
 1 

 The molecular aetiology of tRNA synthetase depletion: induction of a GCN4 

amino acid starvation response despite homeostatic maintenance of charged 

tRNA levels 

 

Matthew R. McFarland1,3, Corina D. Keller2, Brandon M. Childers1, Holly Corrigall1,  

Adélaïde Raguin2,4, M. Carmen Romano2, Ian Stansfield1,* 

 

 
1 Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of 

Aberdeen, Aberdeen, AB25 2ZD, UK 
2 Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 

3UE, UK 
3 Present Address: MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, 

University of Dundee, Dundee, DD1 5EH, UK 
4 Present address: Institut für Quantitative und Theoretische Biologie, Heinrich-Heine-Universität, 

40225 Düsseldorf, Germany 

 

* To whom correspondence should be addressed. Tel: +44 1224 437318;   Email: 

i.stansfield@abdn.ac.uk 

 

Keywords: translation, tRNA synthetase, Saccharomyces cerevisiae, GCN4, Totally Asymmetric 

Simple Exclusion Process 

Running head: tRNA synthetase depletion autoregulates translational demand   

  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/610790doi: bioRxiv preprint first posted online Apr. 16, 2019; 

http://dx.doi.org/10.1101/610790
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

ABSTRACT  

During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then 

re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological 

disorders, but their molecular aetiologies are incompletely characterised. To understand system 

responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated 

using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino 

acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. 

Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, 

confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative 

feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This 

maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using 

tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 

response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS 

population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces 

this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study 

sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of 

uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.  
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INTRODUCTION 

During gene expression, the translation of mRNA transcripts to produce a polypeptide chain 

involves the coordinated activities of an estimated repertoire of 200,000 ribosomes and 3 million 

tRNAs with associated translation factors, together representing a cellular production line that 

manufactures 70% of the dry weight of the cell in the form of protein (1). The delivery of amino acids 

to the ribosome by aminoacyl tRNAs, bound to GTP-charged elongation factor 1 (eEF1A in 

eukaryotes) is central to the translation process (2). Deposition of the aminoacyl tRNA in the 

ribosomal acceptor ‘A’ site by eEF1A is followed by the ribosome-mediated movement of the 

nascent polypeptide from the peptidyl ‘P’ site tRNA, to the newly-delivered amino-acyl tRNA in the 

‘A’ site, thus lengthening the polypeptide chain by one amino acid (reviewed in; (2)). Coincident with 

ribosomal translocation, a now uncharged tRNA is released from the ribosomal exit ‘E’ site. 

The released tRNAs must then be re-charged by one of a population of amino-acyl tRNA 

synthetases which covalently ligate amino acid to the correct tRNA in an ATP hydrolysis-linked 

reaction; most species have 20 different varieties of synthetase, one for each type of amino acid. (3). 

Following charging of the tRNA with amino acid, it can then again bind to (eEF1A) for delivery to the 

ribosomal A site. tRNAs thus cycle between charged and uncharged states, driven by the respective 

activities of tRNA synthetase and translating ribosome populations. Balancing of the demand of the 

translating ribosomes for aminoacyl tRNAs, with the capacity of the tRNA synthetase population to 

supply them, is vital to ensure translation can proceed without pausing. A mismatch between 

charged tRNA supply, and translational demand can cause accumulation of uncharged tRNA, with 

consequent activation of the Gcn2 kinase, triggering a GCN4 amino acid starvation response (4). 

Slow delivery of aminoacyl tRNAs to the ribosome triggers translational pausing, and a range of 

potentially detrimental outcomes. Failure to deliver a cognate tRNA to the A site can allow non-

cognate species to bind instead, with misincorporation of the amino acid (5). Extended translational 

pauses may trigger +1 ribosomal frameshifts, where the ribosome slips forwards by one nucleotide, 

before resuming triplet translation (6)(7). Specific ribosomal mechanisms exist to deal with pause 

events. In prokaryotes, tmRNA aided by the relE ribonuclease, triggers mRNA and nascent 

polypeptide degradation in response to pausing (8). In eukaryotes, no-go mRNA decay is triggered by 

the binding of the Dom34 and Hbs1 release factor paralogues to the paused ribosome, and release 

of the nascent peptide (9). Linked to the activity of Dom34 is a ribosome quality control pathway 

(RQC) that functions to resolve ribosomes stalled in hybrid states with occupied ‘A’ and ‘P’ sites (10). 

In yeast, proteins including Hel2 and Rqc2 are involved in detecting the stalled ribosome (11), while 

Rqc1 and Cdc48 participate in release of the nascent peptide from the large ribosomal subunit 
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(12)(13)(14), with the nascent peptide being ubiquitinated as a result of the action of Ltn1 (13)(10). 

In some cases, degradation targeting is augmented by the Rqc2-mediated, non-ribosomal addition of 

C-terminal alanine and threonine (CAT) tails (15).  

The adverse consequences of ribosomal pausing underscore the importance of the tRNA 

synthetase population in supplying aminoacyl tRNAs at the required rate.  In humans, a number of 

Mendelian diseases are associated with tRNA synthetase mutations. Of the 37 amino-acyl tRNA 

synthetase genes (17 cytosolic, 17 mitochondrially-targeted, 3 bi-located), mutations in at least 28, 

many of them recessive, cause pathologies ranging from Charcot-Marie-Tooth (CMT) disease, 

through hypomyelination and epileptic encephalopathy, to cardiomyopathy and lactic acidosis (16). 

Semi-dominant mutations in cytosolic tRNA synthetases (GARS, YARS, AARS, MARS and KARS) have 

also been shown to result in various forms of Charcot-Marie-Tooth neuronal disorders 

(17)(18)(19)(20). Mutations in the human glutamine tRNA synthetase, QARS, can cause brain 

developmental disorders such as microcephaly (21)(22). The mechanisms behind these various 

conditions are still unclear, though in vitro biochemical assays, together with yeast complementation 

assays of several mutant tRNA synthetases, have indicated loss of aminoacylation activity (19)(23). 

This would be expected to result in a reduction in the charging level of the synthetase’s cognate 

tRNAs, and consequently impact on the translation of all mRNAs containing their cognate codons. 

Intriguingly, some of the aforementioned diseases are thought to be the result of mutations in 

protein domains responsible for noncanonical functions of the tRNA synthetase (24). Again, such 

mechanisms are still under investigation, but tRNA synthetases have been implicated in processes 

such as vascular development and mTOR signaling (25)(26). Almost all the tRNA synthetase 

Mendelian diseases are thus poorly understood in terms of the consequences for the translation 

system. 

In this work we have established a model system to better understand the molecular 

consequences of loss of tRNA synthetase activity for translation. We analysed translation system and 

stress response pathways to define how the translation system reacts when the ribosomal delivery 

of tRNAs is impeded through use of a glutaminyl tRNA synthetase shut-off system, mimicking 

aspects of the human QARS gene loss of function mutations. A combination of experimental 

investigation and mathematical modelling was used to investigate the extent to which these 

mutations can have system-wide consequences for tRNA charging and stress responses. We show 

that the primary response of the cell to restriction of tRNA synthetase activity is a simultaneous 

slow-down of translation and growth rate, which homeostatically limits the accumulation of 

uncharged tRNA species, and prevents the formation of ribosome queues on the mRNA. Despite the 
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homeostatic response, there is nevertheless an induction of the GCN4 response, triggered by the 

activation of the Gcn2 kinase by uncharged tRNA. System modelling reveals that the reduced 

abundance of tRNA synthetase can interfere with the normal ability of the synthetase to sequester 

the uncharged tRNA pool. This failure to sequester allows uncharged tRNAs to interact with Gcn2 

and induce an amino acid starvation stress response via the GCN4 pathway. The study thus identifies 

a key sequestration role for the tRNA synthetase population in preventing unwanted triggering of 

amino acid starvation responses even while active translation continues to produce uncharged tRNA. 

The combined modelling and experimental analyses also defines the potential range of mechanisms 

underpinning different molecular phenotypes of human tRNA synthetase mutations. 

 

MATERIAL AND METHODS 

S.cerevisiae strains and growth conditions 

Yeast strains were grown at 30°C in YPD (2% glucose, 2% peptone, 1% yeast extract, all w/v) or 

synthetic defined (SD) media (2% glucose, 0.67% yeast nitrogen base (w/v), supplemented with 

required nucleotides and/or amino acids at 20 mg l-1 or 60 mg l-1 [leucine]). E.coli strains were grown 

at 37⁰C in Luria-Bertani (LB) media supplemented with 100μg/ml ampicillin to maintain plasmid 

selection. 

To construct strains containing a regulatable GLN4 gene, a KanMX4-tTA-PtetO cassette was 

amplified from pCM225 (27) using primer A1 (Table S5) with either primer A2 or A3, each including 

45 nt of flanking sequence homology to the 5’ (A1 ) or 3’ (A2 and A3 ) of the target integration site 

upstream of the GLN4 open reading frame; primer sequences are listed in Table S5. Primer A3 also 

encoded a C-terminal haemagluttinin (HA) sequence to tag to the GLN4 coding sequence. Following 

amplification, KanMX4-tTA-PtetO cassettes were separately transformed into yeast strain BY4742 

(MATa his3-1 leu2-0 lys2-0 ura3-0), and geneticin-resistant integrants selected (28).  

