =

1
Z|α

i|
p

, so that ψ̃|α
i|

i (g) = ψ̃
|αi|
i (1) for all g ∈ Z|α

i|
p , and (ψ̃

|αi|
i ⊗ ϕαi)(g) = (ψ̃

|αi|
i ⊗

ϕαi)(1) for all g ∈ Z|α
i|

p . Since Zwp ≤ Gw /G oSw, we easily get that, for all g ∈ Zwp ,
χα(g) = χα(1). In particular, if αr = ∅, then χα = ξ ◦ $ for some ξ ∈ Irr(Hw),
where$ : Gw = (Zp)wo(Zp−1 oSw) −→ Zp−1 oSw = Hw is the canonical surjection.

The irreducible complex characters of Hw = H oSw are parametrized by the (p−1)-
tuples of partitions of w as follows. For any α = (α1, . . . , αr−1, αr+1, . . . , αp)  w,
ξα ∈ Irr(Hw) is given by

ξα = IndHw∏
i∈I H|αi|

(Θα) = IndHw∏
i∈I H|αi|

(
∏
i∈I

θ̃
|αi|
i ⊗ ζαi),

where, for any i ∈ I and (f ; π) ∈ H|αi| with cycle products gν(f ; π) (1 ≤ ν ≤ c(π)),

we have θ̃|α
i|

i (f ; π) =
∏c(π)
ν=1 θi(gν(f ; π)) and ζαi(f ; π) = χαi(π).

The following result will be useful when we next consider the restriction to Hw

of some irreducible characters of Gw.

Lemma 3.1. For any integer k ≥ 1, i ∈ I and λ ` k, we have

ResGkHk(ψ̃ki ) = θ̃ki and ResGkHk(ϕλ) = ζλ.

Proof. Take any (f ; π) ∈ Hk (i.e. (f ; π) = (1, (f ; π)) ∈ Zkp o Hk = Gk, where
f ∈ Hk and π ∈ Sk), and let gν(f ; π) (1 ≤ ν ≤ c(π)) be the cycle products of
(f ; π). Note that, for all 1 ≤ ν ≤ c(π), gν(f ; π) ∈ H (as a product of elements of
H). Since, by (2), ResGH(ψi) = θi, this yields

ψ̃ki (f ; π) =

c(π)∏
ν=1

ψi(gν(f ; π)) =

c(π)∏
ν=1

θi(gν(f ; π)) = θ̃ki (f ; π),

as claimed. The second part is immediate, as, for any (f ; π) ∈ Hk, we have
ϕλ(f ; π) = χλ(π) = ζλ(f ; π).

�

We will also need the following in Section 4.

Lemma 3.2. For any integer k ≥ 1 and any (f ; π) ∈ Hk with cycle products
gν(f ; π) (1 ≤ ν ≤ c(π)), we have

ψ̃kr (f ; π) =

{
(p− 1)c(π) if gν(f ; π) = 1 for all 1 ≤ ν ≤ c(π),

0 otherwise.
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Proof. Take any (f ; π) ∈ Hk as in the proof of Lemma 3.1 and again note that, for
all 1 ≤ ν ≤ c(π), gν(f ; π) ∈ H. We therefore have

ψ̃kr (f ; π) =

c(π)∏
ν=1

ψr(gν(f ; π)) =

c(π)∏
ν=1

ResGH(ψr)(gν(f ; π)).

The result immediately follows from (3). �

We can now show how our parametrizations for Irr(Gw) and Irr(Hw) are related.

Theorem 3.3. Take any (α1, . . . , αr−1, ∅, αr+1, . . . αp)  w.
If we let α = (α1, . . . , αr−1, αr+1, . . . αp) and α̂ = (α1, . . . , αr−1, ∅, αr+1, . . . αp),
then we have

ResGwHw
(
χα̂
)

= ξα.

