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ABSTRACT
The double-averaging methodology is used in this paper for deriving equations for the second-order velocity moments (i.e. turbulent and dispersive
stresses) that emerge in the double-averaged momentum equation for incompressible Newtonian flows over mobile boundaries. The starting point in
the derivation is the mass and momentum conservation equations for local (at a point) instantaneous variables that are up-scaled by employing tem-
poral and spatial averaging. First, time-averaged conservation equations for mass, momentum, and turbulent stresses for mobile bed conditions are
derived. Then, the double-averaged hydrodynamic equations obtained by spatial averaging the time-averaged equations are proposed. The derived
second-order equations can serve as a basis for the construction of simplified mathematical and numerical models and for interpretation of exper-
imental and simulation data when bed mobility is present. Potential applications include complex flow situations such as free-surface flows over
vegetated or mobile sedimentary beds and flows through tidal and wind turbine arrays.

Keywords: Double averaging methodology; form-induced stress; mobile-boundary flows; second-order hydrodynamic equations;
spatially-averaged turbulent stress; turbulence

1 Introduction

Overland, river, coastal and atmospheric flows frequently
exhibit high levels of multi-scale spatial heterogeneity due to
geometrically complex and, occasionally, mobile boundaries.
This heterogeneity affects the instantaneous and time-averaged
flow fields, especially in the region near the bounding sur-
face. Various averaging techniques such as ensemble, temporal
and/or spatial averaging have been typically applied to cope
with this flow heterogeneity (e.g. Ishii & Hibiki, 2006; Jackson,
2000; Monin & Yaglom, 1971; Whitaker, 1999). Applied to the
original equations of fluid mass and momentum conservation,

the averaging enables up-scaling so the newly obtained equa-
tions describe somewhat homogenized fields of averaged hydro-
dynamic variables.

Combined time and spatial averaging (known as double-
averaging) has been extensively used in the studies of hydrauli-
cally rough-bed flows as it explicitly (i) incorporates the effects
of form drag and viscous friction in the double-averaged
equations, and (ii) accounts for roughness-induced small-scale
heterogeneity in turbulent and mean flow fields (e.g. Giménez-
Curto & Lera, 1996; Nikora et al., 2007; Nikora, Ballio, Cole-
man, & Pokrajac, 2013; Nikora, Goring, McEwan, & Griffiths,
2001; Pedras & de Lemos, 2000; Raupach & Shaw, 1982). This
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type of heterogeneity in the instantaneous and time-averaged
flow fields is presented in the double-averaged equations as tur-
bulent stresses and form-induced or dispersive stresses (which
are second-order velocity moments, e.g. Giménez-Curto &
Lera, 1996; Monin & Yaglom, 1971; Raupach & Shaw, 1982).
Equations for these fluid stresses, known as second-order equa-
tions, represent an important part of the theoretical back-
ground underpinning modern studies of turbulent wall-bounded
flows.

Time-averaged second-order equations describing the bal-
ances of mean energy and turbulent energy (i.e. normal stresses)
were originally introduced in the pioneering work of Reynolds
(1895). Later they were expanded to also cover shear stresses
and have served as a foundation for data interpretation and
a variety of turbulence modelling approaches, such as fam-
ilies of k-ε models and algebraic stress turbulence models
(e.g. Monin & Yaglom, 1971; Nezu & Nakagawa, 1993; Rodi,
1984). In the time-averaged second-order equations, the drag
forces are accounted for as the boundary conditions rather than
included in the equations themselves. Therefore, such equa-
tions become unsuitable, in a practical sense, for understanding
flows over complex boundaries such as gravel or dune beds in
rivers. This limitation stimulated the development of the double-
averaged second-order equations where drag forces and their
effects appear in the equations explicitly, as a result of spatial
averaging (e.g. Brunet, Finnigan, & Raupach, 1994; Katul &
Albertson, 1998; Mignot, Barthélemy, & Hurther, 2008, 2009;
Pedras & de Lemos, 2001; Raupach & Shaw, 1982; Wilson &
Shaw, 1977).

