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Background: In recent years pre-clinical stroke research has shown increased interest in

the development of biomaterial-based therapies to promote tissue repair and functional

recovery. Such strategies utilize biomaterials as structural support for tissue regeneration

or as delivery vehicles for therapeutic agents. While a range of biomaterials have been

tested in stroke models, currently no overview is available for evaluating the benefit of

these approaches. We therefore performed a systematic review and meta-analysis of

studies investigating the use of biomaterials for the treatment of stroke in experimental

animal models.

Methods: Studies were identified by searching electronic databases (PubMed, Web of

Science) and reference lists of relevant review articles. Studies reporting lesion volume

and/or neurological score were included. Standardized mean difference (SMD) and 95%

confidence intervals were calculated using DerSimonian and Laird random effects. Study

quality and risk of bias was assessed using the CAMARADES checklist. Publication bias

was visualized by funnel plots followed by trim and fill analysis of missing publications.

Results: A total of 66 publications were included in the systematic review, of which

44 (86 comparisons) were assessed in the meta-analysis. Overall, biomaterial-based

interventions improved both lesion volume (SMD: −2.98, 95% CI: −3.48, −2.48)

and neurological score (SMD: −2.3, 95% CI: −2.85, −1.76). The median score on

the CAMARADES checklist was 5.5/10 (IQR 4.25-6). Funnel plots of lesion volume

and neurological score data revealed pronounced asymmetry and publication bias.

Additionally, trim and fill analysis estimated 19 “missing” studies for the lesion volume

outcome adjusting the effect size to −1.91 (95% CI: −2.44, −1.38).

Conclusions: Biomaterials including scaffolds and particles exerted a positive effect

on histological and neurological outcomes in pre-clinical stroke models. However,

heterogeneity in the field, publication bias and study quality scores which may be

another source of bias call for standardization of outcome measures and improved

study reporting.

Keywords: systematic review, meta-analysis, stroke, biomaterials, tissue engineering, hydrogels, nanoparticles,

regenerative medicine
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INTRODUCTION

Stroke is a global health problem with limited treatment options.
The World Health Organization reports stroke as the second
leading cause of death worldwide accounting for around 6.7
million deaths annually (1). For patients surviving stroke, close
to two thirds will have a disability (2). Despite the major societal
impact, the only widely available therapy for ischaemic stroke is
tissue plasminogen activator (tPA). However, due to the narrow
time window of administration (<4.5 h of symptom onset), only
around 12% of patients in the UK are eligible for treatment (3). In
recent years, great advances have been made in the development
of endovascular thrombectomy as an alternative treatment (4,
5). While clinical trials have demonstrated thrombectomy is
effective up to 6 h after stroke onset, it has been estimated
that only 10% of patients would be eligible even with national
coverage in the UK, which is presently not the case (6). Both
thrombolysis and thrombectomy aim to restore reperfusion and
limit further damage to the ischaemic brain and there are
currently no approved regenerative medicine therapies available
for promoting repair and regeneration.

In recent years, interest in regenerative medicine approaches
to increase neuronal tissue repair following ischaemic stroke
has increased. Notably, over 20 early phase clinical trials
have been conducted assessing the safety of cell therapies
including mesenchymal stem cells (MSCs) (7), neural stem
cells (NSCs) (8), and haematopoietic stem cells (9). A number
of studies have used cell-based therapies and growth factors
to promote endogenous brain repair or tissue replacement in
animal models of stroke with limited success. For this reason,
biomaterials are now being investigated as potential agents
to enhance the therapeutic efficacy of such interventions as
scaffolds for tissue regeneration or vehicles for drug release
(10, 11). For example, cell transplantation in the brain may be
facilitated by the use of engineered scaffolds, which mimic native
extracellular matrix (ECM) properties and provide adhesion
sites for native cell attachment, aiding graft cell retention
in the infarct cavity (12, 13). Alternatively, scaffolds may be
used to aid recruitment and survival of endogenous stem cell
populations for tissue restoration. Examples of scaffolds studied
for cell delivery in stroke models include natural and synthetic
hydrogels, electrospun fibers, sponges, and glue. Particulates
are another class of biomaterials commonly used as delivery
systems for targeted and controlled release of therapeutic agents.
A wide variety of particulates have been tested for ischaemic
stroke repair including nanoparticles, microparticles, micelles,
liposomes, nanocarriers, and microspheres (14, 15).