The ablation of the GCN2 gene was achieved using CRISPR-Cas9 (29). tetO-GLN4 yeast were 

transformed using standard methods (28) with 125 ng SwaI/BclII-linearised pML104 (29) and 70 ng 

plasmid repair DNA fragment (Life Technologies, table S5, sequence A8). The gapped plasmid was 

repaired using the A8 DNA fragment via in vivo homologous recombination. Alongside these DNA 

fragments, 250ng of double-stranded genome repair DNA fragment (Life Technologies, table S5, 

sequence A9) was co-transformed. Successful editing was confirmed in individual transformants 

using PCR sequencing with primers A10 and A11.  
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Plasmids 

The activation of the GCN4 response was assayed in yeast using plasmids p180, p226 and p227, 

which express b-galactosidase under the translational control of the yeast GCN4 gene 5’ leader (30); 

a kind gift of Prof A. Hinnebusch). b-galactosidase assays were carried out using standard methods 

(36).   Plasmids pSUP70-2m (HIS3, 2µ multi-copy) carrying SUP70, and p-tRNA UUG (HIS3, 2µ) 

carrying the tRNAGln
UUG gene, were used for tRNA over-expression in yeast (31).  Plasmids were 

transformed into S. cerevisiae using standard methods (28).  Plasmid pET19b-GLN4 was used to 

express the yeast GLN4 gene in E. coli. A PCR-amplified GLN4 gene (using primers A4 and A5; Table 

S5) was InFusion (Clonetech) cloned into NdeI/BamHI-linearised pET19b (Novagen).   

Western blot analysis 

Yeast protein extracts were prepared as described previously from three independent yeast 

cultures (32). For Western blots, following electrophoresis, proteins were transferred to Immobilon 

FL PVDF membrane (Merck-Millipore) using semi-dry transfer (25 V for 30 min.). HA-tagged Gln4 

protein was detected using an anti-HA antibody (HA.11 clone 16B12, Cambridge Biosciences) and 

SuperSignal West Femto substrate (Thermo Scientific) using standard Western blot protocols (33). 

The resulting light output was quantified using an Alpha Innotech Multi-Image II camera. 

Expression of purified Gln4p 

Recombinant Gln4 protein for use as a standard was produced by transforming E.coli strain 

Rosetta-gami B (DE3; Novagen) with pET19b-GLN4. Protein expression was induced in pET19b-GLN4 

transformants using 1 mM IPTG for 3 hours. Following harvest and lysis by sonication, TALON cobalt 

affinity resin (Clontech) was used to purify the His-tagged protein using manufacturer’s protocols, 

Samples were dialysed to remove excess salt and imidazole before mass spectrometry analysis using 

a Q-Exactive Mass Spectrometer (Thermo-Fisher) to confirm protein identity. 

Northern blot measurement of tRNA charging levels 

tRNAs were extracted from yeast cultures using standard methods (34) with some modifications 

(35). tRNA samples were resuspended in sodium acetate buffer (pH 4.6) and stored at -80°C.  

Northern blot analysis was carried out by separating 5 µg tRNA per lane on a 25 cm-long 8 M urea, 

0.1 M sodium acetate (pH 5) denaturing acrylamide gel (10%: 19:1 acrylamide: bisacrylamide). Gels 

were run at 80 mA for 36 hours at 4°C with 7-hourly buffer re-circulation and semi-dry blotted onto 

GE-Healthcare Nylon N+ membrane using 1 x tris borate-EDTA (TBE) buffer at constant current (1 
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mA/cm2) for 1 hour at 4°C. tRNAs were crosslinked using UV (120,000 µJ/cm2), before probing using 

3’ end biotin-labelled oligonucleotide probes; tRNAGln
UUG and tRNALys

CUU were detected using primers 

A6 and A7 respectively (Table S5). Probe labelling was carried out using the Pierce Biotin 3' End DNA 

Labelling Kit. Probing of the blot was performed using the North2South™ Chemiluminescent 

Hybridization and Detection Kit (Thermo-Fisher) according to the manufacturer’s instructions. Probe-

tRNA hybridisations were carried out overnight at 42 °C. 

RNA sequencing 

Three independent yeast colonies were grown in 50 ml YPD media. Total RNA was extracted from 

the cultures using a Nucleospin RNA kit (Macherey-Nagel) and RNA sequencing was carried out by 

the Centre for Genome Enabled Biology and Medicine at the University of Aberdeen using Illumina 

NextSeq 500. The RNA-sequencing data discussed in this publication have been deposited in NCBI's 

Gene Expression Omnibus (37) and are accessible through GEO Series accession number GSE126435 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126435).  Library preparation, base-

calling and quality control methods are described fully in the GEO database entry.  Following quality 

control, the reads were mapped to the sequenced S. cerevisiae genome using TopHat for Illumina 

(38). Differential expression between test and control samples was assessed using CuffDiff (39).  

[ For manuscript peer-review purposes, and as required by Nucleic Acids Research, a link to a 

UCSC genome browser session displaying the uploaded sequence tracks is provided here; 

http://genome.ucsc.edu/s/i.stansfield%40abdn.ac.uk/GLN4%2Dnew  ] 

 

SILAC mass spectrometry 

Stable isotopic labelling of amino acids in cell culture (SILAC) was carried out as previously 

described (40)(41). Triplicate yeast cultures were grown in ‘light’ (containing 20 mg/l 12C arginine and 

lysine) or ‘heavy’ (containing 20 mg/l L-arginine-13C-HCl (CLM-2265-H, Cambridge Isotope Labs) and 

20 mg/l L-lysine-13C-HCl [CLM-2247-H, Cambridge Isotope Labs]) SD media supplemented where 

required with doxycycline to deplete the Gln4 tRNA synthetase. Cultures were grown for at least 8 

doublings to ensure steady-state 13C labelling of proteins, and harvested at approximately OD600 0.5-

0.6. Equal numbers of cells from heavy and light cultures were mixed, harvested and resuspended in 

lysis buffer [25 mM Tris-HCl (pH 7.2), 50 mM KCl, 5 mM 2-mercaptoethanol, 1 x cOmplete mini 

protease inhibitor (Roche)]. Yeast were glass bead-lysed and the lysate clarified using low speed 

centrifugation (10 min at 12,000 x rcf). 
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For SILAC mass spectrometry, 25 µg total protein was separated on a 12% SDS-PAGE gel, and 12 gel 

slices of equal size subjected to in-gel tryptic digestion and LC-MS/MS performed using a Q-Exactive 

Mass Spectrometer (Thermo-Fisher). Subsequent analysis of the mass spectra was carried out using 

MaxQuant software. Only protein groups with two or more unique peptides recorded were 

analysed. Raw data from the SILAC analysis is available in a University of Aberdeen public repository 

(DOI: 10.20392/d3cd8a68-4dd6-4199-918a-13be2a691471). 

Polysome profiling 

Cells were grown to mid-log phase and incubated with 200 µg/ml cycloheximide for 15 minutes 

prior to harvesting. Polysome analysis was performed according to standard methods (42). Gradients 

were unloaded using a BR-184 density fractionator (Brandel) connected to a UV monitor (254 nm; 

UV-1, Pharmacia Biotech) and a chart recorder. The area under each peak was quantified using a 

mass-based integration method. 

A stochastic model of the yeast translation system incorporating tRNA charging dynamics and 

ribosome competition.  

A global mathematical model of translation of mRNAs by ribosomes was developed, referred to as 

Global Translation Model (GTM) from now on. The model is based on the Totally Asymmetric Simple 

Exclusion Process (TASEP) and it includes competition for ribosomes and tRNAs among the mRNAs, 

as well as competition among tRNAs for the aminoacyl-tRNA synthetases. The model also 

incorporates ribosome drop-off, where with a given probability the ribosomes detach from the 

mRNA before reaching a stop codon (43). mRNAs are represented by one-dimensional lattices, with 

each site of the lattice being a codon. Ribosomes are represented by particles with a footprint of 9 

codons (44) that enter the lattice (5’ end) at a specific initiation rate and hop from one codon to the 

next until they reach the stop codon, at which point they leave the lattice, thereby producing a 

protein (Fig. 6A).  

The model considers a virtual transcriptome comprising different types of mRNAs representative of 

the S.cerevisiae transcriptome. For each of the 93 gene ontology (GO-Slim) categories (gene 

assignments downloaded from the Saccharomyces Genome Database at 

https://downloads.yeastgenome.org/curation/literature/, 1.7.2017), for all mRNAs in each GO-Slim 

category, codon frequencies for each mRNA were summed, and multiplied by abundance of the parent 

mRNA to yield the GO-Slim category codon composition.  Note that codon frequencies of genes 

assigned to more than one category were weighted accordingly. An mRNA of average length of codons 

for its GO-Slim class was then generated.  Finally, the set of codons obtained in this way was 

randomised to produce 93 representative mRNA codon sequences. The abundance of each GO-Slim 
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category within the cell, (see Table S3), determined its mRNA copy number within the simulation 

environment.  

mRNAs compete for free (non-mRNA bound) ribosomes. Each different type of mRNA is associated 

with an initiation rate, which is dependent on the number of free ribosomes in the cytoplasm at any 

time point. In particular, we assume that the initiation rate is a stepwise linear function of the number 

of free ribosomes, similar to the approach used in (45).  A ribosome either joining or leaving the mRNA 

respectively decrements or increments the pool of free ribosomes by one; the total ribosome pool 

size is fixed. The initial conditions are chosen so that the averaged initiation rate yields ⟨𝛼⟩ = 0.15 𝑠⁄  

following the derivation in (46). Ribosomes exit the lattice at the stop codon, i.e., the last lattice site, 

with a constant termination rate identical for all mRNAs, that is considered to be not limiting (46). The 

initiation rate constant 𝛼+,-,, 𝑖 = 1,… ,93 for each of the GO-Slim category representative mRNAs was 

determined by taking the average over all initiation rate constants from (46) that are assigned to each 

single mRNA belonging to that category, weighted by the corresponding mRNA abundance (47). Other 

parameter values for the Global Translation Model are defined in the Supplementary Material. 