Another important feature that emerges in the double-
averaged equations is form-induced stresses, which are co-
variances of the deviations of the time-averaged velocities
from their double-averaged counterparts, similar to the tur-
bulent stresses which are co-variances of the deviations of
the instantaneous velocities from their time-averaged coun-
terparts. Although a few studies highlighting the importance
of the form-induced stresses in rough-bed flows have been
reported (e.g. Aberle, Koll, & Dittrich, 2008; Coleman, Nikora,
McLean, & Schlicke, 2007; Cooper, Aberle, Koll, & Tait,
2013; Manes, Pokrajac, Coceal, & McEwan, 2008; Vowinckel,
Nikora, Kempe, & Fröhlich, 2017a, 2017b), little attention has
been paid to the balance of the form-induced stresses (nor-
mal and shear). Although a form of this balance equation
was proposed a few decades ago (Raupach & Shaw, 1982), it
has only recently been used for studying roughness effects in
open-channel flows (Yuan & Piomelli, 2014).

In general, the double-averaged second-order equations
include three types of interlinked equations: (1) balance equa-
tions for mean momentum fluxes (or stresses), including mean
energy balance, (2) balance equations for spatially-averaged
turbulent stresses, including turbulent kinetic energy balance,
and (3) balance equations for form-induced stresses, includ-
ing form-induced kinetic energy balance. The currently avail-
able double-averaged second-order equations have been derived

for fixed boundaries and, strictly speaking, cannot be applied
if flow boundaries are both complex and mobile; thus, their
application to questions related to river beds during floods
or vegetation canopies that constantly fluctuate as a result of
interaction with turbulent eddies, is limited. Indeed, boundary
motion can cause the discontinuity in the near-boundary instan-
taneous fluid properties within the averaging period, and thus
conventional time-averaging and corresponding time-averaged
and double-averaged equations need to be modified to account
for boundary mobility. All three types of equations (for mean,
turbulent, and form-induced stresses) are important as they
underpin any consideration of energy fluxes in turbulent flows
over complex boundaries, and are therefore required to provide a
proper theoretical foundation for dealing with mobile-boundary
flows.

In response to this need, the current paper presents the
derivation of equations describing the balances of the mean,
form-induced, and spatially-averaged turbulent stresses and
energies for mobile-boundary flows. As a necessary initial
step, the time-averaging operation is refined to account for the
rough-bed mobility effect and obtain time-averaged hydrody-
namic equations for mobile-boundary flows. Spatial averaging
is then applied on the time-averaged equations to obtain the
second-order equations for stresses that complement the double-
averaged equations of conservation of fluid mass and momen-
tum proposed by Nikora et al. (2013) for mobile-bed conditions.
The general approach of Keller and Friedmann (1924; see also
Monin & Yaglom, 1971) is followed for the derivation of
the equations for the second-order velocity moments for both
time-averaged and double-averaged equations.

The paper is structured as follows. Definitions of the aver-
aging operations and the associated quantities of bed porosity
(or roughness geometry functions) used in the derivations are
presented in Section 2. The local (at a point) time-averaged
hydrodynamic equations are given in Section 3, as these are
required to obtain the time- and spatially-averaged hydrody-
namic equations that are presented in Section 4. An example
to illustrate the potential application of the proposed equations,
under appropriate simplifying assumptions, is given in Section
5. Conclusions are presented in Section 6. Appendix 1 provides
supplementary details on the conditions and theorems that are
necessary for averaging operations employed in the derivation
process outlined in Appendix 2.

2 Background

This Section briefly reviews key definitions of the time- and
double-averaging operations for mobile-boundary flows that are
used for the derivation of the equations presented in Sections 3
and 4. Additional information on the averaging conditions and
theorems is given in Appendix 1, while details regarding the
double-averaging methodology as followed here can be found
in Nikora et al. (2007, 2013).
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2.1 Averaging operators: definitions

We first define the operation of time averaging at a point xi. The
superficial and intrinsic time averages of a random function θ
(xi, t) are defined, respectively, as (Nikora et al., 2013):

θ̄ s(xi, t) = 1
T0

∫
T0

θ(xi, t + τ)γ (xi, t + τ)dτ (1a)

θ̄ (xi, t) = 1
Tf (xi, t)

∫
T0

θ(xi, t + τ)γ (xi, t + τ)dτ (1b)

