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Annual reproductive success and senescence patterns vary sub-
stantially among individuals in the wild. However, it is still sel-
dom considered that senescencemay not only affect an individ-
ual, but also affect age-specific reproductive success in its off-
spring, generating transgenerational reproductive senescence. We
used long-term data from wild yellow-bellied marmots (Mar-
mota flaviventer) living in two different elevational environments
to quantify age-specific reproductive success of daughters born
to mothers differing in age. Contrary to prediction, daughters
born to older mothers had greater annual reproductive success
on average than daughters born to younger mothers, and this
translated into greater lifetime reproductive success. However, in
the favorable lower elevation environment, daughters born to
older mothers also had greater age-specific decreases in annual
reproductive success. In the harsher higher elevation environment
on the other hand, daughters born to older mothers tended to
die prior to reaching ages where such senescent decreases could
be observed. Our study highlights the importance of incorporat-
ing environment-specific transgenerational parent age effects on
adult offspring age-specific life-history traits to fully understand
the substantial variation observed in senescence patterns in wild
populations.

Aging | life-history strategies | reproductive trade-offs | resource allo-
cation

Introduction
While there is compelling evidence that reproductive and actu-
arial senescence are commonplace in wild animal populations
(reviewed by 1-2), variation in senescence rates among individuals
within the same population remains challenging to explain. Re-
cent studies in natural populations have shown that developmen-
tal conditions can impact an individual’s late-life reproductive
performance and senescence rates (i.e., the decrease in individual
reproduction and survival probability with increasing age, e.g., 3-
10). One potentially influential factor is the age of the individual’s
mother at the time of birth. Indeed, the rationale underlying clas-
sic evolutionary senescence theories can be extended to encom-
pass fitness components of an individual’s offspring rather than
solely the focal individual’s own future fecundity and survival.
Complex effects of parent age on offspring life-histories could
then arise, resulting in transgenerational senescence effects that
could influence the offspring’s senescence patterns and fitness
and, more broadly, the evolution of lifespan and aging (11-12).

Based on senescence theory, oldermothersmight be expected
to have fewer resources to allocate to reproduction, and therefore
produce offspring that reproduce less successfully and senesce
faster themselves (13-14). However, very few studies of natural
populations have investigated effects of parental age on post-
independence offspring performance (reviewed by 15). In par-
ticular, few studies have quantified transgenerational senescence
effects, defined as effects of parental age at birth on an offspring’s
age-specific decrease in a given trait (but see 12, 16-17). Conse-
quently, it is unclear whether maternal age effects can in fact be
sufficiently long-lasting to affect offspring age-specific reproduc-

tion and senescence expressed several years post-birth. It is also
unclear how such effectsmight depend on other factors that affect
offspring’s adult phenotypes. Indeed, heterogeneity is a central
component of dynamic natural systems, and a key hypothesis
is that the form and magnitude of transgenerational effects on
offspring phenotype could vary with environmental conditions
(18). Specifically, lower allocation of older mothers may only
negatively affect performance of offspring that live in harsher
environments (e.g., harsher current or natal environments as
in 3, 19-25). Since studies on transgenerational senescence are
rare overall, there is inevitably little knowledge on environment-
dependent transgenerational senescence. One reason why such
studies are rare is that detailed multi-generational data, including
full life-histories of individuals, their mother’s age at birth and
developmental environmental conditions, are very difficult to
obtain.