The translocation to the next codon is not allowed if it is covered by another ribosome. The hopping 

rate along the lattice is codon-dependent, and is proportional to the number of cognate charged 

tRNAs available at that time point (48).  The factor of proportionality is set to yield an average 

translation elongation rate (hopping rate) of 10 codons/s (49)(50)(51) and an average tRNA charging 

level ⟨𝑄⟩ = 3𝑇-5 𝑇-6⁄ 7-of 80%, as observed under physiological conditions (52)(35)(53)(54)(31).  Wobble 

base-pairing is considered, so that synonymous codons can have different hopping rates (55). Details 

of derivation and parameters are provided in Supplementary Materials.  

Every translation elongation event uses one charged tRNA 𝑇-5, so that the corresponding charged 

tRNA (aa-tRNA) number with 𝑖 = 1,… ,41 is decreased by one, and the number of uncharged tRNA 𝑇-9  

is increased by one. Note that the total number of tRNAs of each type is fixed.  

The change in the number of charged tRNA of each type 𝑇-5  is governed by the main balance 

equation between supply and usage :;<
=

:6
= 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 − 𝑢𝑠𝑎𝑔𝑒	𝑟𝑎𝑡𝑒. 

The usage rate is proportional to the ribosomal current 𝑘J𝜌JL1 − 𝜌JMNO along the mRNA, since each 

elongation event utilises a charged tRNA (see Supplementary Materials for complete expression). The 

recharging rate 𝜒- = 𝑉RST,- 𝑇-9 L𝐾R,- + ∑𝑇-9O⁄  follows Michaelis-Menten dynamics with competitive 

inhibition, as isoacceptor tRNAs compete for the same tRNA-synthetase.  Here 𝑉RST,-  represents the 

maximum charging rate and 𝐾R,-  the Michaelis constant of the corresponding tRNA-synthetase. 
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Uncharged tRNAs are then recharged with amino acids by the corresponding tRNA synthetase at the 

recharging rate 𝜒-  . 

To mimic the inhibitory effect of doxycycline on the expression of Gln4 (glutaminyl tRNA synthetase) 

in the doxycycline-responsive Gln4 yeast strain, a range of Gln4 concentrations is considered, from 

100% (corresponding to no doxycycline), to 3.5% of the wild type concentration (0.5 μg/ml 

doxycycline). This inflicts a change in the glutamine charging rate via 𝑉RST,XYZ = [𝐸]XYZ]𝑘5S6,XYZ, see 

Table S1 in Supplementary Materials.  In the following we use 𝑑 = [𝐸]XYZ] [𝐸XYZ]⁄ , where [𝐸]XYZ] is the 

altered and [𝐸XYZ] is the wild-type synthetase concentration, to express the Gln4 protein ratio used in 

the simulations. With this procedure we can also overexpress Gln4, thereby yielding a Gln4 protein 

ratio larger than 1 (see Fig. 6D-G), which corresponds to a concentration of Gln4 of up to 200% of wild-

type, achieved experimentally because the doxycycline-responsive promoter is stronger than the 

native GLN4 promoter (data not shown). 

 

RESULTS 

Gln4p expression becomes growth rate limiting below physiological levels 

Mutations in a wide range of aminoacyl tRNA synthetases cause human Mendelian disorders with 

neurological phenotypes. To better understand how mutations in tRNA synthetase genes cause 

tissue-specific human disease, we therefore sought to establish the range of molecular phenotypes 

triggered by loss of tRNA synthetase activity, using yeast as a model system. We chose to deplete 

the S.cerevisiae glutamine tRNA synthetase protein, encoded by the GLN4 gene. The native GLN4 

promoter was replaced with a tet-off regulatory cassette (27), allowing its transcription to be 

repressed through the addition of doxycycline. As expected for an essential gene, the tet-off GLN4 

strain shows dose-dependent sensitivity to doxycycline and reductions in growth rate when grown 

both on solid and in liquid media supplemented with the antibiotic (Fig. 1A-B).  

Previous research has shown that the S.cerevisiae translation system is robust to reductions in the 

abundance of tRNA synthetases, since for the majority of the 20 synthetases, heterozygous deletions 

in diploid strains exhibit little change in growth rate (56). However, here we show that in response to 

doxycycline, inhibition of GLN4 transcription significantly impacts cellular growth (Fig. 1). To 

establish the cellular requirement for glutamine tRNA synthetase, we quantified the relationship 

between cellular content of Gln4p, and growth rate.  Using purified HA-tagged (His)10-Gln4p 

expressed in E. coli, we carried out quantitative Western blot analysis on mid-log phase lysates of 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/610790doi: bioRxiv preprint first posted online Apr. 16, 2019; 

http://dx.doi.org/10.1101/610790
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

Ptet-off GLN4 strain yeast grown at different concentrations of doxycycline. The average cellular Gln4p 

content of each sample, normalised for protein loading, was calculated using a recombinant Gln4p 

standard curve (Fig. 1). The quantified Gln4p content of each sample was then plotted against the 

relative growth rate of that sample at the time of harvest (Fig. 1D).  

The resulting plot shows that the cellular growth rate remained relatively consistent until Gln4p 

abundance reduced below approximately 20,000 molecules per cell, after which growth rate 

decreased markedly, curve fitting indicating a biphasic response. Intriguingly, the threshold value 

below which the growth rate is reduced is close to estimates for the physiological Gln4p abundance 

of 17,000 molecules per cell (57)(58), suggesting that normally the level of glutamine tRNA 

synthetase is maintained at level just above that which is rate-limiting for growth. These data 

therefore show that inhibiting the expression of Gln4p limits cellular growth rate when the tRNA 

synthetase abundance falls below physiological levels of approximately 17-20,000 molecules per cell. 

 

Over-expression of tRNACUG rescues growth inhibition in Gln4p-depleted strains 

The results of the previous experiment showed that reducing the expression of Gln4p causes a 

significant reduction growth rate, presumably as the charging of tRNAs is impacted. Glutamine tRNA 

synthetase charges tRNAUUG and tRNACUG , decoding CAA and CAG codons respectively. The tRNAUUG 

gene is present in nine copies in the genome, while tRNACUG is encoded by a single gene copy gene. 

As both sets of tRNA compete for the Gln4p tRNA synthetase for charging, we hypothesised that as 

doxycycline restricted expression of Gln4, increasing the cellular abundance of either of the two 

glutamine tRNA species might impact upon growth and the dose-response to doxycycline inhibition.  

This was experimentally tested by transforming wild-type and tetO-GLN4 yeast with a multicopy 

vector carrying the gene for either tRNAGln
UUG or tRNAGln

CUG. Based on previous literature data, this 

vector was expected to be maintained at approximately 20 copies per cell, giving 21 or 29 copies of 

tRNAGln
CUG or tRNAGln

UUG respectively per cell, when combined with those in the genome (59)(60). A 

spot plate growth assay was conducted to determine whether disruption of the tRNAGln
UUG : 

tRNAGln
CUG gene copy ratio has an impact on cell growth in response to doxycycline treatment. Serial 

dilutions of wild-type and tetO-GLN4 yeast carrying multicopy tRNAGln
CUG or tRNAGln

UUG (or empty 

vector) were spotted onto YPD media containing a range of doxycycline concentrations, and the 

growth levels compared (Fig. 2).  
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The results showed that upon addition of doxycycline, tetO-GLN4 carrying the multi-copy 

tRNAGln
UUG exhibited a significantly compromised growth rate on plates in comparison to the empty 

vector and multi-copy tRNAGln
CUG transformed strains. The implication is that when overexpressed, 

tRNAGln
UUG monopolises the charging activity of the glutamine synthetase, thereby limiting charging 

of the other, already rare but essential tRNAGln
CUG.  

 

GCN4 translation levels are enhanced by Gln4p depletion 

Previous research on the effects of a small molecule inhibitor of the human prolyl tRNA 

synthetase PARS revealed that it caused induction of the mammalian GCN2-ATF4 pathway, a cellular 

response to amino acid starvation triggered by the accumulation of uncharged tRNA (61). It was 

therefore important to establish whether a similar GCN4 amino acid starvation response was 

triggered by depletion of the glutamine tRNA synthetase in response to doxycycline, due to an 

expected increase in uncharged glutamine tRNA in the cell. This should activate Gcn2 kinase activity, 

phosphorylate translation initiation factor eIF2, and thus de-repress translation of GCN4 (ATF4 in 

mammals) by bypassing inhibitory uORF sequences in its 5’UTR. We therefore hypothesised that the 

tetO-GLN4 strain would exhibit increased production of Gcn4p in response to doxycycline treatment. 