Proof. Let α = (α1, . . . , αr−1, αr+1, . . . αp) and α̂ = (α1, . . . , αr−1, ∅, αr+1, . . . αp)
be as above. Then

χα̂ = IndGw∏
1≤i≤pG|αi|

(Ψα̂) = IndGw∏
i∈I G|αi|

(Ψα),

where Ψα =
∏
i∈I

ψ̃
|αi|
i ⊗ ϕαi .

Let σ1, . . . , σm be left coset representatives for the Young subgroup
∏
i∈I S|αi|

of Sw. In particular, (1; σ1), . . . , (1; σm) are also left coset representatives for∏
i∈I H|αi| in Hw, and for

∏
i∈I G|αi| in Gw (where, in the first instance, (1; σi) =

(1H ; σi) for 1 ≤ i ≤ m and, in the second, (1; σi) = (1G; σi) for 1 ≤ i ≤ m). Since
it will always be clear which group we are working in, we will denote all these coset
representatives as σ1, . . . , σm.

By the formula for character induction, for all g ∈ Hw, we have

χα̂(g) =

m∑
k=1

︷︸︸︷
Ψα (σkgσ

−1
k ),

where

︷︸︸︷
Ψα (σkgσ

−1
k ) =


0 if σkgσ

−1
k 6∈

∏
i∈I

G|αi|,

Ψα(σkgσ
−1
k ) if σkgσ

−1
k ∈

∏
i∈I

G|αi|.

Now, if g = (f ; ρ) ∈ Gw (with f ∈ Hw ≤ Gw), then, for all 1 ≤ k ≤ m, we have
(see [3, 4.2.6]),

σkgσ
−1
k = (1; σk)(f ; ρ)(1; σk)−1 = (fσk ; σkρσ

−1
k ),

where, if f = ((1, f1), (1, f2), . . . , (1, fw)) ∈ Gw (with (f1, . . . , fw) ∈ Hw), then
fσk = ((1, fσ−1

k (1)), (1, fσ−1
k (2)), . . . , (1, fσ−1

k (w))). In particular, fσk ∈ Hw, and
σkgσ

−1
k = (fσk ; σkρσ

−1
k ) ∈ Hw. Hence, for all 1 ≤ k ≤ m, we have σkgσ−1k ∈∏

i∈I
G|αi| if and only if σkgσ−1k ∈

∏
i∈I

H|αi|. If that is the case, then we can write

σkgσ
−1
k =

∏
i∈I(gi; ρi), where (gi; ρi) ∈ H|αi| for all i ∈ I, and, still in that case,
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we obtain

Ψα(σkgσ
−1
k ) =

∏
i∈I

[
ψ̃
|αi|
i ⊗ ϕαi

]
(gi; ρi)

=
∏
i∈I

ψ̃
|αi|
i (gi; ρi) · ϕαi(gi; ρi)

=
∏
i∈I

Res
G|αi|
H|αi|

(
ψ̃
|αi|
i

)
(gi; ρi) · Res

G|αi|
H|αi|

(ϕαi) (gi; ρi)

=
∏
i∈I

θ̃
|αi|
i (gi; ρi) · ζαi(gi; ρi) (by Lemma 3.1)

=
∏
i∈I

[
θ̃
|αi|
i ⊗ ζαi

]
(gi; ρi)

=

[∏
i∈I

θ̃
|αi|
i ⊗ ζαi

]
(σkgσ

−1
k )

= Θα(σkgσ
−1
k ).

We therefore have, for any 1 ≤ k ≤ m,

︷︸︸︷
Ψα (σkgσ

−1
k ) =


0 if σkgσ

−1
k 6∈

∏
i∈I

H|αi|,

Θα(σkgσ
−1
k ) if σkgσ

−1
k ∈

∏
i∈I

H|αi|.