Here, we analyse 48 years (1967-2014) of longitudinal data
on individual life-histories within a yellow-bellied marmot (Mar-
mota flaviventer) population exhibiting substantial variation in
litter size (0-10 pups) and inhabiting two different elevational
sites with very different seasonal environmental conditions. Pre-
vious studies demonstrated typical patterns of within-generation
senescence in female marmots (reproductive senescence, Alpine
marmots, Marmota marmota; body mass senescence, yellow-
bellied marmots, M. flaviventer; 26-27), and revealed substan-
tial differences in phenology and associated life-history between
the two elevational sites, reflecting major differences in local
environmental harshness (28-29). It is commonly expected that

Significance

There is substantial variation in aging patterns across individ-
uals. Even more interesting is that these patterns may not only
depend on an individual’s own age, but also that of its parents.
However, little is known about such transgenerational effects
of parent age, especially regarding offspring reproduction
and senescence once they reach adulthood. Capitalizing on a
long-term study of free-living yellow-bellied marmots where
individuals’ fates were followed throughout their lives, we
show that daughters born to older mothers had greater annual
and lifetime reproductive success but also senesced faster or
tended to have shorter lifespans, depending on environmental
harshness. Thus, parental age may have longer-lasting impacts
on offspring performance and should be considered in future
studies of aging in wild populations.
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Fig. 1. Daughter annual reproductive success (i.e., annual litter size)
as a function of daughter age (years), mother age at birth (years) and
elevation. Daughters at (a) low and (b) high elevation were born to young
(orange line, shading and crosses; 2-4 years), mid-aged (blue line, shading
and empty circles; 5-8 years), or old (black line, shading and empty upside-
down triangles; 8 years or more) mothers. Shaded areas show prediction
approximated confidence intervals and points show the raw data. Mother
age was fitted as a continuous variable and the three mother age categories
depicted in this figure were used for illustration purposes.

individuals will adopt a conservative reproductive strategy un-
der harsh conditions, which may involve transferring reproduc-
tive costs to offspring (30-31). This system therefore provides a
valuable opportunity to test two key hypotheses regarding long-
term transgenerational effects of maternal age at birth (hereafter
referred to as “mother age”) on reproductive senescence of female
offspring living under different environmental conditions (i.e.,
environment-dependent transgenerational senescence).

First, daughters born to older mothers have lower annual
reproductive success (mother age effect on daughter annual litter
size, quantified here as 0-10 weaned pups) and higher rates of
reproductive senescence (mother age effect on daughter age-
specific decreases in annual litter size) than daughters born to
younger mothers. The latter hypothesis can be tested through a
two-way interaction between mother age and daughter age on
daughter annual reproductive success.

Second, transgenerational effects of mother age depend on
the environment, with daughters born to older mothers exhibiting
faster senescence rates when (i) living at higher elevation (i.e.,
harsher current environment) than when living at lower eleva-
tion (i.e., more favorable current environment), and (ii) when
born into a larger litter. Since offspring born into larger litters
or broods commonly have reduced survival, lower weights and
reduced subsequent probabilities of reproduction (e.g., 21-25),
larger natal litter size is expected to represent a harsher natal
environment. These hypotheses can be tested through three-way
interactions among mother age, daughter age and elevation or
litter size at birth, respectively.

In addition, while understanding effects of mother age on
offspring reproductive senescence requires analyses of offspring
age-specific reproduction rather than total lifetime reproduction
(16), the form of selection on maternal life-history can addition-
ally depend on the total fitness of daughters produced at each
age. Therefore, we additionally tested for effects of mother age
on daughter lifespan and lifetime reproductive success, and hence
explicitly evaluated whether mother age affects overall daughter
fitness.

Results
Analyses of 656 observations of annual reproductive success for
218 individual known-aged daughters (2-14 years) with known-

