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Abstract—The Repetitive Control (RC), capable of tracking
periodic trajectories and rejecting periodic disturbances, is a
promising technique to control the nanopositioning stages for
high-speed raster scanning. In digital implementation of the
RC scheme, the number of delay points has to be an integer,
which implies that the sampling frequency should be an integer
multiple of the desired tracking frequency. Clearly, this is a severe
limitation on the range of the trajectory frequencies where the RC
scheme can effectively be applied. To overcome this limitation,
this paper proposes a low-pass FIR variable fractional delay
filter as an alternative to the conventional interpolating method
employed in conventional fractional RC scheme. This filter
combines the interpolating and the low-pass filtering that are
employed in the fractional RC and its coefficients are analytically
computed as a function of fractional delay, thereby making
it suitable for trajectories of all frequencies. The weighted-
least-square method is employed to design the low-pass FIR
variable fractional delay filter, where the weights are tuned
to minimize the approximation errors within the bandwidth-of-
interested. Experimental results are presented to demonstrate the
advantages of the proposed method over the conventional RC
scheme as well as the interpolating based fractional RC scheme.
These results show that the proposed RC scheme with low-
pass FIR variable fractional delay filter improves the tracking
performance of the nanopositioner significantly, especially for the
trajectories with high-frequency.

Index Terms—Nanopositioning stages, high-speed raster scan-
ning, repetitive control, fractional delay filter, nonsynchronized
sampling

I. INTRODUCTION

Manipulating matter at the nanometer scales was made
possible by the invention of the Atomic Force Microscope [1].
Since then, nanotechnology has gained significant momentum
and has impacted a wide range of scientific and technological
branches [2], [3]. Due to several attractive features such as
robustness, repeatability, absence of friction and stiction, ease
of integration and simple drive mechanism, piezoelectrically-
actuated nanopositioning stages are employed in Atomic Force
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Microscopes in order to move the sample to be scanned [4],
[5]. The most common used scanning trajectory is a raster
pattern - a combination of triangular motion along the fast
axis and a ramp / staircase motion along the slow axis. Due
to the lightly damped resonance of the mechanical platform
and the hysteresis possessed by the piezoelectric actuators
used, generating an error-free triangular motion is difficult [6].
This problem is further compounded by rate and amplitude
dependent behavior of hysteresis as well as cross-coupling
and creep issues. To address this limitation, several open- and
closed-loop control techniques have been proposed in literature
(51, [7].

Open-loop approaches include model inversion-based in-
put shaping [8], optimal trajectory design [9], non-triangular
trajectories [10], [11] and notch-filter-based techniques [12].
However, these techniques lack the wide-band robustness or
flexibility that practical control techniques for nanopositioners
absolutely require. As a result, closed-loop techniques have
garnered a significant research focus. Most of reported closed-
loop techniques combine a damping loop (to impart damping
to the lightly damped resonant mode of the stage which in turn
facilitates a wider tracking bandwidth) and a tracking loop (to
minimize the effect of hysteresis and other disturbances). As
pure integral (I) or proportional and integral (PI) controllers are
employed in the tracking loop, these control schemes mainly
differ in the damping schemes they adopt. Consequently, the
combined damping and tracking control schemes based on
Positive Position Feedback [13], Positive Velocity and Position
Feedback [13], Positive Acceleration, Velocity and Position
Feedback [14], Resonant Controller [15], Integral Resonant
Control [16] etc., have been reported till date. In addition
to these techniques, Robust Control [17], [18], Fractional
Order Control [19], Delayed Position Feedback Control [20],
Iterative Control [21]-[23], and Repetitive Control [24] have
also shown significant performance improvements.

In high-speed scanning of nanopositioning stages, Iterative
Control (including the Iterative Learning Control (ILC) [21],
[22] and the Inversion-based Iterative Control (IIC) [23], [25],
[26]) and the Repetitive Control (RC), due to their many
advantages such as the capability of tracking periodic trajecto-
ries, have emerged as promising candidates to further the en-
velope of high-speed nanopositioning. In comparison, the ILC
method requires to reinitialization of its initial value at every
iteration period, and the IIC requires several offline training
iterations and rather complicated convergence analysis, adding
another level of complexity in implementation. From this