To date, there is no systematic review or meta-analysis
available investigating the potential of biomaterial-based
approaches in pre-clinical models of ischaemic stroke. Given
that biomaterial-based interventions are currently attracting
great interest it is timely therefore to provide such a review, with
the hope of averting the “translational roadblock” (16) and poor
predictive validity of previous studies of neuroprotective agents
for stroke (17, 18). Our systematic review and meta-analysis
aims to assess the methodological quality of current research into
biomaterial-based interventions for ischaemic stroke repair and

to determine the efficacy of such approaches, helping to inform
future research directions.

MATERIALS AND METHODS

Search Strategy
We searched PubMed and Web of Science for (stroke OR
cerebral ischemia OR cerebral ischemia) AND (biomaterial OR
tissue engineering OR hydrogel$ OR scaffold$ OR ∗particle$ OR
sponge$). No restrictions were placed on date of publication
and the last search was conducted on 4 February 2019. We also
searched reference lists of review articles for additional articles.
Titles and abstracts were initially screened by two authors (CC
and FB).

Data Sources, Studies Selections, and
Data Extraction
Full texts of the identified publications were screened (CC,
FB, and IL) for studies assessing the efficacy of biomaterial-
based strategies in pre-clinical models of cerebral ischemia.
Studies were included if lesion volume and/or neurological
score were reported as outcome measures. Studies in which the
method of induction of cerebral ischemia was not stated were
excluded. After screening full texts for suitability, study design
information was extracted from each publication (CC and FB).
Information extracted included the species and stroke model
used, type of biomaterial investigated and whether the material
was combined with another therapeutic agent (such as growth
factors or a drug), the time of administration and any functional
tests conducted.

The risk of bias of each publication was assessed using the
CAMARADES (Collaborative Approach to Meta-analysis and
Review of Animal Data in Experimental Studies) study quality
checklist (19): (1) peer reviewed publication; (2) control of
temperature; (3) random allocation to treatment or control;
(4) blinded induction of ischemia; (5) blinded assessment of
outcome; (6) use of anesthetic without significant intrinsic
neuroprotective activity; (7) animal model (aged, diabetic, or
hypertensive); (8) sample size calculation; (9) compliance with
animal welfare regulations; and (10) statement of potential
conflict of interests. All information extracted was independently
cross-checked by a second reviewer (CC, FB, and IL).

For both lesion volume and neurological score, mean values,
± standard deviation (SD) or standard error of the mean (SEM),
and group sizes for treatment and control groups were extracted.
Publications that did not specify specific group sizes and reported
variance as SEM or did not include control groups were excluded
from the meta-analysis. Where variance was reported as SEM,
this was converted to SD in Microsoft Excel in order to calculate
standardized mean difference (SMD) for analysis. Since the effect
of biomaterial administration on stroke recovery was the main
focus of this analysis, control groups chosen for comparisons
were either stroke only or vehicle. In cases where the material was
combined with additional therapeutic agents, stroke or vehicle
were also used as controls. In two cases (20, 21), the control
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group was biomaterial alone so these papers were excluded from
the meta-analysis.

Two publications which presented lesion volumes and
neurological scores as median ± interquartile range (IQR),
were also excluded from the meta-analysis (22, 23). One paper
expressed the neurological score inversely to the convention
(higher scores indicate a higher degree of impairment) so
the data were inverted relative to the stated baseline measure
(24). Where multiple treatments were assessed, we selected the
treatment identified by authors in the publications as the primary
focus. When publications reported multiple outcome measures
from multiple timepoints, the data for the final end point was
chosen. Where publications included multiple administration
timepoints, data from each group was extracted separately.