aged mothers showed that daughters born to older mothers had
higher, not lower, annual reproductive success on average than
daughters born to younger mothers (Fig. 1a-b; Table 1). In line
with prediction, we found a significant three-way interaction
among a mother’s age at daughter birth, daughter age and ele-
vation (Table 1). This showed that, as predicted, daughters born
to oldermothers had faster decreases in age-specific reproductive
success than daughters born to younger mothers and hence more
rapid senescence (Fig. 1a; see SI Appendix 1, Fig. S1a for a 3D
plot). However, opposite to prediction, these effects were only
observed in the less harsh lower elevation environment, where
model estimates imply that daughters born to mid-age mothers
apparently did not senesce (Fig. 1a). In the harsher higher ele-
vation environment, daughters born to older mothers commonly
died before reaching ages where senescent decreases may have
been observed (Fig. 1b; see SI Appendix 1, Fig. S1b for a 3D plot).
While explicit analyses of daughter lifespan showed no significant
effect of mother age at daughter birth (SI Appendix 1, Table S2),
the interaction between mother age and elevation suggested that
daughters born to older mothers at higher elevation tended to
have shorter lifespans (β = -0.13, ±0.08, z = -1.62, p = 0.11; SI
Appendix 1, Table S2). However, due to their higher mean annual
reproductive success, daughters born to older mothers had higher
lifetime reproductive success at both elevations (βMAB = 0.38,
±0.14, z = 2.66, p < 0.001; SI Appendix 1, Table S3).

Contrary to prediction, there was no significant three-way in-
teractive effect of mother age, daughter age and daughters’ natal
litter size on daughter annual reproductive success (SI Appendix 1,
Table S1), and thus no evidence that resource restrictions arising
in large litters affect daughter reproductive senescence. However,
there was a significant two-way interactive effect of mother age
and daughters’ natal litter size on daughter annual reproductive
success (Table 1), showing that effects of mother age depend on
size of the litter into which the daughter was born. In daughters
born to younger mothers, daughter annual reproductive success
was higher on average when daughters were born into larger natal
litters (Fig. 2). However, in daughters born to older mothers,
daughter annual reproductive success was higher on average
when daughters were born into smaller natal litters (Fig. 2).

Models fitted to data subsets comprising long-lived daugh-
ters, or daughters born to long-livedmothers, yielded qualitatively
similar results to the models fitted to the full dataset (SI Appendix
1, Tables S4-5). This implies that estimated effects of daughter
and mother age are not due to selective disappearance (e.g. 32-
33) and can be interpreted at the individual level.

Discussion

Our analyses revealed three strong transgenerational effects of
mother age. First, daughter age-specific variation in annual re-
productive success exhibited different patterns depending on ma-
ternal age at birth, suggesting that mother age plays an important
role in shaping offspring reproduction and senescence. Second,
the form and magnitude of these effects depended on elevation
and natal litter size, and hence on environmental harshness in
both the current and natal environment. Third, and contrary to
prediction, daughters born to older mothers had higher mean
annual reproductive success, and hence lifetime reproductive
success, than daughters born to younger mothers.

Following senescence theory, we predicted a negative rather
than the observed positive association between a mother’s age at
daughter birth and daughter annual reproductive success. Posi-
tive effects of parental age on offspring fitness components are
commonly attributed to increased experience of older individu-
als (e.g., 34-35). The observed relationship could also be inter-
preted as ‘terminal investment’ (36-37), or ‘terminal allocation’
(following 38), which does not necessarily imply fitness costs
resulting from increased allocation to reproduction at the end
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Table 1. Generalized linear mixed-effects model quantifying effects of maternal age at
birth (‘MAB’), daughter age, natal litter size, elevation, and number of mature females
in the colony (‘density’) on daughter annual reproductive success (i.e., annual litter size).

N = 656 daughter-year observations for 218 daughters (122 high
elevation, 96 low elevation)
Estimate SE z P-value

Intercept -0.44 0.20 -2.20 0.028
Maternal age at birth 0.16 0.10 1.70 0.090
MAB² 0.01 0.14 0.06 0.951
Age 0.30 0.08 3.72 <0.001
Age² -0.34 0.13 -2.68 <0.01
Natal litter size 0.18 0.09 2.03 0.043
Elevation[high] -0.06 0.21 -0.28 0.782
Density -0.17 0.10 -1.74 0.082
MAB² x Age² -0.34 0.12 -2.79 <0.01
MAB x Natal litter size -0.28 0.09 -3.05 <0.01
Elevation[high] x
MAB²