Since σ1, . . . , σm are also left coset representatives for
∏
i∈I H|αi| in Hw, we get,

for all g ∈ Hw,

χα̂(g) =

m∑
k=1

︷︸︸︷
Ψα (σkgσ

−1
k ) =

m∑
k=1

︷︸︸︷
Θα (σkgσ

−1
k ) = IndHw∏

i∈I H|αi|
(Θα)(g) = ξα(g),

as claimed.
�

Remark 3.4. In view of the observation we made when parametrizing the irre-
ducible characters of Gw, the statement of Theorem 3.3 can be rephrased as: if
χ ∈ Irr(Gw) is labelled by (α1, . . . , αr−1, ∅, αr+1, . . . αp), then χ = ξ ◦ $, where
ξ ∈ Irr(Hw) is labelled by (α1, . . . , αr−1, αr+1, . . . αp) and $ : Gw −→ Hw is the
canonical surjection.

4. Induction of some special characters

In this section, we fix any integer k ≥ 1, and we will describe the induced
characters IndGkHk

(
θ̃ki ⊗ ζα

)
for i ∈ I and α ` k (see Theorem 4.5). We start by

some results on multiplicities.

Lemma 4.1. For any i ∈ I, the multiplicity of the irreducible character θ̃ki in
ResGkHk

(
ψ̃kr

)
is 1.
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Proof. Take any i ∈ I, and let Ai,r be the multiplicity of θ̃ki in ResGkHk

(
ψ̃kr

)
. Then

Ai,r =
1

|Hk|
∑

(f ;π)∈Hk

ψ̃kr (f ; π) · θ̃ki (f ; π)

=
1

|Hk|
∑
π∈Sk

∑
f∈Hk such that

gν (f;π)=1 for all 1≤ν≤c(π)

(p− 1)c(π) · θ̃ki (f ; π) (by Lemma 3.2).

And, whenever (f ; π) ∈ Hk is such that gν(f ; π) = 1 for all 1 ≤ ν ≤ c(π), we have

θ̃ki (f ; π) =

c(π)∏
ν=1

θi(gν(f ; π)) =

c(π)∏
ν=1

1 = 1.

Hence

Ai,r =
1

(p− 1)k · k!

∑
π∈Sk

∑
f∈Hk such that

gν (f;π)=1 for all 1≤ν≤c(π)

(p− 1)c(π)

=
1

(p− 1)k · k!

∑
π∈Sk

(p− 1)c(π) · |G(π)|,

where, for any π ∈ Sk, G(π) = {f ∈ Hk | gν(f ; π) = 1 for all 1 ≤ ν ≤ c(π)}.
Now, if we write π = π1 ∗ · · · ∗ πc(π), a product of disjoint cycles, we see that

f ∈ G(π) if and only if, after reordering the “coordinates” of f according to the cycles
of π, f is of the form (f1, . . . , fc(π)), where each fν is a |πν |-tuple of elements of
(the abelian group) H whose product is gν(f, π) = 1. So, for each 1 ≤ ν ≤ c(π), we
can choose the first |πν | − 1 coordinates of fν to be anything we want in H, and
the last coordinate is imposed by the condition gν(f, π) = 1. This means that, for
each 1 ≤ ν ≤ c(π), we have (p− 1)|πν |−1 choices for fν , so that

|G(π)| =
c(π)∏
ν=1

(p− 1)|πν |−1.

We therefore have

(p− 1)k · k! ·Ai,r =
∑
π∈Sk

(p− 1)c(π) ·
c(π)∏
ν=1

(p− 1)|πν |−1 =
∑
π∈Sk

c(π)∏
ν=1

(p− 1)|πν |

=
∑
π∈Sk

(p− 1)
∑c(π)
ν=1 |πν | =

∑
π∈Sk

(p− 1)k = (p− 1)k · k!

and Ai,r = 1, as claimed.

Note that our argument shows that, for any π ∈ Sk,

(5)
∑
f∈Hk

ψ̃kr (f ; π) · θ̃ki (f ; π) = (p− 1)k.

We will use this to prove the next result.
�

Lemma 4.1 can be extended as follows:
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Lemma 4.2. For any i ∈ I and any partitions α and β of k, the multiplicity of
the irreducible character θ̃ki ⊗ ζα in ResGkHk

(
ψ̃kr ⊗ ϕβ

)
is δα,β.