θ̄ s(xi, t) = φT(xi, t)θ̄(xi, t) (1c)

where θ is velocity, pressure or any other hydrodynamic vari-
able, overbar denotes the time-averaging operation, superscript
s denotes superficial averaging, xi and t are space and time coor-
dinates, τ is a “local” time coordinate used in the integrand, γ is
an indicator of the point occupancy by the fluid (i.e. γ = 1 when
the domain is occupied by the fluid and γ = 0 otherwise), Tf

refers to the sum of periods during which a point xi is occupied
by fluid, and T0 is the total averaging time (Tf ≤ T0). The super-
ficial and intrinsic time averages are linked through the local
time porosity φT = Tf / T0 (Nikora et al., 2013), as expressed by
Eq. (1c). Equations (1a)–(1c) enable the operation of time aver-
aging over a time period T0 even if this period includes time
intervals or instants when the point xi had not been occupied
by the fluid. For brevity, the variable dependence on the space
and/or time coordinates is not shown hereafter.

Applying the operators of superficial and intrinsic spatial
averaging (Gray & Lee, 1977) on the first and second operators
in Eqs (1a) and (1b), respectively, yields:

〈θ̄ s〉s = 1
V0

∫
V0

1
T0

∫
T0

θγ dtdV (2a)

〈θ̄〉 = 1
Vm

∫
V0

1
Tf

∫
T0

θγ dtdV (2b)

〈θ̄ s〉s = φVm〈φTθ̄〉 (2c)

where the angular brackets denote spatial averaging, V0 is the
total volume of the spatial averaging domain that in general
can be subdivided in two subdomains: (1) a subdomain of vol-
ume Vm every point of which has been visited by the fluid, at
least once, within the period T0, and (2) a subdomain of volume
(V0 − Vm) that has not been visited by the fluid within the total
averaging time T0. The expressions in Eq. (2) correspond to the
definitions of superficial and intrinsic double averages given
in Nikora et al. (2013). The superficial and intrinsic double
averages are linked through a relation 〈θ̄ s〉s = φVm〈φTθ̄〉, where
φVm = Vm / V0 denotes the spatial porosity based on the non-
zero γ̄ s. The space-time porosity is defined as φVT = φVm〈φT〉
(Nikora et al., 2013).

When applied to the hydrodynamic equations, the operators
of Eqs (1) and (2) need to be supplemented by the averaging
conditions (known as the Reynolds conditions or rules) and the-
orems detailed in Appendix 1. The application of the Reynolds
conditions requires the selection of an appropriate averaging
time and spatial domain. The averaging time T0 should be much
larger than the characteristic time scale of turbulent fluctuations
θ ′ = θ − θ̄ but much smaller than the characteristic time scale
of θ̄ . For example, in rivers T0 would be much larger than the
ratio of the flow depth to the flow velocity (i.e. prevailing turbu-
lent scale) but much smaller than the duration of a flood. Thus,
a sufficiently wide separation between these two time scales is
required to secure the applicability of Reynolds conditions.

An appropriate shape of the spatial averaging domain is a
thin slab parallel to the mean bed, with a vertical size much
smaller than the roughness height. The bed-parallel dimensions
of the averaging domain should appreciably exceed the rough-
ness length scales along and across the flow but be sufficiently
smaller than channel-scale of bed level fluctuations. Applying,
e.g., this rule for a gravel-bed river we would define an averag-
ing domain as being much thinner than a bed particle diameter d,
with bed-parallel dimensions being a few times larger than d but
much smaller than a channel width. Similar to time averaging, a
wide separation between characteristic roughness scales and the
scale of variation of the spatially-averaged value is required for
spatial averaging (Eq. (2)) to apply.

2.2 Decomposition of instantaneous and time-averaged
variables

Another element for the derivation of the time- and double-
averaged second-order equations, in addition to Eqs (1) and
(2), is the decomposition of the instantaneous variables θ into
mean θ̄ and fluctuating θ ′ quantities, known as the Reynolds
decomposition, i.e. θ ′ = θ − θ̄ . Application of the Reynolds
decomposition to the time-averaged momentum flux φTuiuk ((i)
in Eq. (3a)) results in the following expansion:

φTuiuk︸ ︷︷ ︸
(i)

= φTūiūk︸ ︷︷ ︸
(ii)

+φTu′
iu′

k︸ ︷︷ ︸
(iii)