0.08 0.19 0.44 0.663

Elevation[high] x Age² -0.04 0.16 -0.24 0.808
Elevation[high] x
MAB² x Age²

0.45 0.18 2.56 0.010

Daughters were born to 97 different mothers between 1965 and 2008. Eliminated interaction
terms are shown in Table S1 (SI Appendix 1). The reference for elevation is [low]. Fixed effects
explained 12% of the variance in daughter litter size (marginal R2; 79). Random effects variances
are 0.23, 0.02, 0.12 and 0.05 for mother identity, daughter identity, year observed and cohort
respectively. Estimated effects sizes are reported with standard errors (SE) and z-test statistics (z).
Significant terms are shown in bold.

Fig. 2. Daughter annual reproductive success (i.e., annual litter size) as
a function of mother age at birth (years) and daughter natal litter size.
Daughters were born to young (orange line, shading and crosses; 2-4 years),
mid-aged (blue line, shading and empty circles; 5-8 years), or old (black
line, shading and empty upside-down triangles; 8 years or more) mothers.
Shaded areas show prediction approximated confidence intervals and points
show the raw data. Mother age was fitted as a continuous variable and the
three mother age categories depicted in this figure were used for illustration
purposes.

of individuals’ lives (39-40). Conversely, low annual reproductive
success of daughters born to younger, less experienced moth-
ers, may represent maternal constraint (lack of competence)
and/or restraint, which implies lower investment in reproduction
at younger ages when residual reproductive value is high (41-
42). All else being equal, one implication of older mothers pro-
ducing daughters with higher annual reproductive success would
be that older mothers produce daughters with higher lifetime
reproductive success, and this is indeedwhat we found. This result
contrasts with most of the few previous studies of mother age
effects on offspring lifetime reproductive success, which either
found a negative association (4; 12), or no association (12; 16; but
see 17).

As predicted, patterns of variation in daughter annual re-
productive success in relation to mother age differed between
elevational environments. However, interestingly, the less harsh
lower elevation environment showed both the fastest and slowest
senescence rates, with daughters born to older mothers senesc-
ing rapidly and daughters born to mid-age mothers apparently
senescing little. Meanwhile, daughters born to young mothers
followed a classic pattern of increasing initial annual reproductive
success followed by a decrease at older ages. This pattern was
also observed in the harsher higher elevation environment, but
here daughters born to old mothers tended to die younger and
therefore more rarely reached ages at which senescence could
be observed. These results support the idea that environmental
harshness may influence senescence trajectories in terms of re-
productive performance, and potentially longevity (43-44). Our
results show that such patterns can further depend on transgen-
erational effects of mother age at birth.

We also found that effects of mother age on daughter annual
reproductive success depended on the daughter’s natal litter size.
Litter size at birth negatively impacted annual reproductive suc-
cess of daughters born to older mothers but had a positive effect
on daughters born to younger mothers. This indicates a trade-
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off between number and quality of offspring in older females,
as previously described in other systems (e.g., red squirrels, Sci-
urus vulgaris; lesser black-backed gulls, Larus fuscus; Columbian
ground squirrels,Urocitellus columbianus; 23, 45-46).Oldermoth-
ers can produce fewer daughters with a higher annual reproduc-
tive success, or more daughters with lower annual reproductive
success (Fig. 2). There was no evidence of such a trade-off in
young mothers.