Proof. Take any i ∈ I and any partitions α and β of k, and let Bi,r,α,β be the
multiplicity of θ̃ki ⊗ ζα in ResGkHk

(
ψ̃kr ⊗ ϕβ

)
. Then

Bi,r,α,β =
1

|Hk|
∑

(f ;π)∈Hk

ψ̃kr (f ; π) · θ̃ki (f ; π) · ϕβ(f ; π) · ζα(f ; π)

=
1

|Hk|
∑
π∈Sk

χβ(π)χα(π) ·

 ∑
f∈Hk

ψ̃kr (f ; π) · θ̃ki (f ; π)


=

1

|Hk|
∑
π∈Sk

χβ(π)χα(π) · (p− 1)k (by (5))

=
(p− 1)k

|Hk|
· 1

|Sk|
∑
π∈Sk

χβ(π)χα(π)

= 〈χβ , χα〉Sk
= δα,β ,

as claimed.
�

To prove our next result on multiplicities, we will use the following, which is
an easy corollary of Mackey’s Theorem (see [2, Theorem (5.6)]) and Frobenius
Reciprocity.

Theorem 4.3 (Mackey). Let K, H ≤ G be finite groups, and x1, . . . , xm be repre-
sentatives for the (H,K)-double cosets in G (i.e. G = Hx1K∪̇ · · · ∪̇HxmK). Then,
for any class functions S and T of H and K respectively, we have

〈IndGH(S), IndGK(T )〉G =

m∑
i=1

〈ResH
xi

Hxi∩K(Sxi), ResKHxi∩K(T )〉Hxi∩K,

where the class function Sxi of Hxi = x−1i Hxi is defined by Sxi(u) = S(xiux
−1
i )

for all u ∈ Hxi (1 ≤ i ≤ m).

We can now prove the following

Theorem 4.4. For any i ∈ I, any 0 ≤ j ≤ k, and any α ` k, β ` j and γ ` k− j,
we have〈

IndGkHk

(
θ̃ki ⊗ ζα

)
, IndGkGj×Gk−j

((
ψ̃jr ⊗ ϕβ

)
�

(
ψ̃k−ji ⊗ ϕγ

))〉
Gk

= cαβ,γ ,

the Littlewood-Richardson coefficient for the symmetric group Sk (see [3, Theorem
2.8.13]).

Remark: in the above statement, and in the rest of the paper, we denote some
tensor products by � instead of ⊗ to emphasize the fact that they are outer tensor
products.

Proof. We start by noticing that, if j = 0 or j = k, then Gj ×Gk−j = Gk. For any
α, β, γ ` k, we let, in a natural way, cα∅,γ = δα,γ and cαβ,∅ = δα,β . Then, if j = 0,
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the claim becomes〈
IndGkHk

(
θ̃ki ⊗ ζα

)
, ψ̃ki ⊗ ϕγ

〉
Gk

= cα∅,γ = δα,γ ,

which is true for any α, γ ` k by Theorem 3.3 and Frobenius Reciprocity. If, on
the other hand, j = k, then the claim becomes〈

IndGkHk

(
θ̃ki ⊗ ζα

)
, ψ̃jr ⊗ ϕβ

〉
Gk

= cαβ,∅ = δα,β ,

which is true for any α, β ` k by Lemma 4.2 and Frobenius Reciprocity.
From now on, we therefore fix any 0 < j < k. Take any α ` k, β ` j and γ ` k− j,
and let

Ci,j,α,β,γ =

〈
IndGkHk

(
θ̃ki ⊗ ζα

)
, IndGkGj×Gk−j

((
ψ̃jr ⊗ ϕβ

)
�

(
ψ̃k−ji ⊗ ϕγ

))〉
Gk

.