(3a)

where quantities (ii) and (iii) represent the contributions of
the mean and fluctuating velocity fields to the time-averaged
momentum flux, respectively. A spatially-averaged analogue of
Eq. (3a) is given as:

φVm〈φTuiuk〉︸ ︷︷ ︸
(I)

= φVm〈φTūiūk〉︸ ︷︷ ︸
(II)

+φVm〈φTu′
iu′

k〉︸ ︷︷ ︸
(III)

(3b)

where the meaning of quantities (II) and (III) is similar to terms
(ii) and (iii) in Eq. (3a). The relation of Eq. (3a) involves time
averaging and no spatial averaging (at least in the framework
of the continuum mechanics), while the relation of Eq. (3b)
may be viewed as a spatially “upscaled” version of Eq. (3a).
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While temporal averaging is sufficient for studying hydrauli-
cally smooth-bed flows, consideration of hydraulically rough-
bed flows requires spatial averaging and decomposition of a
time-averaged quantity θ̄ into its spatially-averaged value 〈θ〉
and a spatial fluctuation ˜̄θ , i.e. θ̄ = 〈θ〉 + ˜̄θ . The latter rela-
tion is known as a modified Reynolds decomposition. Spatial
averaging is necessary to cope with the roughness-induced het-
erogeneity of the time-averaged velocity field, i.e. to make time-
averaged heterogeneous fields “smoother”. Using the modified
Reynolds decomposition ūi = 〈ūi〉 + ˜̄ui, the double-averaged
momentum flux φVm〈φTūiūk〉 ((II) in Eq. (3b)) may be decom-
posed as:

φVm〈φTūiūk〉︸ ︷︷ ︸
(II)

= φVT〈ūi〉〈ūk〉︸ ︷︷ ︸
(IIA)

+φVm〈φT ˜̄ui ˜̄uk〉︸ ︷︷ ︸
(IIB)

+ φVm〈φT ˜̄ui〉〈ūk〉 + φVm〈φT ˜̄uk〉〈ūk〉︸ ︷︷ ︸
(IIC)

(4)

where quantities (IIA) and (IIB) represent contributions to the
total spatially-averaged momentum flux φVm〈φTūiūk〉 from the
double-mean (〈ūi〉) and form-induced ( ˜̄ui) velocity fields, while
terms in (IIC) reflect potential contribution of the interrelations
between the time porosity φT and the time-averaged veloc-
ity. For convenience, the quantities (IIA), (IIB) and (IIC) are
referred to as the double-mean, form-induced, and porosity-
correlation stresses (which may be either zero or non-zero),
respectively. From Eqs (3b) and (4), a decomposition for the
double-averaged kinetic energy 1/2φVm〈φTuiui〉 follows as:

1
2
φVm〈φTuiui〉︸ ︷︷ ︸

(I)

= 1
2
φVT〈ūi〉〈ūi〉︸ ︷︷ ︸

(IIA)

+1
2
φVm〈φT ˜̄ui ˜̄ui〉︸ ︷︷ ︸

(IIB)

+ φVm〈φT ˜̄ui〉〈ūi〉︸ ︷︷ ︸
(IIC)

+1
2
φVm〈φTu′

iu′
i〉︸ ︷︷ ︸

(III)

(5)

where repeated indices imply summation.
The balance equations for the local mean and turbulent

stresses (quantities ii and iii in Eq. (3a)) as well as for the
double-mean, form-induced and spatially-averaged turbulent
stresses (quantities IIA + IIC, IIB and III in Eqs (3b) and (4),
respectively) are presented in Sections 3 and 4 below. The key
steps of their derivation are outlined in Appendix 2. The gen-
eral approach of Keller and Friedmann (1924; see also Monin
& Yaglom, 1971) is followed, starting from the mass and
momentum conservation equations.