perspective, the RC scheme becomes more attractive, and has
delivered significant positioning performance improvements
[24], [27], [28]. According to its inherent structure, the RC
scheme renders itself ideal for digital implementation, which
can be expressed as 1/(z" —1). This digital RC scheme works
on the principle of first dividing a period of the desired period-
ic trajectory into a number of delay (sample) points and then
generating high gains at the harmonics. To guarantee desired
control performance and robust stability, normally a low-pass
filter and a phase compensator are incorporated into the RC
scheme. This standard RC scheme was further enhanced to the
Modified RC scheme [29]. Recently, a Dual-Stage RC scheme
has also been reported, with significant improvements in track-
ing accuracy [30]. The main limitation of all these reported
RC scheme variants is the strict requirement of the number
of delay points being an integer. In other words, the sampling
frequency must be an integer multiple of the frequency of the
periodic trajectory to be tracked, i.e., N = fs/f4, in which
fs and f; denote the sampling frequency and the desired
tracking frequency, respectively. This criterion significantly
limits the choice of useable scanning frequencies. Although
using variable sampling rates can overcome this limitation,
the re-modeling and re-design of the control parameters are
both time-consuming and complicated.

To address the limitation of having the sampling frequency
being an integer multiple of the desired trajectory frequency,
three different approaches have been proposed thus far. The
first approach is to round-off the fractional delay (due to
the sampling frequency not being an integer multiple of the
trajectory frequency) to the nearest integer delay. It is clear that
this rounding introduces errors and leads to significant perfor-
mance degradation, especially when high-frequency trajecto-
ries are employed [31]. The second approach is employing a
frequency adaptive RC schemes [32]. Though feasible in theo-
1y, in practice the variable sampling rate significantly increases
the real-time implementation complexity and computational
burden. The third and widely applied approach is to use a
Lagrange interpolating to approximate the fractional delay
[31], [33], [34], which becomes the widely used Lagrange
Interpolating based Fractional Repetitive Control (LIFRC). In
these applications, the Lagrange interpolating to approximate
the fractional delay and the low-pass filter to improve the
control robustness are applied separately and independently.
Due to the poor performance of the equivalent filter at higher
frequencies, the performance of the LIFRC degrades when
applied to nanopositioning stages for high-frequency scanning.
In this case, variable fractional delay filters have emerged as
a possible solution to this problem.

Inspired by the design of variable fractional delay filters
as reported in [35], [36], this paper proposes the Low-Pass
FIR Variable Fractional Delay Filter (LP FIR-VFDF) scheme
to handle the rounding issue in the implementation of the
RC scheme, thereby enabling an arbitrary choice of the
frequency for desired scanning trajectory. This filter combines
the Lagrange interpolating to approximate the fractional delay
and the low-pass filter to eliminate the influence of the model
uncertainty together. The coefficients of LP FIR-VFDF are
analytically computed as a function of fractional delay, thereby

making it suitable for trajectories of all frequencies. The
simulated and experimental results conducted on a custom-
built nanopositioning stage verify the effectiveness of the
proposed LP FIR-VFDF based RC scheme.

The rest of this paper is organized as follows. Sec. II
provides the design of the LP FIR-VFDF and its application
to RC. Its performance is evaluated by comparing it with
the commonly used Lagrange interpolating method. Sec. III
provides the details of the experimental setup and also lists the
used control parameters. Experimental tracking results for the
RC, LIFRC as well as the proposed LP FIR-VFDF based RC
are presented in Sec. IV for triangular trajectories with a wide
range of frequencies, clearly demonstrating the superiority of
the proposed scheme. Sec. V concludes the paper.

II. CONTROLLER DESIGN AND PERFORMANCE
EVALUATION

Since the main focus of this work is to design and imple-
ment the LP FIR-VFDF in order to improve the performance
of the conventional RC scheme under the constraint of syn-
chronized sampling, the design of this filter is first presented
here. This will be followed by the application of this filter
to the RC scheme. For sake of comparison, the widely used
LIFRC is also briefly introduced.

A. Design of the Low-Pass FIR Variable Fractional Delay
Filter

In order to address the rounding issue of the conventional
RC scheme in high-speed scanning of the nanopositioning
stage, the LP FIR-VFDF is introduced to work as both the
low-pass filter and the fractional delay filter simultaneously.
The ideal frequency response of the LP FIR-VFDF is

H(w,d) = A(w)e™ 1 welo,n],de[0,1] (1)

where A(w) is the magnitude response of the filter, d is the
fractional delay ranging from O to 1, and the term e 7«
denotes the phase response of the filter. Note that as a low-
pass filter, the magnitude function A(w) in the passband should
ideally be 1, attenuate as required (based on the filter order and
type) within the transition-band and go to 0 in the stopband. In
the passband, the response H (w, d) has the expression e =7,
which corresponds to the transfer function of 2~ in the z-
domain. The weighted-least-square method as reported in [35],
[36], is adopted to design the LP FIR-VFDF approximating
its ideal frequency response.
The designed LP FIR-VFDF can then be given by:

N2
F(z,d)= > fald)z" )

’I’L:Nl
where N7 and Ny are two integers determining the length of
the filter, and the filter coefficients f,,(d) are calculated by:

K

fa(d) = g(n,k)d*, Ny <n < N 3)
k=0

The parameter K is a positive integer that is related with the
approximation performance and g(n, k) is the corresponding



coefficient with respect to n and k. To achieve a good
compromise between approximation performance and filter
complexity, K = 10 is chosen in this work. Substituting Eq.
(3) into Eq. (2) results in the following expression

No K
d)y= Y gnkyd=z" &)

n=N; k=0

To optimize the coefficients of the LP FIR-VFDF, we define
the parameter matrix G as:

9(N1,0), -+ g(Ni, k), g(Ny, K)
G=1 g(n0) g(n, K) )
9(N2,0), ---g(N2, k), 9(Na, K)

in which Ny < n < Ny,0 < k < K, such that G is of the
size (No2 — N1 + 1) x (K + 1). In this case, the weighted-
least-square approximation error E(G) between the frequency
response of the designed LP FIR-VFDF and that of the ideal
one can be computed as follows.
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where w; € [0, 7] with w; = % and d; € [0,1] with d; = Sid
The constants S, and Sy are the total number of w; and d;,
respectively. The term W (w;) is the weight of the specific
frequency w;. Therefore, defining
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results in E(G) = E.(G) + Es;(G). To further simplify the

computations, the following matrices are defined:

R= [W%(wi)A(wi) Cos(djw,;)} , )
I= [W%(wi)A(wi)sin(djwi)} : (10)
P= [W%(wi)cos(nwi)} ) (11)

Q= {W%(wi) sin(nwi)} , (12)

and D = [d¥]. Therefore, the Eqgs. (7) and (8) can be rewritten
as
E.(G) = tr|[(R — PGDT)T(R — PGD")] (13)
and
Ey(G) = tr[(I - QGDT)T(I — QGDT)) (14)

where the operators ¢r(.) and T are the trace and transpose of
the corresponding matrix, respectively. It is evident from Eqgs.
(13) and (14) that E(G) is a function of G. Therefore, the
error function E(G) can be minimized if conditions are found
such that the partial derivative of the E(G) with respect to G
equals 0. Thus,

IE(G)

DE(G) | 9E.(G) _ g
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15)

Rearranging terms in Eq. (15), the parameter matrix G is found
to be

G=(PTP+QTQ) " (PTR+Q"I)D(D*D) !, s.t.K < Sy

(16)
where the existence of (PTP + QTQ)~! and (DTD)~! are
proved in the appendices A and B. Consequently, with the
obtained parameter matrix G, the filters for different values of

d can be calculated via Eq. (4).

B. Design of the LP FIR-VFDF based Fractional Repetitive
Control

With the objective of precisely tracking high-frequency peri-
odic trajectories without the constraint of having the sampling
frequency be an integer multiple of the trajectory frequency,
the LP FIR-VFDF is incorporated into the conventional RC
scheme to control nanopositioning stages possessing hysteresis
nonlinearity and non-minimum phase dynamics. The overall
block diagram of LP FIR-VFDF based Fractional Repeti-
tive Control is shown in Fig. 1. Since the piezo-actuated
nanopositioning stages exhibit both linear dynamics and com-
plicated hysteresis nonlinearities, the system model typically
adopted is a cascaded structure of the hysteresis model and
the linear dynamics transfer function [5]. It is further found
that this hysteresis nonlinearity can be modelled as a set of
bounded periodic disturbances dj, (k) injected to the dynamics,
when the system is dedicated to tracking periodic trajecto-
ries [29]. Consequently, the piezo-actuated nanopositioning
stage is described as the dynamics P(z) cascaded with the



LP FIR-VFDF based Fractional Repetitive Controller
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Fig. 1.