This hypothesis was tested through use of a reporter assay in which the 5’ UTR (containing the 

two critical regulatory uORFs 1 and 4) and first 55 codons of GCN4 are translationally fused to the 

lacZ gene, allowing β-galactosidase activity to report Gcn4p expression (Fig. 3). Wild-type yeast, and 

tetO-GLN4 yeast, were transformed with plasmid p180, carrying uORF1 and uORF4, which reports 

GCN4 activation, or p226, a negative control carrying the translation-attenuating uORF4 only. Each 

of these constructs was grown in a range of doxycycline concentrations and assayed for β-

galactosidase activity. The results were expressed relative to those obtained for a 100% expression 

control (p227), which lacks any uORFs (Fig. 3). 

In response to increasing concentrations of doxycycline, the level of β-galactosidase activity 

detected in the tetO-GLN4 yeast increased significantly from 7% in the absence of doxycycline, to 

30% of positive control (p227) levels at 0.25 µg ml-1, beyond which the GCN4 induction response 

reached a plateau. This indicated that following doxycycline treatment, GCN4 translation was 

induced, presumably in response to accumulation of uncharged glutamine tRNAs.  
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Depletion of Gln4p activates Gcn4p-mediated transcriptional starvation responses 

In order to confirm the gene regulatory phenotype triggered by tRNA synthetase depletion we 

carried out a transcriptomic analysis of the tetO-GLN4 yeast in the presence and absence of 

doxycycline. Following the discovery that a GCN4 reporter was induced by doxycycline treatment 

(Fig. 4) we expected to see a transcriptional response involving the amino acid biosynthetic genes.  

RNA sequencing was carried out on wild-type and tetO-GLN4 yeast grown in the presence or 

absence of doxycycline in order to investigate changes in gene expression in response to Gln4p 

depletion. For the wild-type strain, no significant differences in expression were detected for any 

gene, confirming doxycycline itself caused no transcriptomic changes in wild-type yeast in our hands 

(data not shown). In the case of the tetO-GLN4 strain dataset, approximately two-thirds of the genes 

tested showed significant differences in expression in response to doxycycline treatment (false 

discovery rate; q < 0.05); of these, approximately 1200 genes were either 2-fold up-, or down-

regulated.  

These transcriptional response to Gln4 shut-off was compared against a previously published 

dataset in which GCN4 was induced by amino acid starvation (62).  Following merging of the datasets 

and the removal of non-significant values (where p>0.05), and instances where the induction or 

repression ratio was less than 2-fold, expression data for 534 genes matched across the two datasets 

was available. Overall the GLN4 shut-off and GCN4 induction datasets were positively correlated 

(R2=0.38), and when the subset of 2-fold induced/repressed and significant genes were alone 

considered, this correlation index was further increased (R2=0.595; Fig. 4A) indicating a strong 

similarity in transcriptional response. 

These lists of genes were analysed for gene ontology (GO) term enrichment (63). Among 

upregulated genes in each dataset, approximately 50 statistically significant GO terms were enriched 

in the GCN4 and GLN4 data sets. Of these, 31 were common to both datasets, with the majority 

corresponding to amino acid biosynthetic processes. This corresponded to a Jaccard (J) overlap index 

of 0.42; Jaccard indices range from 1 (complete overlap) to 0 (no overlap of significant GO 

categories) where  𝐽 = a∩c
a∪c

  i.e. intersection over union for sets A and B. The 31 GO categories of 

over-expressed genes common to the GCN4 and GLN4 datasets also showed highly correlated p 

values for GO enrichment (R2 = 0.88; not shown). 

In a similar manner, the list of genes downregulated in both GLN4 and GCN4 experiments (Fig. 4C) 

yielded 41 over-represented and significant GO terms common to both datasets that centred on 
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translation and ribosome biogenesis. Together these results support the hypothesis that depletion of 

Gln4p triggers the induction of a GCN4-mediated amino acid starvation response, in agreement with 

the observed increased activation of GCN4 mRNA translation exhibited in response to doxycycline 

treatment (Fig. 3).  

To further corroborate these results, and to attempt to identify particular proteins whose 

expression is particularly affected by compromised glutamine tRNA charging, changes in the tetO-

GLN4 proteome in response to Gln4p depletion were examined via SILAC mass spectrometry, with  

the tetO-GLN4 strain grown in “light” (+ 1 µg/ml doxycycline) or “heavy” (0 µg/ml doxycycline) 

minimal media. Heavy/light ratios were recorded for approximately 785 proteins. As before, a 

threshold log2 (fold change) value of ± 1 was set to indicate potential biological relevance. 

Analysis of the heavy/light ratios of 15,000 peptides revealed 215 proteins showing increased 

expression while just 21 were detected with reduced expression. Gene ontology analysis of the 

proteins SILAC-enriched by doxycycline treatment showed clear enrichment for multiple amino acid 

biosynthetic pathways, both general (alpha amino acid biosynthesis) and specific (biosynthesis of 

Arg, Lys, Gln and Asp respectively). GO class enrichment in the SILAC GLN4 shut-off data showed a 

Jaccard overlap index of 0.29 with the GCN4 transcriptomic dataset over 28 gene ontology classes, 

mirroring the results of the GLN4 shut-off transcriptomics. Similar ontological classes were over-

represented in the SILAC protein analysis during GLN4 depletion as during 3-AT-treated 

transcriptomic analysis (Fig. 4D). The analysis clearly indicates that Gln tRNA synthetase depletion 

induces transcriptional and proteomic responses mapping closely onto the GCN4 induction 

response, with the induction of amino acid biosynthetic pathways. 

 

Glutamine tRNA synthetase shut-off does not trigger ribosome queues on polysomes 

The depletion of glutamine tRNA synthetase is assumed to cause defects in tRNAGln charging, 

leading to slow growth. The assumption was that uncharged tRNA was accumulating, causing Gcn2p 

kinase activation and a Gcn4p transcriptional response (Fig 3, 4). We therefore examined whether a 

shortage of glutamine tRNAs was causing a ribosomal queuing phenotype, leading to an altered 

polysome profile indicative of the accumulation of large polysomes. 

Accordingly, ribosomal extracts from cycloheximide-treated cells in mid-log phase were prepared. 

TetO-GLN4 yeast were grown in doxycycline overnight, establishing a steady state of reduced Gln4p. 

We also treated the tetO-GLN4 yeast strain with a short, defined doxycycline time-course. We 
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reasoned that if there were homeostatic cellular responses to Gln4p depletion that allowed cells in 

some way to adjust to the imposed restriction, treating cells for a short period with doxycycline may 

reveal ribosome queuing effects that would otherwise be masked by steady-state doxycycline 

exposures. 

Cells were therefore grown overnight to steady state in medium containing either 0, 1µg ml-1 or 

5µg ml-1 doxycycline. Cycloheximide was added to freeze the polysomes on the mRNA, and 

polysomes analysed using sucrose gradients (Figure 5). The results showed clearly that there was no 

accumulation of large polysomes in the doxycycline-treated cultures, and in fact the ratio of 

polysomes to monosomes decreased, indicative of a weak initiation block (Fig 5A, B). We therefore 

used a time-course protocol, where cells at early log phase (OD600 =0.1), were exposed to 

doxycycline for either 4 or 8 hours, and polysomes analysed. However, the results showed only a 

mild reduction in the ratio of polysomes to monosomes, again indicative of a weak initiation block 

(Fig. 5A).  

We reasoned that since the doxycycline-induced Gln4p depletion caused a GCN4 response, it was 

possible that Gcn2 kinase phosphorylation of the eIF2 initiation factor would cause the initiation 

block indicated by the polysome profiles. The GCN2 gene was therefore deleted using CRISPR-Cas9. 

To confirm the effect of the deletion, we showed it was no longer possible to induce a GCN4 

response by treatment with sulfometuron methyl, an inhibitor of amino acid biosynthesis (Fig. 5D).  

Repetition of the polysome analyses, using either the steady state or time-course protocols again 

revealed profiles typical of weak initiation blocks, rather than of ribosomal queuing with 

accumulation of large polysomes (Fig 5C). Overall the results indicate that in response to tRNA 

synthetase depletion, despite evidence for the accumulation of uncharged tRNA and GCN4 

induction, there was nevertheless no evidence for ribosome queuing, even when GCN2 was ablated.   

 

 

Simulation of the effects on synthetase depletion using a global model of translation; an 

autogenous feedback loop links synthetase activity to growth rate and maintains levels of charged 

tRNA 

A global mathematical model of translation (Global Translation Model) of mRNAs by ribosomes 

was developed, which defines a population of ribosomes, tRNAs and codon biased transcriptome as 

described (Materials and Methods). The model includes a description of the tRNA charging process 
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by a population of 20 types of tRNA synthetase. We thus deployed this to simulate the effects of 

Gln4 depletion in yeast. One of the main outputs of the Global Translation Model is the average 

protein production rate, (essentially, the ribosomal ‘current’ along the mRNA), which can be used as 

a proxy for the growth rate of the cell (64)(65). Our model correctly predicts a decrease in the global 

current/protein production rate as the number of Gln4p molecules is decreased in response to 

doxycycline (Fig. 6D, blue solid line), in accordance with the experimental results in (Fig. 1D). The 

model also reproduces the plateau obtained in the growth rate as the number of Gln4p molecules is 

overexpressed. Note that the relatively large error bars arise from the large variability of the protein 

production rate among different GO-Slim categories (see Fig. 6I). 