Taken together, our results show that age-specific variation in
daughter annual reproductive success depends on combinations
ofmother age at birth and current and natal environmental condi-
tions. Studies which assess relationships between mother age and
offspring early-life performance may therefore fail to capture the
full extent of transgenerational senescence effects, because some
effects are only expressed some considerable time post-weaning
(i.e., in old offspring) or under specific environmental conditions.
Our findings obviously raise the question of what underlies the
varying effects of mother age. One mechanism could be that
mothers of different ages differentially allocate resources to their
own somatic maintenance versus that of their daughters, resulting
in offspring that differ in ‘biological age’ at birth or weaning (18,
47-48). These possibilities are supported bymechanistic studies of
telomeres and oxidative stress (49-52), and consistent with previ-
ous long-term studies of maternal effects on offspring senescence
and lifespan (e.g., 16, 53-54). For example, offspring born to older
mothers had earlier onset and increased rate of reproductive
senescence in great tits (16), male common terns (Sterna hirundo)
that were sired by older fathers had reduced lifespans (54), and
female Asian elephants (Elephas maximus) born to older mothers
had reduced overall survival and lifetime reproductive success
(17). Our results then imply that mothers may adjust allocation
depending on environmental conditions.

In the case of lower maternal resource allocation, daughters
may compensate, for example through catch-up growth (55),
and such compensatory strategies are known to translate into
increased costs later in life, including earlier onset and/or in-
creased senescence rates (55-56). Alternatively, daughters may
use reduced maternal allocation as a cue for their future envi-
ronment and/or somatic state, potentially leading to predictive
adaptive responses (PARs; 57-58). If so, daughters at higher
elevation may adopt a life-history strategy that matches their
anticipated environment and/or future state (e.g., 7). A previous
study suggests that female marmots prepare offspring for current
environmental conditions through prenatal glucocorticoid levels
and by adopting different age-dependent reproductive strategies
(59). Such hypotheses require explicit empirical tests, and future
studies could do so by experimentally altering environmental
conditions and resource availability for mothers and daughters
at different times in life (60). The increasing availability of long-
term multi-generational datasets from wild populations will also
allow comparative analyses across multiple species and environ-
ments, to further improve our understanding of transgenerational
senescence.

One firm current conclusion is that daughter age-specific re-
productive trajectories are associated with mother age at daugh-
ter birth, and that these associations vary with environmental
harshness. Thus, our study adds new insights to the small but
growing body of research in natural populations showing that
mother age effects can be dynamic and sufficiently long-lasting
to affect offspring senescence several years post-birth, as well as
offspring fitness, supporting the idea that such transgenerational
effects may play an important role in shaping overall senescence
(16).

Materials and Methods
Study system

Yellow-bellied marmots are typically polygynous and most individuals
live in colony groups consisting of one or several matrilines (related females),

juveniles, yearlings and a resident adult male that defends its harem. Females
are sexually mature from age two, mate after emerging from hibernation
in late April or early May, and successfully reproducing females give birth
underground to a single litter of 1-10 pups, between mid-May and mid-
June (61-62). Pups are nursed for 25-35 days and are fully weaned and
independent when they emerge from late June to mid-July (63).

The study area comprises a 5 km segment of the Colorado East River
Valley (38°57’N, 106°59’W; 2900 m elevation) and spans two major sites
that differ in elevation by about 165 m (hereafter: ‘high elevation’ and ‘low
elevation’). All females in the current dataset remained in the same elevation
site throughout their lives. At high elevation, snowmelt is later, thus delaying
and shortening the vegetation growing season (28, 63 pp. 119-129), and
marmots emerge two weeks later than at low elevation (62, 64).

Data collection and organisation
Since 1962, every year between mid-May and mid-September, marmots

were repeatedly captured on a fortnightly schedule with baited Tomahawk
traps at known burrow locations at both elevations. Since newly born litters
cannot be accessed underground, pups are first captured at emergence in
June or July. During the pup emergence season, colonies were monitored
daily to identify and capture new pups within a week of emerging from their
maternal burrows.