3 First- and second-order time-averaged hydrodynamic
equations

The derivation of the time-averaged hydrodynamic equations
for a Newtonian fluid starts with consideration of the mass and

momentum conservation equations for instantaneous variables
(e.g. Whitaker, 1968), i.e.:

∂ρ

∂t
+ ∂ρui

∂xi
= 0,

∂ρui

∂t
+ ∂ρuiuj

∂xj
= ρgi − ∂p

∂xi
+ ∂

∂xj

(
ρν
∂ui

∂xj

)
(6)

where ρ is fluid mass density, ν is fluid kinematic viscosity, ui

is the ith component of the velocity vector, p is fluid pressure,
and gi is the ith component of the gravity acceleration. These
conservation equations are averaged over time first to obtain the
time-averaged mass and momentum conservation equations (i.e.
first-order equations), and then the balance equations for the
mean and turbulent momentum fluxes (i.e. second-order equa-
tions) are derived. The final equations are reported below, while
details of their derivation are provided in Appendices 1 and 2.

3.1 Time-averaged mass and momentum conservation
equations

Applying the operators of Eq. (1), Reynolds’ conditions of
Eq. (A1), the averaging theorems (A5), and accounting for the
no-slip condition, one can derive the following time-averaged
equations:

∂φT

∂t
+ ∂φTūi

∂xi
= 0 (7)

∂φTūi

∂t︸ ︷︷ ︸
(1)

+ ∂φTūiūj

∂xj︸ ︷︷ ︸
(2)

= φTgi︸︷︷︸
(3)

− ∂φTu′
iu′

j

∂xj︸ ︷︷ ︸
(4)

− 1
ρ

∂φTp̄
∂xi︸ ︷︷ ︸
(5)

+ ∂

∂xj

(
νφT

∂ui

∂xj

)
︸ ︷︷ ︸

(6)

+ 1
ρT0

∫
T0

pni
δ(t − ts)

|vi| dt

︸ ︷︷ ︸
(7)

− 1
T0

∫
T0

ν
∂ui

∂xj
nj
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(8)

(8)

where the Reynolds decomposition ui = ūi + u′
i is used in the

presentation of the time-averaged convective term, δ denotes
the one-dimensional analogue of the Dirac delta function, ts
is a “transition” time instant when γ at a given point changes
from 0 to 1, vi is velocity vector of the fluid–non-fluid inter-
face, and ni is a normal unit vector at the interface (directed
into the fluid). More details on the variables involved in Eq. (8)
are given in Appendix 1. The first and second terms in Eq. (8)
are the mean local and convective accelerations, respectively.
The third term represents the body force (gravity), with the
fourth, fifth and sixth terms expressing the contributions to the
time-averaged momentum balance of turbulent stresses, mean
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pressure and mean viscous stresses, respectively. The final two
terms in Eq. (8) reflect the change of fluid momentum (per unit
mass) at the transition time moments (non-fluid to fluid and vice
versa) due to the effects of pressure drag and viscous friction at
the interface.

The time-averaged continuity Eq. (7) can be expressed as:

∂ ūi

∂xi
= − 1

φT

(
∂φT

∂t
+ ūi

∂φT

∂xi

)
(9)

Equation (9) suggests that temporal and spatial variations of
time porosity φT can cause non-zero strain rate ∂ ūi/∂xi, differ-
ently from the conventional time-averaged continuity equation
where this strain rate is identically zero.

3.2 Time-averaged conservation equations for mean and
turbulent momentum fluxes

The equations for the mean ūiūk and turbulent momentum fluxes
u′

iu′
k can be derived from the instantaneous and time-averaged

forms of the mass and momentum conservation equations, as
outlined in Appendix 2. The equation for the mean stress ūiūk is
obtained as:

∂φTūiūk

∂t︸ ︷︷ ︸
(1)

+ ∂φTūiūkūj

∂xj︸ ︷︷ ︸
(2)

= φT(ūkgi + ūigk)︸ ︷︷ ︸
(3)

− ∂

∂xj
(φTūku′

iu′
j + φTūiu′

ku′
j )︸ ︷︷ ︸

(4)

− 1
ρ

∂

∂xj
(φTūkp̄δij + φTūip̄δkj )︸ ︷︷ ︸

(5)

+ ν
∂

∂xj

(
φTūk

∂ui

∂xj
+ φTūi

∂uk

∂xj

)
︸ ︷︷ ︸

(6)

+
(
φTu′

iu′
j
∂ ūk

∂xj
+ φTu′

ku′
j
∂ ūi

∂xj

)
︸ ︷︷ ︸

(7)