As the glutamine tRNA synthetase Gln4p is depleted from the cell, as expected the model predicts 

that charging levels of both tRNAUUG
Gln and tRNACUG

Gln markedly decrease (Fig. 6F, G, blue solid line). 

As a consequence, the translation (hopping) rates associated with the corresponding CAA and CAG 

codons reduce and ribosomal queues form behind those codons (Fig. 6H). The reduced flow of 

ribosomes along mRNAs causes a global decrease in the protein production rate. Note that as we 

overexpress Gln4 the charging levels of the glutamine tRNAs increase, since the charging rate 

increases with the synthetase concentration.  

Interestingly, the charging level of all other non-glutamine tRNAs increases to 100% as Gln4p is 

completely depleted from the system (Fig. 6E; blue solid lines). As ribosomes stall and queues 

develop, the demand for non-glutamine tRNA decreases dramatically, whereas their supply rate, 

defined by the corresponding values of Vmax, remains constant. As a consequence, their charging 

levels increase up to 100%. Hence, the model correctly predicts a reduction in the growth rate of the 

cell upon Gln4p depletion. However, although the model predicts ribosomal queues formation due 

to depletion of Gln-tRNAGln, polysome analysis revealed no evidence of queues (Fig. 5B). 

To resolve this conflict we considered the well-established fact that slower growth is characterised 

by fewer ribosomes per cell (66). We therefore hypothesised that the reduction in the protein 

production rate directly feeds back on the ribosomal production rate, so that the ribosomal pool 

shrinks accordingly. Reduced ribosomal numbers in turn drive slower translation initiation rates due 

to mass action principles. We therefore integrated a homeostatic negative feedback loop into the 

model: as the rate of glutamine tRNA charging slows due to Gln4 depletion, so the rate of ribosome 

synthesis slows, the ribosomal pool shrinks, in turn reducing the translation initiation rate.  

To implement this negative feedback loop into the model we assumed that the number of available 

ribosomes decreases linearly with the amount of Gln4p in the cell. In particular, we 
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assumed,𝑁fg-h(𝑑) = 𝑑𝑁g-h  where 𝑑 = [𝐸]XYZ] [𝐸XYZ]⁄  is the Gln4 protein ratio,𝑁fg-h denotes the 

number of ribosomes in the presence of doxycycline, and 𝑁g-hdenotes the number of ribosomes 

without doxycycline.  Since the initiation rates depend on the number of free ribosomes (see Materials 

and Methods), initiation is then decreased as a function of Gln4p. 

Crucially, with the incorporation of the negative feedback loop, simulations of ribosome density 

profiles no longer exhibit ribosomal queues (Fig.s 6H and S1), in agreement with the polysome profile 

experiments. Now we obtain a quite homogeneous density profile (Fig. 6H; red dashed line). Note that 

ribosomal density on the lattice decreases strongly compared to the situation without doxycycline, 

with a smaller ribosomal pool causing reduced rates of translation initiation.  

The average protein production rate still decreases as a function of the Gln4p abundance (Fig. 6D; 

red dashed line), in good agreement with the measurements (Fig. 1D). However, at first sight it seems 

non-intuitive that the global current is very similar with and without feedback (Fig. 6D, compare blue 

and red lines), since with feedback the number of ribosomes in the reservoir is strongly reduced. The 

explanation is in part that without feedback, flow is reduced because ribosomes queue, and with 

feedback, flow is reduced because there are fewer ribosomes on the mRNA. However, there are also 

mRNA-specific effects.  To understand this, we analysed how each GO-Slim category is affected (Fig. 

6I). Here, the black line represents the mean current for each GO-Slim category without doxycycline, 

where the categories have been sorted in descending order according to their current (rate of 

translation). The blue and the red line correspond to the mean current for each category in the 

presence of doxycycline, without (blue line) and with (red line) the feedback mechanism.  

Without the feedback, the proportion of each type of GO-Slim protein in the simulation is markedly 

affected. This can be seen by the curve not being strictly decreasing and having strong fluctuations. 

The different categories respond differently due to CAG codon content. For example, category 16 

(cytoplasmic translation), comprised of highly codon biased mRNAs, has only 0.03% of CAG codons 

equating to 0.04 CAG codons per mRNA on average. Consequently, its current is the least affected by 

doxycycline. In contrast, category 66 (regulation transport, with poor codon bias) has 0.9% of CAG 

codons, corresponding to 8.6 codons per mRNA on average and is the most affected by doxycycline 

(Supplementary Materials). With the negative feedback loop now incorporated, the curve (Fig. 6I; red 

line) is much smoother, maintaining the descending order in the current almost perfectly. Therefore 

the proportion of different types of proteins in the cell is maintained despite Gln4 depletion, and the 

inclusion of feedback restores the composition of the cell at the functional level.  
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Importantly however, the model incorporating feedback makes a clear, non-intuitive prediction: 

The charging levels of the glutamine tRNAs stay almost constant, decreasing only slightly as Gln4p is 

depleted (Fig. 6F, G). This is in contrast to the prediction made by the model without feedback. 

Intuitively, this is because with feedback, the initiation rate decreases as we deplete the system of 

Gln4p, since there are fewer ribosomes available to initiate translation. As a consequence, the current 

of ribosomes along mRNAs decreases, as does the demand for glutamine tRNAs. The charged level of 

glutamine tRNAs thus only decreases slightly with doxycycline treatment. Hence, the feedback 

mechanism homeostatically restores the balance between the rate at which glutamine tRNAs are 

charged and the rate at which they are used. 

This slight decrease in the charging level of glutamine tRNAs is enough to cause an increase in the 

charging level of non-glutamine tRNAs: As we have seen, the decrease in the Gln-synthetase levels 

causes a drop of global translation rate. As a consequence, the demand for non-Gln tRNAs also 

decreases. However, the fact that the Vmax of non-Gln synthetases are unaffected by doxycycline leads 

to an increase in the charged levels of non-Gln tRNAs.  Note that the feedback mechanism is only 

effective in the presence of doxycyline, i.e. as the number of Gln4p molecules is overexpressed (i.e, in 

the absence of doxycycline), the two models coincide, see (Fig. 6D-G). 

In summary, the simulation results including the negative feedback loop are consistent with the 

lack of ribosomal queuing observed in the polysome analysis (Fig. 5), as well as the impact that 

depletion of Gln4p has on the growth rate. The model also makes a clear, non-intuitive prediction, 

namely that the charging level of the glutamine tRNAs remains approximately constant across a range 

of doxycycline concentrations, since there are fewer ribosomes available to start translation, limiting 

the demand for charged glutaminyl tRNAs. All other tRNAs become over-charged due to an excess 

charging capacity. We therefore set out to validate this prediction experimentally, below. 

 

The proportion of glutamine tRNAs charged with glutamine is not affected by glutamine 

synthetase depletion 

The mathematical model makes the clear, non-intuitive prediction that the charging level of 

glutamine tRNAs stays almost constant as Gln4p is depleted from the system, whereas the charging 

level of non-glutamine tRNAs increases. To validate these predictions, tRNAs were extracted from 

tetO-GLN4 cells grown in a range of doxycycline concentrations. tRNAs were resolved on denaturing 

polyacrylamide gel, blotted and probed with biotin-labelled oligonucleotides specific for either 
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glutamine tRNAUUG or lysyl-tRNACUU, an example tRNA that the model predicts should become 

overcharged when the glutamine tRNA synthetase is depleted. 

The results (Fig. 7) clearly show that as the concentration of doxycycline increases, the proportion 

of glutamine tRNA remains essentially unchanged, as the model predicts (compare Fig. 6F, G). 

Moreover, the lysyl tRNA charging levels gradually increase with increasing doxycycline and 

decreasing growth rate (Fig. 7), also in accordance to the model simulations (Fig. 6E). 

The experimental result therefore validates the model prediction, and explains that as the activity 

of any individual tRNA synthetase decreases, the charging level of its target tRNA is paradoxically 

preserved, because the rate of translation initiation decreases as growth rate (and therefore 

ribosome content) also reduces. The translational demand for charged glutamine tRNAs is therefore 

matched with the capacity of the synthetase to supply them. Moreover, the experimental results 

confirm the fact that the charging level of the other non-glutamine tRNAs increase as a 

consequence, as predicted by the model. 