Where possible, raw values were extracted from the text of
the publication. When data was presented only graphically,
the online tool WebPlotDigitizer (https://automeris.io/
WebPlotDigitizer/) was used to estimate mean and variance from
graphs. Estimate measures were independently cross-checked
by a second reviewer and any conflicts (>10% difference) were
resolved by a third reviewer (CC, FB, and IL). For analysis of
effect size, the publications were split into subgroups by type
of biomaterial (scaffolds and particles). The scaffolds subgroup
included publications using hydrogels, extracellular matrix
scaffolds, fibrin glue, and sponges. The particles subgroup
included publications using nanoparticles, microparticles,
nanocarriers, microspheres, liposomes, nanoemulsions,
nanotubes, and micelles. The selected publications were also

FIGURE 1 | Flow diagram summarizing the literature search strategy and number of studies included in the systematic review and meta-analysis.
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divided into subgroups according to the time of administration.
The groups were as follows: administration prior to stroke and
up to time of reperfusion; from reperfusion to 24 h post-stroke;
>24 h to 1 week post-stroke; >1–3 weeks post-stroke and
multiple administrations spanning these timepoints.

Statistical Analysis
For both the lesion volume and neurological score outcomes, the
SMD between the trial arms and accompanying 95% confidence
intervals were calculated using DerSimonian and Laird random
effects meta-analysis. Studies were weighted based on animal
number. The presence of heterogeneity in the data sets was
assessed using the I2 statistic. Due to very high heterogeneity in
the data (I2 = 82.8 and 84.3% for lesion volume and neurological
score, respectively), random effects were chosen. Forest plots
were used to visually present the results. The analysis was

stratified by type of biomaterial and time of administration
although for brevity, only the former are presented graphically.
The extent of publication bias was assessed graphically using
funnel plots and confirmed with Egger’s regression test. The
trim and fill approach was also used to estimate an effect size
accounting for publication bias. Stata 15 (StataCorp, USA) was
used for all statistical analyses with the exception of the trim
and fill analysis which was conducted in RStudio version 1.1.463
(RStudio Inc., USA) using the metafor package (http://www.
metafor-project.org/doku.php).

RESULTS

Study Selection and Characteristics
As shown in Figure 1, 1,091 publications were identified
from our literature search of which 66 met the inclusion

FIGURE 2 | Effect sizes for biomaterial-based interventions for lesion volume. Forest plot of standardized mean difference and 95% CI. CI, confidence interval; SMD,

standardized mean difference.
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criteria for the systematic review. The characteristics of these
studies including stroke model, animal numbers and type of
biomaterial intervention are shown in Supplementary Table 1.
All of the included studies were conducted in rats (n = 49)
or mice (n = 16) or both rats and mice (n = 1). The most
commonly used model was the transient intraluminal filament
model of middle cerebral artery occlusion (MCAO) (n = 46).
Only two studies used comorbid animals. Hayon et al. (25)
used spontaneously hypertensive rats and Fabian et al. (26)
induced acute hyperglycemia in Sprague-Dawley rats using

streptozotocin. As shown in Supplementary Table 1, there
was high variation in the functional outcome measures
employed (23 different behavioral tests). Furthermore,
several different neurological scores were reported including
modified neurological severity score (both 14 and 18 points),
Bederson, modified Bederson and Longa (27, 28). A total
of 44 studies including 1,075 animals (control n = 522,
treatment n = 553) were then included in the meta-
analysis reporting 86 comparisons. Of these, 51 assessed
lesion volume and 35 assessed neurological score. There was

FIGURE 3 | Effect size for biomaterial-based interventions for neurological score. Forest plot of mean standard difference and 95% CI. CI, confidence interval; SMD,

standardized mean difference.

TABLE 1 | Subgroup meta-analysis comparing time of intervention on lesion volume and neurological score outcomes.