bounded disturbances dj (k) resulting from the hysteresis of
the piezoelectric actuator. The terms y4(k), y,(k) and e are
the desired input trajectory, the actual output displacement
and the corresponding tracking error, respectively. In order
to generate the control voltage, the LP FIR-VFDF based
Fractional Repetitive Controller is plugged into the baseline
feedback control scheme with the tracking controller C(z).
With its ease of implementation, C'7(z) is chosen as a simple
PI controller whose transfer function is given by k, 4 k,-ZTTSl,
where T, is the sampling time in this work. The control
gains will be tuned via the trial and error method to achieve
the best possible tracking performance. The control gain k.
is a constant chosen appropriately to guarantee stability of
the control system. The block C;(z) is the inversion of the
baseline closed-loop system that includes the plant P(z) and
the tracking controller Cf(z). Thus, C;(z) takes the form:

oo [LPECE) T L BB
©=reeml =

a7
Due to the non-minimum phase nature of the stage, there
exist zeros outside of the unit circle in the z-plane, making
the direct inversion unrealizable. As expressed in Eq. (17),
the zeros are decomposed into two groups. The minimum-
phase zeros are grouped into B(z), while the non-minimum
phase zeros are grouped into B,(z). The constant r is the
relative degree of the transfer function in Eq. (17). To derive
a stable inversion, the Zero-phase-tracking-error method [37]
is chosen. Consequently, the stable, causal inversion of the
baseline closed-loop dynamics obtained can be rewritten as:

—(net+ny) Bf(Z)A(Z)

By(2)p?
The term By(z) is determined by inverting the coefficients of
B, (2). The parameters n,, and n, are the order of B, (z) and
the compensated order of C;(z) to make it causal, respectively.
The constant S is given by 5 = |Bo| + |51] + |B2| + -+,
where (3; are the corresponding coefficients of B,(z). The
block z~" is the phase compensator of the inversion, with
the order m = n. + r.

Ci(z) =z (18)

Since this work focuses on the fractional (non-integer) ratio
between the sampling frequency and the trajectory frequen-
cy, the number of delay (sample) points in the delay loop
is calculated by rounding N to the negative infinity, i.e.,
N = floor(N). The residual fractional delay 2~ will be
compensated by the designed LP FIR-VFDF. It should be

The block diagram of the control system with LP FIR-VFDF based Fractional Repetitive Control.

noted that, the basic control diagram of the conventional RC
is the same as that of the proposed LP FIR-VFDF based
Fractional Repetitive Control shown in Fig. 1, except that the
F(z,d) is replaced by a conventional low-pass filter and the
number of delay points is rounded to an nearest integer value
(N = round(N)).

Theorem 1. (Ascertaining Stability)

In order to provide a guideline of the parameters selection
of the proposed LP FIR-VFDF based Fractional Repetitive
Control scheme, the stability analysis is demonstrated here-
with.

As the LP FIR-VFDF based Fractional Repetitive Control
is a plugged-in (retrofitted) scheme, the baseline system with
PI controller should first be asymptotically stable. Assume this
condition is satisfied, which implies that the polynomial 1 +
PC¢ = 0 has no roots outside the unit circle in the z-plane
(the indices of z-domain and the fractional delay d are omitted
in the stability analysis). With the control scheme shown in Fig.
1, the characteristic polynomial of the closed-loop system can
be derived as

D= (14PCy[l — Fz"N(1—k2"CT) (19
where _poy 0
14+ PCy

It is assumed that the first item of Eq. (19) is stable, and
consequently the stability of the closed-loop system relies on
the second item. According to the Small-Gain Theorem, the
system is asymptotically stable, when the following condition
is satisfied for all the frequencies.

‘FZ’N(l _ kcsziT)’ <1 1)
Clearly, |F| < 1 and z_N‘ = 1. From Egs. (17) and (18),
we have z™C;T = B,By/B? Hence, this inequality can be
simplified to

|(1 - k.B,By/B%)| <1 (22)

Since (5 is selected as 5 = |Bo|+|B1|+|B2|+- - - in this work,
% > max(B,By). As a result, the stability condition of the
closed-loop system can thus be stated as

0< k. <2. (23)
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The comparison of the frequency responses of different filters with

C. Design of Lagrange Interpolating based Fractional Repet-
itive Control

In order to further demonstrate the effectiveness of the LP
FIR-VFDF based Fractional Repetitive Control, the commonly
employed LIFRC is selected for comparison. In this method,
the fractional delay is calculated as:

M
L(z,d) ~ ZAkz_k (24)
k=0
with
Mo
A = , k=0,1,2---M (25)
i=0, i£k k—1i

where M is the order of the Lagrange interpolation and is
chosen as 3 in most reported works with the tradeoff between
the approximation accuracy and computational complexity
[31], [33]. The LIFRC is implemented by replacing the F'(z, d)
in Fig. 1 with L(z,d) cascading with a low-pass filter. Since
the effect of the interpolation improves when d ~ M /2 [38],
the delay of the LIFRC is approximated in the range [1, 2].
In this sense, the number of delayed points is then calculated
as N = floor(N) — 1. A full implementation of the LIFRC
on a nanopositioner is reported in [31].