 

Model simulation of uncharged tRNA sequestration by the tRNA synthetase network 

The model prediction that the levels of uncharged glutamine tRNA change only slightly with 

increasing doxycycline is validated by the tRNA Northern blot experimental observation (Figs 6 and 

7). These results are however apparently at odds with the earlier observations that treating the teO-

GLN4 cells with doxycycline induces a GCN4 amino acid starvation response, indicative of the 

accumulation of uncharged tRNA. To address this paradox, we noted two facts; (i) that in a cell 

undergoing active translation, a proportion of the uncharged tRNA existing at any moment in time is 

bound to the tRNA synthetase undergoing catalytic conversion, and (ii) there are thought to be 

approximately 20,000 Gln4p molecules per cell (67)(57). It is significant that there are approximately 

100,000 tRNAGln  in the cell (66)(68), of which measurements indicate 20% (i.e. 20,000) are 

uncharged in an actively growing cell. This suggests a hypothesis that under normal physiological 

conditions, some proportion of the uncharged tRNA population may be effectively sequestered by 

the tRNA synthetase.   

We sought to test this hypothesis using a simple model (Fig. 8A), which assumes that uncharged 

tRNA population is divided between a ‘bound’ state (𝑏), where the tRNA is uncharged but bound to 

the corresponding synthetase enzyme and an ‘empty’ (uncharged and unbound) state (𝑒). The third 

state in figure 8A is the charged state (𝑐) where the tRNA is charged with its corresponding amino 
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acid.  The total number 𝑇-6 of tRNAs of type 𝑖 stays constant 𝑇-6 = 𝑇-5 + L𝑇-l + 𝑇-hO and the number 

of uncharged tRNA is then given by 𝑇-9 = 𝑇-l + 𝑇-h. 

 In the bound state, tRNA is not available to react with Gcn2 kinase, which detects uncharged 

tRNA and activates the GCN4 amino acid starvation response (69). Therefore, when the synthetase 

concentration drops in response to doxycycline, there are fewer synthetase molecules available to 

bind to the tRNA, so that  𝑇-l increases at the expense of 𝑇-h. Crucially, the increased amount of 

‘empty’ (e) tRNA is now available to react with Gcn2, and trigger the GCN4 response.  

We assume that the transition between the empty and the bound state occurs at rate 𝑏- = 𝑘N,-𝐸- ⋅

𝑇-l  , where 𝑘N,-  is the rate constant and the number of free synthetase molecules is given by 𝐸- =

𝐸]+,- − 𝑇-h, where 𝐸]+,-  is the total amount of synthetase molecules of this type and 𝑇-h is the number 

of synthetase-tRNA complexes. Here, doxycycline reduces only the Gln4 protein , and the Gln4 protein 

ratio is denoted by 𝑑 = 𝐸]+,XYZ/𝐸+,XYZ , where 𝐸]+,XYZ and 𝐸+,XYZdenote the total number of Gln4p in 

the presence and absence of doxycycline, respectively. Hence,  𝐸]+,- = 𝐸+,-  for all other amino acids.  

The reverse transition 𝑏+ = 𝑘+𝑇-hdescribes the dissociation of the synthetase-tRNA complex, with the 

rate constant 𝑘+. 

The transition between the bound and the charged state is governed by the charging rate 𝜒o- =

𝑘p,-𝑇-h, where the rate constants 𝑘p,-  are proportional to the catalytic rates 𝑘5S6,-  used in the Global 

Translation Model.  

During the transition between the charged and empty state, the amino acid is transferred to the 

nascent polypeptide. Therefore, the transition rate between the charged and empty state is given by 

ribosomal current (translation rate). This can also be understood as the tRNA usage rate, and 

analogous to the Global Translation Model, we assume that this transition rate is given by 𝑘]- = 𝑓 ⋅

𝑘r ⋅ 𝑇-5, with the rate constant 𝑘rand where 𝑓 is a coupling feedback factor by which the usage rate 

of all tRNAs decreases as a function of the Gln4 concentration. Based on the experimental data 

presented in Fig. 1D on how the growth rate depends on the glutamine synthetase ratio, we define a 

stepwise linear function with 𝑓 = 5𝑑  for 𝑑 < 0.2	 and 𝑓 = 1  otherwise, where 𝑑  denotes the 

glutamine synthetase ratio, as before. This reflects the fact that if the growth rate is not affected by 

doxycycline, then the charged tRNA usage rate should not be affected either. However, as the growth 

rate decreases, the ribosomal pool also decreases, thereby lowering the charged tRNA usage rate. The 

resulting synthetase sequestration model in figure 8A considers a charging cycle for each amino acid 

and a total number of tRNAs in multiples of the corresponding gene copy number. We use the Gillespie 

algorithm (70) to simulate the multiple-copy 3-state networks (see Supplementary Materials).    
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Interestingly, due to the coupling feedback factor, this relatively simple model reproduces the 

predicted charging level of non-glutamine tRNAs in the Global Translation Model: the charging level 

(lysine is shown) increases in the presence of doxycycline (Fig. 8B). The coupling feedback factor 

reflects the decreasing growth rate, and translation rate of the cell in the presence of doxycycline. 

However, doxycycline only reduces Gln4p charging rate, therefore charging of non-glutamine amino 

acids then becomes the dominating form of transition in the process.  

Importantly, the synthetase sequestration model predicts that in the absence of doxycycline, the 

greater proportion of uncharged tRNA is located in the bound state (𝑏) (Fig. 8B). Adding doxycycline 

then increases the number of empty tRNAs in state (𝑒) at the expense of tRNAs in the bound state 

(𝑏) . This result suggests that with the reduction in population of glutamine tRNA synthetases, 

although the total amount of uncharged tRNA remains more or less unchanged (as shown 

experimentally in Figure 7), doxycycline depletes Gln4p, causing a reduced capacity to sequester 

uncharged tRNA. The ratio of (b):(e) tRNAs is shifted in favour of a higher proportion of ‘empty’ (e) 

tRNA, which can activate the Gcn2 kinase. This accounts for an activation of GCN4 even while the 

proportion of uncharged tRNA is relatively stable. 

 

DISCUSSION 

tRNA synthetases play a central role in the translation process, maintaining a supply of 

aminoacylated tRNAs sufficient to supply translation elongation. Underscoring their importance, 

there is a growing list of human genetic diseases linked to human tRNA synthetase genes. These 

cause a range of neurological and neurodevelopmental defects (75; 76; 77; 78). To better 

understand the molecular aetiology of such disorders, we established a doxycycline-dependent 

glutamine tRNA synthetase shut-off system in which levels of tRNA synthetase could be controlled 

by doxycycline in a dose-dependent manner. 

Our initial characterisation of synthetase depletion effects using quantitative Western blotting 

confirmed reductions in growth rate when the Gln4p cellular content drops below approximately 

20,000 copies per cell, in close agreement to estimates for the physiological Gln4p abundance in 

yeast of 17,000 molecules per cell (57)(58). This indicates a tuned maintenance of tRNA synthetase 

levels in the cell sufficient to support the translational demands of the elongating ribosome 

population.   

Intuitively, during active growth, a restriction in the charging capacity of tRNA synthetase might 

be expected to generate increased levels of uncharged tRNA, which activate Gcn2 kinase. This would 
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act as a signal of amino acid starvation and, via phosphorylation of translation factor eIF2a, induce 

translation of GCN4 transcription factor (62). This chain of events forms part of the so-called 

Integrated Stress Response (ISR), a series of sensors and responses that focus on regulation of 

protein synthesis in response to a range of imposed stresses (75).  In fact our studies revealed just 

such an effect in response to doxycycline, with induction of a lacZ reporter gene under GCN4  

translational control (Fig. 3), and a cell-wide transcriptional response highly similar to a GCN4 

transcriptional response (66;  Fig. 4).  

Although increased levels of uncharged glutamine tRNAs should cause ribosomal queuing at CAA 

and CAG glutamine codons, in fact there was no evidence of shifts to larger polysomes in response 

to doxycycline (Fig. 5). We reasoned that the formation of queues may be limited by the GCN4 

response, which slows translation initiation via eIF2a phosphorylation, limiting the feed of 

ribosomes onto the transcriptome. However, ablating the GCN2 kinase gene during doxycycline 

restriction of Gln4 did not reveal any shift to larger polysomes (Fig. 5). In order to understand why 

this might be so, we applied mathematical modelling to simulate the restriction in supply of charged 

tRNA to translation. The global model of translation used is to the best of our knowledge the first 

model that tracks the charged status of all tRNAs as they cycle through translation, become 

deacylated, and are then recharged by tRNA synthetases. The model tracks a fixed population of 

ribosomes as they initiate, elongate and terminate on a population of mRNAs with codon 

compositions matching those of the GO-Slim gene ontologies. It thus provides a fine-grained view of 

how translation responds to changes in the cellular Gln4p levels.  

The model confirmed a series of experimental observations. First, simulating a reduction in the 

concentration of Gln4p produced slowed rates of translation (indicated in the model as a reduced 

current of ribosomes; Fig. 6D), matching experimental observation (Fig. 1). Slow growth, associated 

with fewer ribosomes per cell will drive slower rates of initiation, via mass action principles. This was 

implemented in the model by the introduction of feedback; reductions in Gln4 levels drive reduced 

rates of translation initiation. In fact, this effect would also have been exacerbated by the GCN4 

response (Fig. 3, 4), through Gcn2 kinase phosphorylation of eIF2a. Simulations including the 

feedback effect mirrored experimental observation, namely that doxycycline restriction of Gln4 

causes a global slow-down of translation initiation that prevents ribosomal queue formation (Fig. 