We will apply Theorem 4.3 to the groups G = Gk, H = Hk and K = Gj × Gk−j .
Since Hk contains (a copy of) Sk, which itself contains representatives for the left
cosets of Gj ×Gk−j in Gk (which are the same as representatives for the left cosets
of Sj ×Sk−j in Sk), there is a single (Hk, Gj × Gk−j)-double coset in Gk. Thus
we have Gk = Hk · (Gj × Gk−j) and, with the notations of Theorem 4.3, m = 1
and x1 = 1. Also, H1

k ∩ (Gj ×Gk−j) = Hk ∩ (Gj ×Gk−j) = Hj ×Hk−j . Hence, by
Theorem 4.3, we have

Ci,j,α,β,γ = 〈ResHkHj×Hk−j (θ̃
k
i ⊗ ζα), Res

Gj×Gk−j
Hj×Hk−j ((ψ̃

j
r ⊗ϕβ)� (ψ̃k−ji ⊗ϕγ))〉Hj×Hk−j .

Now, for any (f ; π) ∈ Hj×Hk−j , we can write (f ; π) = (f (j); π(j))⊗(f (k−j); π(k−j))
in such a way that

θ̃ki (f ; π) =

c(π)∏
ν=1

θi(gν(f ; π))

=

c(π(j))∏
ν=1

θi(gν(f (j); π(j))) ·
c(π(k−j))∏
ν=1

θi(gν(f (k−j); π(k−j)))

= θ̃ji (f
(j); π(j)) · θ̃k−ji (f (k−j); π(k−j))

(we only have to be careful, when seeing π = π(j)∗π(k−j) as an element ofSj×Sk−j ,
that Sj and Sk−j do act on the indices we want).
This shows that

(6) ResHkHj×Hk−j (θ̃
k
i ) = θ̃ji � θ̃k−ji .

Now, by the Littlewood-Richardson Rule (see [3, Theorem 2.8.13]), we have

(7) ResSkSj×Sk−j (χα) =
∑
µ`j
ν`k−j

cαµ,ν · χµ � χν .

Since 〈ResHkHj×Hj−k(ζα), ζµ�ζν〉Hj×Hk−j = 〈ResSkSj×Sk−j (χα), χµ�χν〉Sj×Sk−j and
ζα(1) = χα(1), this easily gives

(8) ResHkHj×Hj−k(ζα) =
∑
µ`j
ν`k−j

cαµ,ν · ζµ � ζν .
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Using (6) and (8), we obtain

(9) ResHkHj×Hk−j (θ̃
k
i ⊗ ζα) =

∑
µ`j
ν`k−j

cαµ,ν · (θ̃
j
i ⊗ ζµ) � (θ̃k−ji ⊗ ζν).

We also have

(10) Res
Gj×Gk−j
Hj×Hk−j ((ψ̃

j
r⊗ϕβ)�(ψ̃k−ji ⊗ϕγ)) = Res

Gj
Hj

(ψ̃jr⊗ϕβ)�Res
Gk−j
Hk−j

(ψ̃k−ji ⊗ϕγ).

Together, (9) and (10) yield that Ci,j,α,β,γ is equal to

〈
∑
µ`j
ν`k−j

cαµ,ν · (θ̃
j
i ⊗ζµ)� (θ̃k−ji ⊗ζν), Res

Gj
Hj

(ψ̃jr⊗ϕβ)�Res
Gk−j
Hk−j

(ψ̃k−ji ⊗ϕγ)〉Hj×Hk−j ,

which in turn is the same as

(11)
∑
µ`j
ν`k−j

cαµ,ν · 〈θ̃
j
i ⊗ζµ,Res

Gj
Hj

(ψ̃jr⊗ϕβ)〉Hj · 〈θ̃
k−j
i ⊗ζν ,Res

Gk−j
Hk−j

(ψ̃k−ji ⊗ϕγ)〉Hk−j .

Now, by Lemma 4.2, we have, for all µ ` j,

(12) 〈θ̃ji ⊗ ζµ,Res
Gj
Hj

(ψ̃jr ⊗ ϕβ)〉Hj = δµ,β .