All individuals included in current analyses were first captured as pups at
emergence. They were hence of known age, identifiable by uniquely num-
bered ear tags. Captured individuals were also sexed and dorsally marked
with fur dye to allow identification from afar. Offspring were assigned
to mothers from behavioral observations, and since 2002, genetic analyses
were used to confirm assigned maternities based on a likelihood approach
of 8-12 microsatellite loci at 95% trio confidence level, which returned
98% congruence with field observations (see methods in 65). As a measure
of daughter annual reproductive success, we focused on the number of
offspring weaned in a given year (i.e., annual “litter size”). This is a relevant
measure to quantify reproduction, because in female mammals, lactation is
the most energetically expensive component of reproduction (66-67). Thus,
even if some unobserved pups died underground prior to emergence, the
majority of reproductive costs per litter are likely captured by this measure.
Natal litter size of a daughter was defined as the total number of weaned
pups in the daughter’s birth litter.

Our dataset comprised all observations of sexually mature daughters
(i.e., age ≥ 2) for which age of the mother at the time of the daughter’s birth
was known. Since colonies are monitored intensively and annual recapture
probability of adults was estimated to exceed 98% by multistate mark-
recapture analyses (68-69), it is highly likely that unobserved females have
died. Based on this, maternal and daughter lifespan were estimated as the
age at which a mother or daughter was last observed.

All mother-daughter pairs lived either at high elevation or low elevation
throughout their entire lives and hence experienced the same elevational
environment. We only included daughters from cohorts where almost all
individuals were already dead to minimize selective disappearance biases
in the data structure. We retained four cohorts that only had one or two
surviving individuals (contributing 52 daughters in total).

Data summary
The data comprised a total of 656 daughter-year observations between

1967 and 2014, for 218 daughters (122 at high elevation; 96 at low elevation),
born to 97 different mothers between 1965 and 2008 (SI Appendix 1, Fig.
S2a). Mother cohorts ranged between 1962 and 2005 (SI Appendix 1, Fig.
S2b; also see Figs. S3-4). The total number of daughters produced per mother
ranged between 1 and 46 (median = 4; SI Appendix 1, Fig. S5). Of the 218
daughters, 128 weaned at least one litter during their lifetime (distributions
of daughter litter sizes and how they vary with daughter age are shown
in SI Appendix 1, Figs. S6-7). Each daughter’s natal litter size, including the
daughter, ranged between 1 and 10 pups (median = 5), and colony density
ranged between 1 and 23 sexually mature females (median = 6). Mother
and daughter ages ranged from 2 to 13 and 2 to 14 years respectively
(median mother and daughter age across all observations = 4.0 and 3.0 years
respectively; SI Appendix 1, Fig. S8).

Statistical analyses
To quantify elevation-dependent relationships between daughter an-

nual reproductive success and mother age, we fitted a generalised linear
mixed-effects model (GLMM) assuming a Poisson distribution with log link.
Fixed effects included second order orthogonal polynomials for mother age
and daughter age, elevation as a two-level factor (high versus low) and natal
litter size. The linear and quadratic effects for daughter and mother age
were included to test for direct senescence and transgenerational senes-
cence effects. Elevation accounted for the major between-site difference
in environmental conditions encountered throughout a daughter’s entire
lifetime. We included key interactions between these effects to test specific
hypotheses. To test if daughters born to older mothers have higher rates
of reproductive senescence than daughters born to younger mothers, we
fitted two-way interactions between mother and daughter age, for both
linear and quadratic effects. To test if effects of mother age on daughter
age-specific reproductive success and senescence differ between elevational
environments, we fitted three-way interactions of elevation with linear and
quadratic mother age and daughter age. To test if effects of mother age
on daughter age-specific reproductive success and senescence are affected
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by natal resource availability, as inferred from natal litter size, we fitted
three-way interactions of natal litter size with linear and quadratic mother
age and daughter age. If three-way interactions were not significant, we
also tested two-way interactions of the environmental variable with linear
and quadratic mother age. To account for potential density dependence or
reproductive suppression effects on daughter annual reproductive success
(as previously reported in yellow-bellied marmots, M. flaviventer and Alpine
marmots, M. marmota; 70-71) we additionally fitted the number of sexually
mature females within a daughter’s colony (i.e., density) in each year of
reproduction as a covariate.