D. Filter performance evaluation

To evaluate the performance of the LP FIR-VFDF, it is com-
pared with that obtained by (a) the low-pass filter used in the
conventional RC and (b) the cascaded two filters (the Lagrange
interpolating and the low-pass filter) used in the LIFRC. Since
the simplest and optimized zero-phase low-pass filter used in
the conventional RC has the form ¢(z) = 0.252714-0.5+0.252
[23], [25], the low-pass behavior of the LP FIR-VFDF is
designed to approximately the same, for a fair comparison. The
frequency response of ¢(z) is shown in Fig. 2 with the solid
black line. Following this, the passband, the transition-band
and the stopband are chosen as [0,0.327), [0.327 ,0.997)
and [0.997, 7|, respectively. S, and Sy are both chosen as
100, which implies that the frequency resolution and fractional
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Fig. 3. The frequency responses of the LP FIR-VFDFs with different weights
for different values of d: (a) d = 0.1; (b) d = 0.5.

delay resolution are 0.017 and 0.01, respectively. The length of
the LP FIR-VFDF is selected the same as that of the cascaded
filters in the LIFRC, which is L = N, — Ny +1 = 6. To
determine the filter coefficients, the weights in Eq. (6) have to
be initialized. To begin with, the weights are set to 1 for all
the frequencies. The parameter N7 is selected as —1 to obtain
the minimal approximation error. The results for the values of
d = 0.1 and d = 0.5 are shown in Fig. 3(a) and Fig. 3(b),
respectively. It can be seen that although the approximation
error is relatively low for d = 0.5, that of the phase response
is quite large for d = 0.1. Meanwhile, the results in passband
and stopband are not satisfied. All these would lead to a severe
degradation in tracking performance. Since our focuses are the
constant gain and linear phase response in the passband, the
weights in the passband, transition-band and the stopband are
set as 50% : 1 : 252 and 100% : 1 : 502, respectively. The
filters obtained with these two weights are also shown in Fig.
3. It is observed that with the adjusted weights, the phase
responses are gradually close to the ideal line, and a wider
bandwidth is achieved. Consequently, the weights are selected
as 1002 : 1 : 502 in this work.

With the weights of 1002 : 1 : 502, the LP FIR-VFDF
with L = 5 is also designed and implemented. The frequency
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Fig. 4. The experimental setup showing the nanopositioning stage, the
dSPACE module, the high-voltage amplifier and the capacitive sensor (gauging
module).

responses of the conventional low-pass filter ¢(z), the cascaded
two filters in the LIFRC and LP FIR-VFDF with different
values of L are compared in Fig. 2. It can be observed that
with the Lagrange interpolation method, the pass-bandwidth
is reduced resulting in a degraded tracking of high-frequency
trajectories. In contrast, although the phase responses of the
LP FIR-VFDFs are worse than that of the equivalent filter
in the LIFRC, they are almost the same within the interested
passband. More importantly, the LP FIR-VFDFs exhibit wider
pass-bandwidth, which would guarantee the tracking precision
of the RC in high-speed scanning. It is also useful to note that,
with the increase in the filter length, the approximation error
can be further reduced. For a fair comparison, the length of the
LP FIR-VFDF is set to L = 6 in the following experiments.

III. EXPERIMENTAL SYSTEM DESCRIPTION

A. Experimental setup

To verify the effectiveness of the proposed LP FIR-VFDF
based Fractional Repetitive Control, the experiments are con-
ducted on a two-axis custom-built flexure-hinge nanoposition-
ing stage. The overall experimental setup is shown in Fig. 4.
The workspace of the stage is 11.2um x 11.6um. Since the
cross-coupling effect between these two scanning axes is less
than 0.52% of the full range, the axes can be treated with the
decoupled performance. The Y-axis with its first resonance
at 14 kHz, is selected for the experiments. The displacement
along each axis is measured by a capacitive sensor (Probe
2823 and Gauging Module 8810 from MicroSense, resolution
< Inm — rms) via the ADCs (Analog to Digital converters)
of the dSPACE. The dSPACE-DS1103 is configured to capture
the real-time displacement signals for closed-loop control.
The control diagram is established via Matlab/Simulink and
downloaded into the dSPACE host, operated via Controldesk.
The actuation voltage generated by the dSPACE is fed into
the high voltage amplifier, which has an amplification factor
of 20 and a range of 0-200 V, via DACs (Digital to Analog
converters). The sampling time 75 of the dSPACE control
system is set to 2us (See [39] for more details).