Also, by Lemma 3.1, we have

Res
Gk−j
Hk−j

(ψ̃k−ji ⊗ ϕγ) = Res
Gk−j
Hk−j

(ψ̃k−ji )⊗ Res
Gk−j
Hk−j

(ϕγ) = θ̃k−ji ⊗ ζγ .

Hence, for all ν ` k − j, we have

(13) 〈θ̃k−ji ⊗ ζν ,Res
Gk−j
Hk−j

(ψ̃k−ji ⊗ ϕγ)〉Hk−j = 〈θ̃k−ji ⊗ ζν , θ̃k−ji ⊗ ζγ〉Hk−j = δν,γ

(since both are irreducible characters of Hk−j , the same if and only if ν = γ).
Finally, using (11), (12) and (13), we obtain

Ci,j,α,β,γ =
∑
µ`j
ν`k−j

cαµ,ν · δµ,β · δν,γ = cαβ,γ ,

as claimed. �

We can now finally state and prove the main result of this section.

Theorem 4.5. For any i ∈ I, any integer k ≥ 1 and α ` k, we have

IndGkHk

(
θ̃ki ⊗ ζα

)
=

k∑
j=0

∑
β`j
γ`k−j

cαβ,γ · IndGkGj×Gk−j

(
(ψ̃jr ⊗ ϕβ) � (ψ̃k−ji ⊗ ϕγ)

)
.

Proof. Since the characters appearing on the right-hand side are pairwise distinct
irreducible characters of Gk, Theorem 4.4 shows that all we have to prove is that
the left-hand side and right-hand side characters have the same degree.
For the left-hand side, we easily see that

IndGkHk

(
θ̃ki ⊗ ζα

)
(1) = [Gk : Hk] · (θ̃ki ⊗ ζα)(1) = [Gk : Hk] · ζα(1) = pk · χα(1).
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Now, for any 0 ≤ j ≤ k and any β ` j and γ ` k − j, we have

∆j,β,γ := IndGkGj×Gk−j

(
(ψ̃jr ⊗ ϕβ) � (ψ̃k−ji ⊗ ϕγ)

)
(1)

= [Gk : Gj ×Gk−j ] · ψ̃jr(1) · ϕβ(1) · ψ̃k−ji (1) · ϕγ(1)

=
k!

j! · (k − j)!
· (ψr(1))j · ϕβ(1) · ϕγ(1)

=
(
k
j

)
· (p− 1)j · χβ(1) · χγ(1).

We therefore obtain, for the right-hand side,

∆k :=

k∑
j=0

∑
β`j
γ`k−j

cαβ,γ · IndGkGj×Gk−j

(
(ψ̃jr ⊗ ϕβ) � (ψ̃k−ji ⊗ ϕγ)

)
(1)

=

k∑
j=0

∑
β`j
γ`k−j

cαβ,γ ·∆j,β,γ

=

k∑
j=0

∑
β`j
γ`k−j

cαβ,γ ·
(
k

j

)
· (p− 1)j · χβ(1) · χγ(1)

=

k∑
j=0

(
k

j

)
· (p− 1)j ·

 ∑
β`j
γ`k−j

cαβ,γ · χβ(1) · χγ(1)


=

 k∑
j=0

(
k

j

)
· (p− 1)j

 · χα(1) (by (7))

= pk · χα(1)

(since pk = ((p− 1) + 1)k =

k∑
j=0

(
k

j

)
· (p− 1)j). This concludes the proof.

�

5. Main result

We can now state and prove our main result (Theorem 5.1). Take any pos-
itive integer w. Recall that the coefficients we wish to find are the multiplic-
ities of the irreducible characters of Hw in the restriction to Hw of any irre-
ducible character of Gw. Equivalently, we want to decompose into irreducibles
of Gw the induced character IndGwHw(ξ) of any ξ ∈ Irr(Hw). Hence we take any
α = (α1, . . . , αr−1, αr+1, . . . , αp)  w, and consider ξα ∈ Irr(Hw). Recall that ξα
is given by

ξα = IndHw∏
i∈I H|αi|

(
∏
i∈I

θ̃
|αi|
i ⊗ ζαi),

or, letting Hα =
∏
i∈I H|αi| and Θα =

∏
i∈I θ̃

|αi|
i ⊗ ζαi , by ξα = IndHwHα (Θα).