Lesion volume Neurological score

Time of intervention Comparisons Effect size (95% CI) I2, p-value Comparisons Effect size (95% CI) I2, p-value

Pre-treatment−0 h 25 −3.15 (−3.76, −2.55) 79.7%, <0.001 18 −3.03 (−4.10, −1.96) 89.2%, <0.001

>0–24 h 15 −3.94 (−5.19, −2.69) 87.1%, <0.001 13 −1.84 (−2.48, −1.21) 75.3%, <0.001

>24 h−1 week 5 −2.15 (−4.43, −0.14) 85.5%, 0 < 001 0 N/A N/A

>1–3 weeks 3 −1.14 (−2.27, −0.00) 41.1%, 0.183 0 N/A N/A

Multiple timepoints 3 −3.51 (−6.75, 0.27) 78.5%, 0.010 4 −1.32 (−2.18, −0.45) 56.5%, 0.075
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TABLE 2 | Summary of study quality assessed by study compliance to the CAMARADES risk of bias checklist.

Overall Scaffolds Particles

(1) Peer-reviewed publication (%) 100 100 100

(2) Control of temperature (%) 50 42.1 53.2

(3) Random allocation to treatment or control (%) 56.1 52.6 57.4

(4) Blinded induction of ischemia (%) 34.9 42.1 31.9

(5) Blinded assessment of outcome (%) 50 52.6 48.9

(6) Use of anesthetic without significant intrinsic neuroprotective activity (%) 83.3 89.5 80.9

(7) Animal model (aged, diabetic, or hypertensive) (%) 3 0 4.26

(8) Sample size calculation (%) 9.1 15.8 6.4

(9) Compliance with animal welfare regulations (%) 93.9 89.5 95.7

(10) Statement of potential conflict of interests (%) 62.1 73.7 57.4

Median quality (/10) (IQR) 5.5 (4.25–6) 6 (4–7) 5 (4–6)

substantial heterogeneity in the datasets from both lesion
volume and neurological score outcomes (I2 = 82.8 and
84.3%, respectively).

Synthesized Findings
Meta-analysis was performed on lesion volume and neurological
score data. Overall, treatment with biomaterial-based
interventions led to improvements in lesion volume (SMD:
−2.98, 95% CI: −3.48, −2.48). Both the scaffolds (SMD:
−2.89, 95% CI: −4.48, −1.30) and particles subgroups (SMD:
−3.03, 95% CI: −3.57, −2.50) had comparable effect sizes
(Figure 2). There was high variability in the reported effect
sizes in the particles groups ranging from –29.54 to −0.21.
Similarly, biomaterial-based approaches were also associated
with overall improvements in neurological score (SMD:
−2.3, 95% CI: −2.85, −1.76; Figure 3). Administration
of the biomaterial-based therapies within 24 h of stroke
onset appeared to be most effective leading to the most
marked improvement in lesion volume (SMD: −3.94, 95%
CI:−5.19,−2.69; Table 1).

Risk of Bias and Study Quality
Risk of bias was assessed using the CAMARADES checklist
(19). Overall, the median score was 5.5/10 (IQR 4.25-6). Studies
within the scaffolds (6/10, IQR 4-7) and particles (5/10, IQR
4-6) subgroups had very similar scores (Table 2). Reporting
of randomization (56%), blinding (35% to stroke and 50% to
outcome) and sample size calculations (9%) was low.

Publication bias was then assessed. From visual inspection
of the funnel plot for lesion volume (Figure 4), there was
pronounced asymmetry denoting publication bias. This was
confirmed by Egger’s regression test (p < 0.001). Similarly, there
was asymmetry in the funnel plot of neurological score (p <

0.001; Figure 4). Trim and fill analysis estimated 19 “missing”
studies on the right side of the funnel plot of lesion volume
outcome (Figure 5) which adjusted the effect size to −1.91 (95%
CI: −2.44, −1.38). Conversely, trim and fill analysis did not
report any “missing” studies for neurological score.

FIGURE 4 | Publication bias analysis for biomaterial-based interventions

by type. Funnel plots with pseudo 95% CI for publication bias of lesion

volume (A) and neurological score (B).