Magnitude (dB)
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g -360
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2 720
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Experimental results
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-1080 == e ‘ = —
10" 102 10° 10
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Fig. 5. Measured frequency response of the system (blue) superimposed

on that of the identified model (red) showing that the identified model is
adequately accurate.

B. System identification and controller parameters design

Prior to commencing the control design, an identification
of the system dynamics within the bandwidth of interest (10
Hz - 20 kHz) is first carried out. The frequency response
data is recorded using bandlimited white noise as input and
a corresponding z-domain model is identified. The identified
model fully captures the linear dynamics of the nanopositioner
axis within the bandwidth of interest as shown in Fig. 5. The
resulting z-domain transfer-function model is given by:

1 —1.3906e " *4(2242.17082+2.196)
(22-0.29442+0.2061)

G(z) ==z

(2243.03752+31.9162) (2 —11.4914)
(2240.37202+0.8702) (z—0.4428)

(26)

The controller parameters of the LP FIR-VFDF based
Fractional Repetitive Control, LIFRC, conventional RC and PI
control schemes are derived using the identified system model
parameters. The causal system inversion C;(z) can be comput-
ed using Eq. (18), where n,, and n. both have a value of 5, and
r = 1. Consequently, the order of the phase compensator is 6.
Simulation results from the step response are used to select the
gains for C'y(z), which are maximized prior to the occurrence
of any significant vibrations. These gains are further tuned
during real-time experiments. The proportional and integral
gains are finally selected as 0.1 and 6000, respectively. The
non-causal term in the low-pass filter ¢(z) and F'(z,d) can be
compensated with a delay term z~™*™ in real time control.
It is worth of mentioning that, for the pure PI control, the
plugged-in RC module is non-existent. To evaluate the four
control schemes, their sensitivity functions are compared in
Fig. 6, for a specific tracking frequency of 1100 Hz, where
the number of the delay points is 45.45. For the conventional
RC control, the number of the delay points is rounded to 45.
It is found that all the three RC schemes result in significantly
lower errors when compared to the baseline scheme with PI
tracking controller alone. However, for the conventional RC,
due to the non-integer (fractional) ratio between the sampling
frequency and the trajectory frequency, the attenuation of the
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Fig. 6. The sensitivity functions under different control schemes for the

tracking frequency of 1100 Hz (where FDFRC denotes the LP FIR-VFDF
based Fractional Repetitive control).

TABLE I
THE CONTROL PARAMETERS FOR DIFFERENT CONTROL SCHEMES (WHERE
FDFRC DENOTES THE LP FIR-VFDF BASED FRACTIONAL REPETITIVE

CONTROL).
Schemes |k, | ki |k Fractional |Low-pass| Number of
delay filter filter delay points
PI Not applicable
PI+RC 0.1l6000 Not applicable| g(z) AN = round(V)
PI+LIFRC Ll L(z,d) q(z) |N =floor(N) — 1
PI+FDFRC F(z,d) N =floor(N)

tracking errors at 1100 Hz is only -22 dB as opposed to -45
dB for the LIFRC and -60 dB for the LP FIR-VFDF based
Fractional Repetitive Control, respectively. The same trend is
seen at higher harmonics. Therefore, it is expected that the LP
FIR-VFDF based Fractional Repetitive Control should deliver
superior disturbance rejection and result in highly accurate
tracking of high-frequency trajectories irrespective of whether
the sampling frequency is an integer multiple of the trajectory
frequency.

IV. EXPERIMENTAL STUDIES

To make a comprehensive study, the comparative experi-
ments are conducted on the nanopositioning stage described
in Sec. III-A for frequencies ranging from 100 Hz to 1587.3
Hz, resulting in rounding errors varying between O and 0.5.
Low-frequency (100 Hz, 150 Hz and 200 Hz) triangular
trajectories are selected to demonstrate that the proposed
scheme possesses good low-frequency tracking performance.
A number of high-frequency triangular trajectories with funda-
mental frequency ranging from 1000 Hz to 1587.3 Hz are also
tested to showcase the significantly improved high-frequency
tracking performance afforded by the proposed LP FIR-VFDF
based Fractional Repetitive Control. All triangular trajectories
provide a displacement of 2.5um. The control parameters (as
shown in Tab. I) are kept constant for all the frequencies.