The diagram below explains our strategy.
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Gα =
∏
i∈I G|αi|

IndGwHw(ξα) ξα = IndHwHα (Θα)Gw

Hα =
∏
i∈I H|αi| Θα

Θ̂α

Hw

Starting from Θα ∈ Irr(Hα), instead of going right around the above diagram
to compute IndGwHw(IndHwHα (Θα)), we will go left to compute (the same character)
IndGwGα (IndGαHα(Θα)). Now, since H|αi| ≤ G|αi| for all i ∈ I, we have

Θ̂α := IndGαHα(Θα) = Ind
∏
i∈I G|αi|∏
i∈I H|αi|

(∏
i∈I

θ̃
|αi|
i ⊗ ζαi

)
=
∏
i∈I

Ind
G|αi|
H|αi|

(
θ̃
|αi|
i ⊗ ζαi

)
.

By Theorem 4.5, we therefore obtain

Θ̂α =
∏
i∈I

Ind
G|αi|
H|αi|

(
θ̃
|αi|
i ⊗ ζαi

)

=
∏
i∈I

|αi|∑
j=0

∑
β`j

γ`|αi|−j

cα
i

β,γ · Ind
G|α

i|
Gj×G|αi|−j

(
(ψ̃jr ⊗ ϕβ) � (ψ̃

|αi|−j
i ⊗ ϕγ)

)

=
∑

0≤ji≤|αi|
(i∈I)

∑
βi`ji

γi`|αi|−ji
(i∈I)

∏
i∈I

cα
i

βi,γi · Ind
G|α

i|
Gji×G|αi|−ji

((ψ̃jir ⊗ ϕβi) � (ψ̃
|αi|−ji
i ⊗ ϕγi))

=:
∑

0≤ji≤|αi|
(i∈I)

∑
βi`ji

γi`|αi|−ji
(i∈I)

(∏
i∈I

cα
i

βi,γi

)
· Θ̂α,β,γ ,

where we have

Θ̂α,β,γ =
∏
i∈I

Ind
G|α

i|
Gji×G|αi|−ji

((ψ̃jir ⊗ ϕβi) � (ψ̃
|αi|−ji
i ⊗ ϕγi))

= Ind
∏
i∈I G|α

i|∏
i∈I Gji×G|αi|−ji

(∏
i∈I

(ψ̃jir ⊗ ϕβi) � (ψ̃
|αi|−ji
i ⊗ ϕγi)

)
.

Inducing to Gw, we now have

IndGwHw(ξα) = IndGwGα (Θ̂α) =
∑

0≤ji≤|αi|
(i∈I)

∑
βi`ji

γi`|αi|−ji
(i∈I)

(∏
i∈I

cα
i

βi,γi

)
IndGwGα (Θ̂α,β,γ),



14 JEAN-BAPTISTE GRAMAIN AND ADRIANA MARCIUK

where, if we write J = (j1, . . . , jr−1, jr+1, . . . , jp), |J | =
∑
i∈I ji and α − J =

(α1 − j1, . . . , αr−1 − jr−1, αr+1 − jr+1, . . . , α
p − jp), we have

IndGwGα (Θ̂α,β,γ) = IndGw∏
i∈I Gji×G|αi|−ji

(∏
i∈I

(ψ̃jir ⊗ ϕβi) � (ψ̃
|αi|−ji
i ⊗ ϕγi)

)

= IndGw∏
i∈I Gji×

∏
i∈I G|αi|−ji

(∏
i∈I

(ψ̃jir ⊗ ϕβi) �
∏
i∈I

(ψ̃
|αi|−ji
i ⊗ ϕγi)

)