DISCUSSION

Summary of Findings
In this study we assessed the efficacy of biomaterial-based
approaches in pre-clinical models of ischaemic stroke. A total
of 66 publications met our inclusion criteria for the systematic
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FIGURE 5 | Trim and fill analysis of lesion volume showing published studies

(filled circles) and estimated unpublished studies (unfilled circles). The solid

vertical line indicates the adjusted effect size.

review with 44 studies (86 comparisons) included in the meta-
analysis. Overall, our findings show that biomaterial-based
interventions improved both lesion volume and neurological
score. Treatment within 24 h of stroke onset appeared to be the
most effective timepoint. We next assessed risk of bias using the
CAMARADES checklist (19) and showed the median score was
5.5/10. We also identified pronounced asymmetry in the funnel
plots of both the lesion volume and neurological score dataset,
indicating publication bias. Trim and fill analysis indicated
there were 19 “missing” studies reporting negative or neutral
lesion volume data which when adjusted for, greatly reduced the
effect size.

Variability in Outcome Measures
In agreement with a recent systematic review on animal models
of stroke and vascular cognitive impairment (29), we reported
very high variability in the choice of functional outcome
measures. A limitation of the pre-clinical stroke field is the lack
of consensus on the optimal test or battery of tests for assessing
functional recovery (30). We selected neurological score as
one of our outcome measures as it is by far the most widely
used assessment of recovery (29). While there are a number of
advantages including being fast to perform and requiring no
specialist equipment, a large drawback of neurological scores
is that they are highly subjective (31). Additionally, we noted
there was no standardization in the scale used and a number
of publications neglected to report the scoring system used. A
further limitation is that as rodents have a great capacity for
spontaneous recovery, simpler assessments such as neurological
scores often cannot detect deficits at later timepoints (30). These
scores may therefore have limited use in studies where scaffold
materials are administered at chronic timepoints after stroke (1–
2 weeks) (32–34). In addition, neurological scores are not able to
adequately distinguish compensatory strategies from true motor
recovery (35) which as previously suggested, could lead to false
positives (36, 37). Future studies should therefore aim to use tasks

such as skilled reaching and gait analysis which can differentiate
between the two.

Additionally, we noted that all but two publications identified
in our systematic review reported neurological score as mean ±

SD/SEM. This is surprising given that these data are ordinal and
thus should be expressed as median ± IQR. The calculated effect
sizes of individual studies should therefore be approached with
caution. Nevertheless, given that the central limit theory states
that the mean of a large number of observations will tend toward
a normal distribution, our overall effect size for neurological
score are robust.

Lesion volume was also chosen as an outcome measure in our
meta-analysis given its wide use in the pre-clinical stroke field.
The vast majority of the included studies assessing the efficacy
of nanoparticles chose acute end points (24–48 h) with lesion
volume as the primary outcome measure of neuroprotection.
However, most studies assessing the capacity of scaffolds to
promote brain regeneration elect to administer during the
sub-acute and chronic phase of stroke. In these instances,
it is currently unclear whether lesion volume assessment at
chronic timepoints is a measure of tissue atrophy, repair or a
combination of the two (33, 38, 39). Future work should therefore
focus on developing standardized methods for evaluating tissue
regeneration. For example, Ghuman and colleagues have chosen
to focus on host cell infiltration into ECM hydrogels as an
outcome measure (32, 38). Furthermore, it is worth noting that
many studies that focused solely on material characterization or
assessment of administration at the tissue level were excluded
from our systematic review and meta-analysis as lesion volume
and neurological scores were not included as outcome measures.

Both histological techniques (including 2,3,5-
triphenyltetrazolium chloride (TTC), cresyl violet or
haematoxylin & eosin (H&E) stains) and magnetic resonance
imaging (MRI) were used to measure lesion volume. The
variation in choice of method likely reflects the availability
of MR scanners or preference of researchers toward a certain
method. However, this may introduce inter-study variability
into lesion volume measurements. A meta-analysis comparing
measurements obtained from T2-weighted MR images and
histological sections found a strong correlation between the
two methods (p < 0.001) (40). Nevertheless, lesion volume
measurements from MR images were larger than for histology
and there was considerable variation in the reporting and use of
MR methods (40). Despite this, as our study compares the SMD
of treatment and control group measurements obtained using
the same method, the differences in methodology is unlikely to
have an effect on the conclusions of our study.