+ φTp̄
ρ

(
∂ ūk

∂xi
+ ∂ ūi

∂xk

)
︸ ︷︷ ︸

(8)

− ν

(
φT
∂ui

∂xj

∂ ūk

∂xj
+ φT

∂uk

∂xj

∂ ūi

∂xj

)
︸ ︷︷ ︸

(9)

+ 1
ρT0

∫
T0

(ūkpδij + ūipδkj )nj
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(10)

− 1
T0

∫
T0

ν

(
ūk
∂ui

∂xj
+ ūi

∂uk

∂xj

)
nj
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(11)

(10)

Terms 1 and 2 in Eq. (10) represent the time rate of change of
the mean stresses, term 3 is a source term due to gravity, and
terms 4, 5 and 6 are transport terms related to turbulent stresses,
mean pressure and mean viscous stresses, respectively. Term
7 is conventionally interpreted as turbulence production due
to the work of turbulent stresses against mean velocity gradi-
ents. Terms 8 and 9 express redistributive (i.e. inter-component
transfer of energy) and dissipative effects, respectively. Terms
10 and 11 are source/sink terms associated with the flow inter-
ruption by non-fluid inclusions due to boundary mobility. The
balance equation for the mean energy 1/2ūiūi can be obtained
from Eq. (10) by imposing i = k, i.e.:

1
2
∂φTūiūi

∂t︸ ︷︷ ︸
(1)

+ 1
2
∂φTūiūiūj

∂xj︸ ︷︷ ︸
(2)

= φTūigi︸ ︷︷ ︸
(3)

− ∂φTūiu′
iu′

j

∂xj︸ ︷︷ ︸
(4)

− 1
ρ

∂φTūip̄
∂xi︸ ︷︷ ︸
(5)

+ ν ∂

∂xj

(
φTūi

∂ui

∂xj

)
︸ ︷︷ ︸

(6)

+φTu′
iu′

j
∂ ūi

∂xj︸ ︷︷ ︸
(7)

+ φTp̄
ρ

∂ ūi

∂xi︸ ︷︷ ︸
(8)

− νφT
∂ui

∂xj

∂ ūi

∂xj︸ ︷︷ ︸
(9)

+ 1
ρT0

∫
T0

ūipni
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(10)

− 1
T0

∫
T0

νūi
∂ui

∂xj
nj
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(11)

(11)

Terms 1 and 2 in Eq. (10) represent the local and convective
time rate of change of the mean energy; terms 3, 4, 5 and 6 repre-
sent the work rates of gravity, turbulent stresses, mean pressure
and mean viscous stresses on the mean flow, respectively; terms
7, 8 and 9 represent the work of turbulent stresses, mean pres-
sure and mean viscous stresses against the mean strain-rate,
respectively. Conventionally, the seventh term is interpreted
as mean energy exchange between mean flow and turbulence
while the ninth term describes conversion of mechanical energy
into heat. Terms 10 and 11 represent the gain or loss of mean
energy at the transition time moments due to the boundary
mobility.

The equation for the turbulent stress u′
iu′

k can be obtained by
subtracting the equation for ūiūk from the equation for the total
stress uiuk (Appendix 2). The result can be written as:

∂φTu′
iu′

k

∂t︸ ︷︷ ︸
(1)

+ ∂φTu′
iu′

kūj

∂xj︸ ︷︷ ︸
(2)

= −
(
φTu′

iu′
j
∂ ūk

∂xj
+ φTu′

ku′
j
∂ ūi

∂xj

)
︸ ︷︷ ︸

(3)

− ∂φTu′
iu′

ku′
j

∂xj︸ ︷︷ ︸
(4)
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− 1
ρ

∂

∂xj
(φTu′

kp ′δij + φTu′
ip ′δkj )︸ ︷︷ ︸

(5)

+ ν
∂

∂xj

(
φTu′

k
∂u′

i

∂xj
+ φTu′

i
∂u′

k

∂xj

)
︸ ︷︷ ︸

(6)

+ φT

ρ
p ′
(
∂u′

k

∂xi
+ ∂u′

i

∂xk

)
︸ ︷︷ ︸

(7)

− 2νφT
∂u′

i

∂xj

∂u′
k

∂xj︸ ︷︷ ︸
(8)

+ 1
ρT0

∫
T0

(u′
kpδij + u′

ipδkj )nj
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(9)