Finally, we fitted two further GLMMs (again assuming Poisson distribu-
tions) to test whether mother age at daughter birth affects daughter lifes-
pan and/or lifetime reproductive success (LRS). Daughter LRS was primarily
measured as the total number of offspring weaned during a daughter’s
lifespan (i.e., a time-independent measure). We additionally calculated a
time-dependent measure, individual λ, which down-weights offspring born
later in life (see 72), but this measure was highly correlated with time-
independent LRS (Spearman’s rho = 0.99, N = 218 daughters). Models for
daughter LRS and lifespan included fixed effects of mother age (second
order orthogonal polynomials), elevation, natal litter size, and interactions
between elevation and mother age.

To account for non-independence of repeated observations of individ-
uals, years and cohorts, models of daughter annual reproductive success
included daughter identity nested within mother identity, year and daughter
year of birth as random effects, and models of daughter LRS and lifespan
included mother identity and year of birth as random effects. Since estimates
of the dispersion parameter (ratio of residual deviance to residual degrees
of freedom) indicated overdispersion of daughter annual reproductive suc-
cess and LRS (ratios of 1.8 and 4.2 respectively), we additionally fitted
observation-level random effects in those models (73).

Results are presented for full models, including non-significant fixed
effects (74). However, to avoid biasing other estimates (75), non-significant
interactions (P > 0.05) were backwards eliminated based on ANOVA (type III)
tests. When a three-way interaction was significant, all associated significant

and non-significant two-way interactions were retained. Mother and daugh-
ter ages were fitted as orthogonal polynomials up to the second order, which
removed the correlation between linear and quadratic age, making them
independently interpretable and allowing them to be independently fitted
in interactions (76). To facilitate interpretation of coefficients and model
convergence, all continuous predictors were scaled and centred with a mean
of 0 and a variance of 1. Models were fitted with the glmer function from the
package lme4 (77) in R version 3.3.1. (78). Model R2 values were calculated
according to Nakagawa & Schielzeth’s method (79), which allows calculation
of two types of R2: marginal R2 and conditional R2. The marginal R2 describes
the proportion of variance that is explained by fixed effects only, and the
conditional R2 describes the proportion of variance explained by both fixed
and random effects (79).

Finally, because biases can arise in cross-sectional analyses of age effects
due to individual heterogeneity and selective disappearance (32-33), we
fitted a series of additional models to different data subsets to confirm
effects of polynomial terms and interactions estimated across the full dataset
(detailed explanations in SI Appendix 1, “Supplementary analyses: Robustness
of observed effects”; Figs. S9-11; Tables S4-S11).

Data availability.
The data and code will be made available through Dryad if the paper is

accepted for publication.
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Figure 1. Daughter annual reproductive success (i.e., annual litter size) as a function of
daughter age (years), mother age at birth (years) and elevation. Daughters at (a) low and
(b) high elevation were born to young (orange line, shading and crosses; 2-4 years), mid-aged
(blue line, shading and empty circles; 5-8 years), or old (black line, shading and empty upside-
down triangles; 8 years or more) mothers. Shaded areas show prediction approximated
confidence intervals and points show the raw data. Mother age was fitted as a continuous
variable and the three mother age categories depicted in this figure were used for illustration
purposes.
Figure 2. Daughter annual reproductive success (i.e., annual litter size) as a function of
mother age at birth (years) and daughter natal litter size. Daughters were born to young
(orange line, shading and crosses; 2-4 years), mid-aged (blue line, shading and empty circles;

5-8 years), or old (black line, shading and empty upside-down triangles; 8 years or more)
mothers. Shaded areas show prediction approximated confidence intervals and points show
the raw data. Mother age was fitted as a continuous variable and the three mother age
categories depicted in this figure were used for illustration purposes.
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