Study Quality and Risk of Bias
To improve the quality of pre-clinical research, a number of
guidelines have been published in recent years including the
National Centre for the Replacement, Refinement and Reduction
of Animals (NC3Rs) published the Animal Research: Reporting
of in vivo Experiments (ARRIVE) guidelines (41). This consists
of a checklist of 20 items which should be reported including
full details of allocation to experimental groups, sample size
calculations and reporting of exact animal numbers. While most

Frontiers in Neurology | www.frontiersin.org 7 August 2019 | Volume 10 | Article 924

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Bolan et al. The Potential of Biomaterial-Based Approaches

of the studies included in our systematic review were published
after the ARRIVE guidelines (2011 onwards), reporting of these
items remained low. This is in agreement with a recent position
paper which shows compliance with the guidelines so far has
been low (42). We noted that several publications had extremely
large effect sizes (SMD >-10) of which a number reported
>80% reductions in lesion volume following treatment. Previous
systematic reviews of in vivo studies have shown that studies
reporting the greatest efficacies often have the lowest compliance
with such checklists (43). It is possible that limitations in study
design could account for an overestimation in effect size and
reduced reliability of the results. It has been suggested that the
lack of blinding and randomization has led to false positives in
neuroprotection studies or over-estimates of efficacy which may
have contributed to the translational roadblock in the field (16).

As previously mentioned, our results indicated the presence
of publication bias. In particular, trim and fill analysis predicted
there was a substantial number of “missing” unpublished
studies reporting neutral or negative lesion volume outcomes.
Publication bias is an issue not limited to pre-clinical stroke
research (19, 44, 45) which can lead to overestimation of
efficacy. For example, a number of studies has shown that
conference abstracts reporting positive results are more likely
to be published later (46–48). To avoid another translational
roadblock, greater emphasis should be placed on publishing
negative and neutral data.

Limitations
This systematic review and meta-analysis is the first to collate
the pre-clinical literature on biomaterials for ischaemic stroke.
As such, we believe the synthesized findings and conclusions
are important for the field. Nevertheless, there are a number
of limitations. Firstly, only summary data obtained from the
publications was used for the meta-analysis and in many
cases, values had to be estimated from graphs. As such, our
measurements may differ marginally to the raw values. However,
we did not contact authors to obtain these data. A study by the
Cochrane Library compared meta-analyses using summary or
“aggregate” data to those using raw data and found the difference
in results and conclusions to be minimal (49). As our aim was to
provide a succinct summary of the current field, we reason that
the use of summary data for meta-analysis has negligible impact
on the conclusions of the review.

Additionally, the considerable heterogeneity in the types
of biomaterials used made identifying suitable subgroups
problematic. We reasoned that all of the publications could be
classified broadly as either scaffolds (administered at the lesion
site for in situ tissue engineering in the sub-acute to chronic phase
of stroke) or as particles (usually delivered systemically before or
acutely after stroke). We acknowledge the wide range of material
types within the chosen subgroups and an alternative option may
have been to include a greater number of specific subgroups.
However, we reasoned that this would decrease the statistical
power of the meta-analysis and the main objective was to give
an overview of the efficacy of biomaterial-based approaches in
pre-clinical stroke.

We acknowledge our search criteria only identified studies
relating to ischaemic stroke. A separate search containing

the keywords intracerebral hemorrhage and subarachnoid
hemorrhage, returned seven relevant publications (50–56). Based
on the small number of publications and the heterogeneity
in outcome measures used, we chose not to include these
studies. Given our findings concerning risk of bias and study
quality, a future systematic review and meta-analysis should
investigate this in the emerging field of biomaterial therapies for
hemorrhagic stroke.

CONCLUSIONS

Our meta-analysis revealed that studies assessing biomaterial-
based interventions for ischaemic stroke report overall positive
results leading to reductions in lesion volume and neurological
improvements in rodent models. Additionally, our systematic
review regarding study quality showed CAMARADES checklist
score was 5.5/10. Our findings provide insight into the
field of biomaterials for stroke therapeutics and the quality
of studies conducted. We believe the results highlight the
need for improved study design and reporting to ultimately
support translation of biomaterial-based therapies to the
clinical setting.
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