To evaluate the tracking performance in the steady state,
two performance metrics are employed: (i) maximum tracking

errors, defined as

max  [ya(t) = ya(t)
S x100%  (27)
max[yq(t)] — min[yq(t)]
(ii) root-mean-square tracking errors, defined as
2
\/101TT OZ;OT [ya(t) — ya(t)]
€rms = L0107 < 100%  (28)

max[yq(t)] — minfya(t)]

where T, is the period of the desired trajectory. The results
for these metrics under different control schemes for different
tracking frequencies are summarized in Tab. II.

As expected, the baseline PI scheme results in very signif-
icant tracking errors even at low frequencies. This is due to
the broadband nature of the triangular trajectories (infinite odd
harmonics of the fundamental frequency) and the relatively
narrow tracking bandwidth afforded by the PI controller alone.
Note that N in the second column of the Table II, is the
number of delay (sample) points in theory with N = f./f4.
Consequently, where N is an integer, the PI+LIFRC as well
as the PI+ LP FIR-VFDF based Fractional Repetitive Control
(PI+FDFRC) schemes are not necessarily designed while the
PI+RC scheme significantly outperforms the PI-only control
scheme. Where N is not an integer (fractional delay), the
PI+LIFRC delivers superior performance to both the PI as well
as the PI+RC schemes. However, in all such fractional delay
instances, the newly proposed PI+FDFRC scheme outperforms
the traditional PI+LIFRC scheme by quite a margin. This
superior performance of the PI+FDFRC scheme is consistent
for all the frequencies (including the high-frequencies) tested
herewith.

In order to better illustrate the tracking performance
achieved by the different control schemes, time-domain track-
ing results were recorded for the high-frequency 1587.3 Hz
(N = 31.5) and 1538.5 Hz (N = 32.5) triangular trajectories,
as shown Fig. 7(A) and Fig. 7(B), respectively. In these two
particular cases, the rounding errors are both 0.5. It can
be observed from Figs. 7(A-c) and 7(B-c) that, for PI+RC
scheme, there exist significant steady-state tracking errors,
which degrade the tracking performance greatly. With the
PI+LIFRC and PI+FDFRC schemes, these tracking errors
are reduced significantly. Moreover, the proposed PI+FDFRC
scheme shows a significant reduction in tracking errors when
compared with those using the traditional PI+LIFRC scheme.
More importantly, the PI+FDFRC scheme reaches steady-
state as quickly as the basic PI+RC scheme. These results
validate the effectiveness of the proposed PI+FDFRC scheme,
in terms of the tracking precision and convergence speed. As
a consequence, the proposed PI+FDFRC scheme emerges as a
strong contender for the adopted control scheme in high-speed
nanopositioning applications.

V. CONCLUSION

This paper proposes the LP FIR-VFDF to enhance the
performance of the conventional repetitive control scheme dur-
ing high-speed nano-scale scanning operations bypassing the
restriction of having the sampling frequency be an integer mul-



TABLE 11
THE TRACKING ERRORS UNDER DIFFERENT CONTROL SCHEMES FOR DIFFERENT TRACKING FREQUENCIES (WHERE FDFRC DENOTES THE LP
FIR-VFDF BASED FRACTIONAL REPETITIVE CONTROL).

Frequency N PI (%) PI+RC (%) |PI+LIFRC (%) | PI+FDFRC (%)
(Hz) €m | €rms | €m |€ms | €m | €rms | Em | €rms
100 500 |14.343|11.775|0.182]0.048 | — — — —
150 333.33120.500 | 16.850|0.528 | 0.139 [ 0.206 | 0.052 |0.212| 0.051
200 250 |26.380(21.113|0.160(0.051| — — — —
1000 50 [52.636|31.946|1.549/0.390| — — — —
1100 45.45 [52.783]31.9183.594|2.241 | 1.669| 0.444 |0.595| 0.226
1200 41.67 |52.774|31.967|3.140 | 1.845|1.973 | 0.522 |0.918| 0.350
1300 38.46 |52.735|31.929 |4.438 |2.709 |2.251| 0.582 |0.945| 0.328
1400 35.71 |52.682|31.801 |3.540(1.999 |2.693| 0.722 |1.287| 0.510
1500 33.33 |52.472|31.688 |4.243 (2.375(2.974| 0.789 [1.610| 0.536
1538.5 32,5 [52.317|31.755(5.627|3.585|3.031| 0.815 |1.444| 0.495
1562.5 32 152.347|31.554|3.031|0.807| — — — —
1587.3 31.5 [52.305|31.309 | 5.581|3.754 | 3.153 | 0.847 |1.536| 0.505
A-(a)I P ' Elesired displacement B-(a5 ' I Desired displacement
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Fig. 7.