6H). Essentially, mRNA translation becomes initiation limited (76) because of the limitation in tRNA 

charging capacity. Crucially however, the model made two testable predictions; first, that non-

glutamine tRNA populations should become fully charged with amino acid during doxycycline 

treatment. Essentially, the entire translation system is regulated by the availability of Gln-tRNAGln, 
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and other tRNAs are utilised at slower rates, creating excess capacity in the population of 19, non-

Gln synthetase species. The second prediction was that paradoxically, there should be only minor 

reductions in the levels of charged glutamine tRNAs, seemingly at odds with our detection of a GCN4 

response in the presence of doxycycline. Nevertheless, Northern blot analysis of tRNA charging 

confirmed precisely both predictions (Fig. 7); the tRNALys population became increasingly charged in 

a doxycycline-responsive manner, while the levels of charged glutamine tRNA were essentially 

unaltered across a range of doxycycline concentrations, validating the model predictions. 

To address the intriguing, apparent contradiction of a GCN4 starvation response but with 

unaltered levels of tRNAGln charging, a minimal synthetase sequestration model simulated the effects 

of reducing cellular Gln4p synthetase, while levels of charged, and uncharged tRNA were monitored. 

Crucially, the latter species was further defined in terms of uncharged tRNA that is synthetase-bound 

(b) and that which is unbound, ‘empty’ (e) tRNA (Fig. 8). The model clearly showed that under 

normal physiological conditions of active translation, with 80% typical charging levels of tRNA, the 

20% uncharged tRNA population is held in the bound state by the synthetase population, masking it 

from the Gcn2 kinase. However, in the presence of doxycycline, levels of Gln4p drop, and the ability 

of the Gln4p population to sequester uncharged tRNA during the charging process is diminished. 

Levels of unbound ‘e’ tRNA rise, allowing Gcn2 activation. This explains the clear signature of the 

GCN4 response in response to doxycycline while tRNA charging levels are maintained (Fig. 3,4).  

Our study makes clear predictions concerning the molecular aetiology of the human tRNA 

synthetase gene mutations which cause a wide range of neurological, and neurodevelopmental 

defects (16). The model predicts potentially distinct effects on accumulation of unbound tRNA 

depending on whether a mutation alters the catalytic rate constant (kcat) of the tRNA synthetase, the 

affinity (KM) of the synthetase for tRNA or its expression level.  The latter mimics the doxycycline 

shut-off model implemented in our study, which triggers a GCN4 response. For example, valine 

synthetase (VARS) mutations that cause microcephaly and seizures can cause both loss of charging 

function, and exhibit much reduced expression (77). These would be predicted to trigger the ISR via 

Gcn2 activation due to a limited ability to sequester the cognate uncharged tRNA. Supporting the 

link between the ISR and neurological defects, mutations in translation initiation factor eIF2B, also 

cause a range of neurological defects including vanishing white matter (VWM) (78)(79). Some of 

these mutations compromise eIF2B’s guanine exchange factor (GEF) activity for eIF2, and are thus 

predicted to reduce the threshold for triggering the ISR/GCN4 response. Similar processes may 

operate in some types of tRNA synthetase mutation, where the synthetase sequestration model 

indicates unbound, uncharged tRNA is available to trigger a GCN4 response. Overall the combined 
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experimental and model simulation analysis presented thus defines the complex homeostatic, 

supply-demand relationships of an enzyme system crucial to translation, and identifies how the 

biochemical features of different tRNA synthetase mutations may confer distinct molecular and thus 

disease phenotypes in human. 
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FIGURE LEGENDS 

 

Figure 1:   Negative growth regulation by a doxycycline-controlled glutamine tRNA synthetase 

gene GLN4 

Panel A:  The growth of a wild-type strain on a range of doxycycline-containing agar was compared 

to that of a tet-off GLN4 integrant, and a tet-off GLN4 integrant C-terminally tagged with HA epitope. 

Panel B:   Using the engineered C-terminal epitope tag on Gln4p, Western blot band intensities were 

quantitatively compare to an HA-tagged Gln4p standard expressed in E.coli, using a standard curve 

(not shown). Panel C:   The growth rate constant for a tet-off GLN4 integrant C-terminally tagged 

with HA epitope was measured across a range of doxycycline concentrations. [D] Using quantitative 

Western blots, the cellular content of Gln4p was calculated allowing growth rate to be fitted 

biphasically to Gln4 content. The vertical dashed line indicates the cellular content of Gln4p 

estimated in a proteomic metastudy (57).  

 

Figure 2:  Over-expression of tRNAUUG contributes an additional fitness burden in Gln4p-depleted 

strains 

Panel A:   A wild-type strain BY4742 and a tetO-GLN4 integrant were transformed with either an 

empty control vector, or one of two multicopy vectors expressing either tRNAGln
UUG or tRNAGln

CUG and 

a 1:5 dilution series spotted onto agar medium containing a range of doxycycline concentrations (0, 

0.05, 0.5 or 5 µg ml-1), and growth monitored for 2-3 days. 

 

Figure 3: A Gln4p tRNA synthetase shut-off induces a reporter of GCN4 translation 

Panel A:   The effect of GLN4 tRNA synthetase shut-off, using doxycycline, on uncharged tRNA 

accumulation and thus GCN4 activation was explored using the GCN4-lacZ reporter plasmids. The 

effect of doxycycline on GCN4 induction was tested in a wild-type cell (BY4742, black bars, left-most 

in each block), and in a tetO-GLN4 strain at 0, 0.05, 0.25 and 0.5 µg ml-1, rightmost 4 bars in each 

block where dark grey is 0 and lightest grey is 0.5 µg ml-1. Error bars represent ± 1 standard 

deviation, n=3. Significance at the p < 0.05 level is indicated by an asterisk. Plasmid p180 measures a 

GCN4 response, whereas p226 is a negative control, and p227 the maximal 100% expression level 

from a construct lacking uORFs. 
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Figure 4: tRNA synthetase shut-off induces a GCN4 amino acid starvation phenotype 

 Panel A:   Transcript profile analysis of the GLN4-shut-off response; comparison of effects of Gln4p 

depletion and 3AT-induced starvation response on gene expression. Gene expression responses to 

depletion of Gln4p in the presence and absence of doxycycline was compared with that of a wild-

type yeast strain in response treatment with 100 mM 3AT, which induces an amino acid starvation 

response through inhibition of histidine biosynthesis. Log(2) transforms of mRNA induction ratios 

were plotted for all genes that were common to both datasets in being; (i) statistically significant, 

and (ii) either >2-fold induced or <2-fold repressed. A line-of-best fit regression analysis is presented. 

Panel B:  Gene ontology terms (i) over-represented among upregulated genes in response to 

glutamine tRNA synthetase depletion and (ii) which were also shared with GO classes enriched 

among genes upregulated in response to 3AT treatment (p <0.05). The corresponding p-values of 

each GO enrichment (GLN4 and 3-AT) were plotted for every shared GO class. Filled triangles; 

ontologies including; cellular amino acid biosynthesis, amino acid metabolism ontologies. Filled 

circles; specific amino acid biosynthetic ontologies (Asp, Met, Arg, sulfur-containing amino acids). A 

list of all plotted ontologies (including open squares) is presented in Table S6.   

Panel C:  Gene ontology terms (i) over-represented among downregulated genes in response to 

glutamine tRNA synthetase depletion and (ii) which were also shared with GO classes enriched 

among genes downregulated in response to 3AT treatment (p <0.05). The corresponding p-values of 

each GO enrichment (GLN4 and 3-AT) were plotted for every shared GO class. Triangle symbols; 

ontologies including; translation, peptide biosynthetic processes, structural constituent of ribosome, 

cytosolic small and large ribosomal subunit, peptide metabolic process, ribosome.  A full list of all 

plotted ontologies (including open squares) is presented in Table S7.    

Panel D:  Gene ontology terms (i) over-represented among upregulated proteins (SILAC analysis) in 

response to glutamine tRNA synthetase depletion and (ii) which were also shared with GO classes 

enriched among genes upregulated in response to 3AT treatment (p <0.05). The corresponding pair-

wise p-values of each GO enrichment (GLN4 and 3-AT) were plotted for all shared GO classes. Filled 

triangles; ontologies including; cellular amino acid biosynthesis, amino acid metabolism ontologies. 

Filled circles; specific amino acid biosynthetic ontologies (Asp, Met, Arg, sulfur-containing amino 

acids). A full list of all plotted ontologies (including open squares) is presented in Table S8.   
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Figure 5:  tRNA synthetase depletion does not cause the accumulation of larger polysomes  

Panel A:  Polysomal ribosomes inhibited with cycloheximide were extracted from a tetO-GLN4 yeast 

strain either grown overnight to steady state in either 0, 1 or 5 µg ml-1 doxycycline, or exposed to 5 

µg ml-1 for 0, 4h or 8h. Triplicate gradients were run for each condition, error bars represent ± 1 

standard deviation, n=3. Significance at the p<0.05 level is indicated by an asterisk. 

Panel B:   Typical polysome traces are shown for a tetO-GLN4 wild-type untreated with doxycycline, 

(left) or treated with 5 µg ml-1 doxycycline overnight (right), showing some loss of polysomes but no 

accumulation of large polysomes. 