= IndGwGJ×Gα−J

(∏
i∈I

(ψ̃jir ⊗ ϕβi) �
∏
i∈I

(ψ̃
|αi|−ji
i ⊗ ϕγi)

)

= IndGwG|J|×Gα−J

(
Ind

G|J|×Gα−J
GJ×Gα−J

(∏
i∈I

(ψ̃jir ⊗ ϕβi) �
∏
i∈I

(ψ̃
|αi|−ji
i ⊗ ϕγi)

))

= IndGwG|J|×Gα−J

(
Ind

G|J|
GJ

(∏
i∈I

(ψ̃jir ⊗ ϕβi)

)
�
∏
i∈I

(ψ̃
|αi|−ji
i ⊗ ϕγi)

)
.

And, iterating [4, Proposition 4.1], we have

Ind
G|J|
GJ

(∏
i∈I

(ψ̃jir ⊗ ϕβi)

)
=
∑
γr`|J|

cγ
r

(βi, i∈I) · (ψ̃
|J|
r ⊗ ϕγr ),

where cγ
r

(βi, i∈I) = 〈χγr , Ind
S|J|∏
i∈I Sji

(
∏
i∈I χβi)〉S|J| is the coefficient obtained by

iterating the Littlewood-Richardson Rule.
We therefore obtain

IndGwGα (Θ̂α,β,γ) =
∑
γr`|J|

cγ
r

(βi, i∈I) · IndGwG|J|×Gα−J

(
(ψ̃
|J|
r ⊗ ϕγr ) �

∏
i∈I

(ψ̃
|αi|−ji
i ⊗ ϕγi)

)

=
∑
γr`|J|

cγ
r

(βi, i∈I) · IndGwG|γr|×
∏
i∈I G|γi|

(
(ψ̃
|γr|
r ⊗ ϕγr ) �

∏
i∈I

(ψ̃
|γi|
i ⊗ ϕγi)

)
,

whence
IndGwGα (Θ̂α,β,γ) =

∑
γr`|J|

cγ
r

(βi, i∈I) · χ
(γ1, ..., γp).

Finally, this yields

IndGwHw(ξα) =
∑

0≤ji≤|αi|
(i∈I)

∑
βi`ji

γi`|αi|−ji
(i∈I)

∑
γr`

∑
i∈I ji

(∏
i∈I

cα
i

βi,γi

)
· cγ

r

(βi, i∈I) · χ
(γ1, ..., γp),

which is the decomposition of IndGwHw(ξα) into irreducible characters of Gw. Note
that each irreducible χ(γ1, ..., γp) appears (with multiplicity) several times, corre-
sponding to the choice of the βi’s (i ∈ I). This can now be rewritten as

Theorem 5.1. For any integer w > 0 and α = (α1, . . . , αr−1, αr+1, . . . , αp)  w,
we have

IndGwHw(ξα) =
∑

γ=(γ1, ..., γp)w

kα,γ · χγ ,
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where, for any γ = (γ1, . . . , γp)  w,

kα,γ =
∑

βi`|αi|−|γi|
(i∈I)

(∏
i∈I

cα
i

βi,γi

)
· cγ

r

(βi, i∈I).

In particular, kα,γ = 0 unless |γi| ≤ |αi| for all i ∈ I.

Remark 5.2. We recover from Theorem 5.1 the fact that our basic set {χγ ∈
Irr(Gw) | γr = ∅} corresponds to Irr(Hw) (see Theorem 3.3 and Remark 3.4). In-
deed, for ξα to appear in ResGwHw(χγ), we must have |αi| ≥ |γi| for all i ∈ I. But, if

γr = ∅, then we already have
∑
i∈I
|γi| =

p∑
i=1

|γi| = w =
∑
i∈I
|αi|, so that we can only

have |αi| = |γi| for all i ∈ I. We then get kα,γ =

(∏
i∈I

cα
i

∅,γi

)
· c∅(∅, ..., ∅) =

∏
i∈I

δαi,γi ,

so that kα,γ = δα̂,γ (with the notation of Theorem 3.3).
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