The overall tracking results; (b) The tracking errors; (c) The enlarged tracking errors in steady state.

tiple of the trajectory frequency. The filter works by combining
approximation of the fractional delay and low-pass behavior
together, as an alternative to the commonly used low-pass
filter cascading with the fractional delay approximation. The
weighted-least-square method is employed to optimally design

The tracking results under different control schemes for different tracking frequencies: (A) 1587.3 Hz (N = 31.5); (B) 1538.5 Hz (NN = 32.5); (a)

the variable fractional delay filters, which minimizes the
approximation error within the interested bandwidth. The com-
parative tracking experiments with the conventional PI+RC,
PI+LIFRC, and the pure PI control schemes are conducted on
a custom-built nanopositioning stage for frequencies ranging



from the low-frequency of 150 Hz to the high-frequency of
1587.3 Hz. The experimental results show that the proposed
LP FIR-VFDF based Fractional Repetitive Control scheme
outperforms the conventional LIFRC scheme of the same order
in terms of tracking performance. Triangular trajectories with
a fundamental frequency up to 1587.3 Hz were accurately
tracked by implementing the proposed LP FIR-VFDF based
Fractional Repetitive Control with positioning errors as low as
0.505% - clearly highlighting the proposed schemes efficacy
at delivering high-speed nanopositioning.

APPENDIX A. PROOF OF THE EXISTENCE OF
(PTP + QTQ)—l

Expanding Eq. (11), we could have

W' (wo)
W2 (w;)
P= X
Wi (ws,)
cos(Njwp)  cos[(Ny + 1)wo] cos(Nawp)
cos(Nqwi)  cos[(Ny + 1)w] cos(Nowy)
cos(Nywg,) cos[(Ny + 1)wg,] cos(Nowsg,, )
- (A1)
and hence PT P can be expressed as PCTWPC, with
cos(Niwp)  cos[(Ny + 1)wo] cos(Nowp)
cos(Niwi)  cos[(Ny + 1)ws] cos(Nowy)
P. =
cos(Nywg,) cos[(Ny + 1)wg,] cos(Naws,, )
- (A2) "
and
W(wo)
W(wr)
W = (A.3)

W(ws,)

w

Similarly, from Eq. (12), Q7Q can be described by Q.7 WQ.,
where

sin(Nywg)  sin[(N7 + 1)wo] sin(Nawy)
sin(lel) Sin[(N1 + 1)&]1] sin(Ngwl)
Qc =
sin(Nywg,) sin[(Ny + 1)wg,,] sin(Nawsg,,)
- (A4)"
Let X € RW=Ni+DxL pe an arbitrary vector.

When the relationship X7 (PTP + QTQ)X > 0 is
satisfied, PTP + QTQ is clearly positive definite. De-

note X7 P, [, O Cg, |- and xXrQ."

], then:

[ Sy S Ss.

XT(PTP+QTQ)X = XT(P"WP.+ Q. " WQ.)X

W (wo)(Co? + So?) + W (wi)(Ch? + 812) + -

+W (ws,)(Cs, 2 + S5, %)
(A.5)
The condition W(w;) > 0 is always satisfied. Following
(C’i2 + SiQ) > 0, the proof can be completed. In this sense,
the problem of positive definite of PT P+ QT Q resolve into a
problem of positive definite of PTp. + QCTQC. Substituting
Eqgs. (A.2) and (A4) into P,T P, + Q.7 Q.,

PCTPC + QCTQC =
_ s s -
S,+1 > cosw; > cosnw;
i=0 i=0
Sw Sy
> cosw; S +1 > cos(n — 1)w;
i=0 i=0
Se, S
> cosnw; Y cos(n — 1)w; Sy +1
L i=0 i=0 ]
' (A6
Sw
As w; is distributed uniformly in [0, 7], > cosnw; = 0.

=0
Therefore, P.7P. + QCTQC is positive definite,and so is
PTP 4+ QTQ. The proof is thus completed.

APPENDIX B. PROOF OF THE EXISTENCE OF (DT D)~!

In view of the definition,

o dg dg
@ df

D=[d] = (B.1)
43, d, dt, |




where d; # d;(i # j). Thus, rank(D) = min(Sy+1, K +1).
As DT D has the dimension of K x K, the term DT D is full
rank, when K < Sj. The proof is thus completed.
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