Panel C:   Polysomal ribosomes inhibited with cycloheximide were extracted from a tetO-GLN4 

Dgcn2 yeast strain either grown overnight to steady state in either 0, 1 or 5 µg ml-1 doxycycline, or 

exposed to 5 µg ml-1 for 0, 4h or 8h. Triplicate gradients were run for each condition, error bars 

represent ± 1 standard deviation, n=3. Significance at the p < 0.05 level is indicated by an asterisk. 

Panel D:   The non-GCN4 inducing phenotype of the Dgcn2 was tested using the lacZ reporter 

plasmids p180, p226 and p227, in the absence (grey bars) or presence (black bars) of the isoleucine 

synthesis inhibitor sulfometurol methyl (SM). The response of tetO-GLN4 to SM reveals a GCN4 

induction response of approximately 20% of the non-SM treated (p180 bars). This response is lacking 

in the tetO-GLN4 gcn2 deleted strain (p180 bars). 

 

 

Figure 6:  Simulation of a comprehensive translation system comprising tRNAs, ribosomes and 

codon-biased mRNAs to analyse tRNA synthetase depletion 

 

Panel A; Global translation model of mRNAs by ribosomes including competition for tRNAs, tRNA 

synthetase and ribosomes. The ribosome from the reservoir enters the mRNA-lattice 𝑚  via the 

initiation rate 𝛼R at the first lattice site, codon 𝑖 = 0, and terminates with the constant rate 𝛽 at the 

last lattice site, codon 𝑁(𝑚). On the lattice, the ribosome translates the codon 𝑖 with the hopping rate 

𝑘(𝑖) and may unbind from the lattice with the drop off rate 𝛾. If the next codon is occupied, translation 

is not allowed. Note, that the ribosome has a footprint 𝑊 = 9, i.e., the next codon is codon 𝑖 +𝑊 

(not shown here). Translating a lattice site uses a charged tRNA which then will be recharged via the 

charging rate 𝜒SS according to the corresponding amino acid (aa).  
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Panels B, C;  Link between doxycycline and tRNA charging with and without feedback: Conceptual idea 

of the feedback loop, model without (F) and with (G) doxycycline:  

Due to the feedback loop, the number of ribosomes within the reservoir (cytoplasm) is proportional 

to the rate of protein production. In the presence of doxycycline, the number of glutamine synthetases 

(denoted by S) decreases. As a consequence, the ribosomal speed along the mRNA decreases and less 

proteins are produced per unit time, and so, less ribosomes. This in turn decreases the initiation rate. 

Hence, the ribosomal current also decreases, thereby decreasing the demand for glutamine 

synthetases. This is why in the presence of doxycycline the charging level of glutamine in (F) and (G) 

is almost the same as in the case without doxycycline. Note, that since the ribosome may drop off the 

lattice, there are also shorter protein pieces.  

 

Panels D-G, Doxycycline regulation of global protein synthesis and thus growth rate: The global current 

𝐽(D), the average non-glutamine tRNA charging level ⟨𝑄⟩(E) and the mean charging level 𝑄 of the two 

glutamine tRNAs  (F) UUG and  (G) CUG with (red, dashed lines, crosses) and without (blue, solid lines, 

circles) feedback loop as functions of the Gln4 protein ratio 𝑑. Note, that 𝑑 = 1 corresponds to zero 

doxycycline (black circles and crosses) and, e.g., 𝑑 = 0.035   to a doxycycline concentration of 

0.5μg/ml. 

 

Panel H;   Ribosomal density profiles along an mRNA from GO Slim category 16 ( cytoplasmic 

translation), which has six glutamine codons, position is highlighted by the grey, dashed lines. The 

situation without doxycycline is represented by the black line.  Note that it is the same for both 

models, with and without feedback, since the feedback is only effective in the presence of 

doxycycline. The blue line corresponds the situation with doxycycline, a Gln4 protein ratio of 5%, but 

without feedback. Here, ribosomal queuing behind the glutamine codons and a highly 

inhomogeneous profile is visible. In contrast, when the autogeneous feedback mechanism is turned 

on (red, dashed line) ribosomes are equally distributed in low density all over the mRNA, no 

queueing visible. For more details of the latter, see Supplementary materials. 

Panel I;  The mean current 𝐽Sin each GO-Slim category 𝑎sorted descending (from category 16 to 

category 66) for the situation without doxycycline (black line). In the presence of doxycycline, the 

blue line corresponds to the situation without feedback mechanism and the red, dashed line 

represents the current with feedback loop. Note that the non-doxycycline current is plotted on the 

secondary axis due to an order of magnitude difference compared to the situation with doxycycline. 

Note, that the categories 5, 42 and 87 (see Table S3) are not represented within our downscaled 

system. The category key can be found in Table S2. 
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Figure 7:   The proportion of glutamine tRNAs charged with glutamine is not affected by glutamine 

synthetase depletion 

Panel A:   Northern blots of tRNAGln
UUG (left) and tRNALys

CUU (right) isolated from a tetO-GLN4 strain 

grown in a range of doxycycline concentrations indicated. Each blot is flanked by a lane either side of 

tRNA deliberately deacylated by alkaline pH shift to provide a marker of deacylated tRNA (closed 

arrow, labelled ‘deacl’). The slower migration position of acylated tRNA is clearly distinguished (open 

arrowhead). Lane labels refer to µg ml-1 doxycycline added to the culture medium. Results shown 

are typical of other biologically independent experimental replicates.  There is a linear relationship 

between signal and image intensity. The image shown is of a single blot and is not composite. 

Panel B: Quantification of the Northern blot showing percentage tRNA charging for each tRNA (UUG-

Gln; closed circles) and CUU-Lys (closed squares). One experiment is shown typical of identical 

results obtained in biologically independent repeats. 

 

 

 

Figure 8: Analysis of the levels of free tRNA in a synthetase-depleted strain using model 

simulation. 

Panel A; Synthetase sequestration model for tRNAs: When we measure uncharged tRNA, some of it 

is synthetase-associated, captured mid-reaction, but still uncharged. Hence, two intermediate states 

are introduced: the “bound” state (𝑏), and the “empty” state (𝑒); the tRNA with amino acid is in the 

“charged” state (𝑐). The transition from the empty state to the bound state, during which the 

synthetase associates with the tRNA at the binding rate 𝑏-, depends on the synthetase concentration 

[𝐸-], and the number of “empty” tRNAs 𝑇-l of amino acid of type 𝑖. The reverse transition 

𝑏+describes the dissociation of the synthetase-tRNA complex and therefore depends on the number 

𝑇-hof “bound” tRNAs.   The transition from “bound”(b) to “charged” (c) state occurs at rate 𝜒o-, and it 

is affiliated with the catalytic rate 𝑘5S6,-  and  it also depends on the number 𝑇-hof “bound” tRNAs.The 

transition between the “charged” (c) and the “empty” (e) state is governed by the doxycycline 

sensitive hopping rate 𝑘]-, incorporating the feedback, and it depends on the number 𝑇-5of “charged” 

tRNAs . 
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Panel B;  Resulting plot of the steady state charging levels of the glutamine tRNAs as a function of the 

Gln4 protein ratio; using the Gillespie algorithm, the 3-state-network of all 20 amino acids was 

simulated for different doxycycline factors.  Yellow line: mean level ⟨𝑐⟩ of charged glutamine tRNAs; 

Red line: mean level ⟨𝑏⟩of bound glutamine tRNAs; Blue line: mean level ⟨𝑒⟩ of empty glutamine tRNAs; 

Black line: mean level ⟨𝑢⟩ = ⟨𝑒⟩ + ⟨𝑏⟩ of uncharged glutamine tRNAs; Green dashed line: mean level 

of charged lysine tRNAs. The grey dashed line indicates the feedback threshold 𝑑 = 0.2: for Gln4 

protein ratios smaller than 0.2 the usage rate decreases analogously to the growth rate. 

Both the charged and uncharged levels of the glutamine tRNAs change only slightly, but the 

composition of the uncharged glutamine tRNAs changes strongly: without doxycycline, 𝑑 = 1, the 

simulation reveals that almost all uncharged tRNAs are in the bound state. In the presence of 

doxycycline, due to the reduced Gln4 synthetase concentration, the bound level lessens in favour of 

the empty level. Moreover, the mean level of charged lysine tRNAs increases to 100% as the Gln4 

protein ratio decreases. The lysine tRNAs are representative for all non-glutamine tRNAs. 
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Figure 1:   Negative growth regulation by a doxycycline-controlled glutamine tRNA synthetase 

gene GLN4 
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Fig. 2:  Over-expression of tRNAUUG contributes an additional fitness burden in Gln4p-depleted 

strains 
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Figure 3: A GLN4 tRNA synthetase shut-off induces a reporter of GCN4 translation  
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Figure 4: tRNA synthetase shut-off induces a GCN4 amino acid starvation phenotype 
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Figure 5:  tRNA synthetase depletion does not cause the accumulation of larger polysomes  
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Figure 6:  Simulation of a comprehensive translation system comprising tRNAs, ribosomes and 

codon-biased mRNAs to analyse tRNA synthetase depletion  
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Figure 7:   The proportion of glutamine tRNAs charged with glutamine is not affected by glutamine 

synthetase depletion 
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Figure 8: Analysis of the levels of free tRNA in a synthetase-depleted strain using model 

simulation. 
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