− 1
T0

∫
T0

ν

(
u′

k
∂ui

∂xj
+ u′

i
∂uk

∂xj

)
nj
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(10)

(12)

Terms 1 and 2 in Eq. (12) correspond to the time rate of change
of turbulent stresses, term 3 is the turbulent stress generation,
and terms 4, 5 and 6 represent the transport by the fluctuat-
ing velocity, pressure and viscous stresses, respectively. Term 7
describes the stress redistribution by pressure fluctuations, term
8 is responsible for dissipative effects, and terms 9 and 10 are
source/sink terms associated with the flow intermittency, i.e.
intermittent occupation of a point under consideration by non-
fluid matter (e.g. moving gravel particles or fluctuating aquatic
plants). The equation for the turbulent energy 1/2u′

iu′
i is obtained

from Eq. (12) as follows:

1
2
∂φTu′

iu′
i

∂t︸ ︷︷ ︸
(1)

+ 1
2
∂φTu′

iu′
iūj

∂xj︸ ︷︷ ︸
(2)

= −φTu′
iu′

j
∂ ūi

∂xj︸ ︷︷ ︸
(3)

− 1
2
∂φTu′

iu′
iu′

j

∂xj︸ ︷︷ ︸
(4)

− 1
ρ

∂φTu′
ip ′

∂xi︸ ︷︷ ︸
(5)

+ ν ∂

∂xj

(
φTu′

i
∂u′

i

∂xj

)
︸ ︷︷ ︸

(6)

+ φT

ρ
p ′ ∂u′

i

∂xi︸ ︷︷ ︸
(7)

− 2νφT
∂u′

i

∂xj

∂u′
i

∂xj︸ ︷︷ ︸
(8)

+ 1
ρT0

∫
T0

u′
ipni

δ(t − ts)
|vi| dt

︸ ︷︷ ︸
(9)

− 1
T0

∫
T0

νu′
i
∂ui

∂xj
nj
δ(t − ts)

|vj | dt

︸ ︷︷ ︸
(10)

(13)

In Eq. (13), terms 1 and 2 represent the rate of change of tur-
bulent energy, term 3 represents the work of turbulent stresses
against the mean strain rate, interpreted as the conversion of
the mean energy to turbulence energy (or vice versa), term 4
describes the turbulent convection and terms 5 and 6 represent
the mean work rate of the turbulent pressure and viscous stresses
on the turbulent fluctuations, respectively. Terms 7 and 8 denote
the mean work of turbulent pressure and viscous stresses against
the turbulent strain rate. Terms 9 and 10 express the mean gain

or loss of the turbulence energy at the transition time moments
(i.e. energy transfer to the boundary or vice versa). The intrin-
sic forms of Eqs (8) and (10)–(13) can be obtained by applying
Leibniz’s product rule on the left-hand side terms and then
dividing the equations by φT. For brevity, these are not presented
in this paper.

The effects of moving flow boundaries and the associated
flow intermittency are expressed in the time-averaged equations
through the time porosity and the two source/sink terms that
appear at the end of Eqs (8) and (10)–(13). Note that due to Eq.
(9), the work of pressure on mean and turbulent strain-rates, i.e.
term 8 in Eq. (11) and term 7 in Eq. (13), are retained, whereas
for the case of immobile boundary these two terms are zero.
The time-averaged equations for flows over mobile boundaries
can be used directly or they can underpin the development of
the double-averaged equations, as outlined in Appendix 2 and
summarized in the following section.

4 Double-averaged hydrodynamic equations

Time-averaged hydrodynamic equations involve no spatial
averaging and thus relate to local (at a point) quantities. As
detailed in the introduction, their application for describing
flows over complex and mobile boundaries, like gravel beds
during floods, is impractical, so a second averaging step, in
the spatial domain, is needed. This step may be viewed as a
homogenization procedure that upscales flow variables from a
“point scale” where they are highly heterogeneous to a larger
scale where their behaviour is much smoother (e.g. Nikora et al.,
2013).

The equations for the second-order velocity moments, i.e.
quantities (IIA), (IIB) and (III) in Eqs (3b) and (4), are needed in
order to identify the key mechanisms affecting the double-mean,
form-induced and turbulent stresses and their interrelations with
the boundary motion. The derivation of the double-averaged
second-order equations utilizes the original mass and momen-
tum conservation equations (Eq. (6)), their time-averaged forms
(summarized in Section 3, Eqs (7) and (8)), and double-averaged
forms (Nikora et al., 2013). To complement Eqs (6)–(8), the
double-averaged mass and momentum conservation equations
are summarized in Section 4.1. The second-order double-
averaged equations (for momentum fluxes) are presented in
Section 4.2, with key steps in their derivation outlined in
Appendix 2.

4.1 Double-averaged continuity and momentum equations

The double-averaged forms of the mass and momentum conser-
vation equations for mobile-bed conditions can be expressed as:

∂φVT

∂t
+ ∂φVm〈φTūi〉

∂xi
= 0 (14)
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∂φVm〈φTūi〉
∂t︸ ︷︷ ︸
(1)

+ ∂φVm〈φTūi〉〈ūj 〉
∂xj︸ ︷︷ ︸
(2)

= φVTgi︸ ︷︷ ︸
(3)

− ∂φVm〈φTu′
iu′

j 〉
∂xj︸ ︷︷ ︸
(4)

− ∂φVm〈φT ˜̄ui ˜̄uj 〉
∂xj︸ ︷︷ ︸
(5)

− ∂φVm〈φT ˜̄uj 〉〈ūi〉
∂xj︸ ︷︷ ︸
(6)

− 1
ρ

∂φVm〈φTp̄〉
∂xi︸ ︷︷ ︸
(7)

+ ∂

∂xj

(
νφVm

〈
φT
∂ui

∂xj

〉)
︸ ︷︷ ︸

(8)

+ 1
ρV0

∫
Sint

pnidS
s

︸ ︷︷ ︸
(9)

− 1
V0

∫
Sint

ν
∂ui

∂xj
nj dS

s

︸ ︷︷ ︸
(10)

(15)

where all variables have been defined in the previous sections.
Equation (14) is a double-averaged counterpart of the left-side
relation in Eq. (6) or, equivalently, a spatially-averaged form of
Eq. (7).

Terms 1 and 2 in Eq. (15) represent the local and convec-
tive parts of the double-averaged acceleration, term 3 represents
the body force (gravity), and terms 4, 5 and 6 reflect the con-
tributions of the turbulent, form-induced and mobility-induced
stresses, respectively. Terms 7 and 8 express the effects of the
double-averaged pressure and viscous stresses, while terms 9
and 10 are the mean pressure drag and viscous friction terms,
respectively (Nikora et al., 2013).

4.2 Double-averaged equations for the second-order velocity
moments

Double-mean stresses

The balance equation for the double-mean stress φVT〈ūi〉〈ūk〉 and
the associated porosity correlation contribution φVm〈φT ˜̄ui〉〈ūk〉 +
φVm〈φT ˜̄uk〉〈ūk〉 is derived using the double-averaged mass and
momentum conservation equations together with the identity
(B5) that expands the partial time derivatives of φVT〈ūi〉〈ūk〉
and φVm〈φT ˜̄ui〉〈ūk〉 + φVm〈φT ˜̄uk〉〈ūk〉 (quantities (IIA) and (IIC)
in Eq. (5) and Eq. (B5) in Appendix 2), i.e.:

∂

∂t
(φVT〈ūi〉〈ūk〉)︸ ︷︷ ︸

(1)

+ ∂

∂xj
(φVT〈ūi〉〈ūk〉〈ūj 〉)︸ ︷︷ ︸

(2)

+ ∂

∂t
(φVm〈φT ˜̄ui〉〈ūk〉 + φVm〈φT ˜̄uk〉〈ūi〉)︸ ︷︷ ︸

(3)

+ ∂

∂xj
{(φVm〈φT ˜̄ui〉〈ūk〉 + φVm〈φT ˜̄uk〉〈ūi〉)〈ūj 〉}︸ ︷︷ ︸

(4)

−
(
φVm〈φT ˜̄ui〉∂〈ūk〉

∂t
+ φVm〈φT ˜̄uk〉∂〈ūi〉

∂t

)
︸ ︷︷ ︸

(5)

= φVT(〈ūk〉gi + 〈ūi〉gk)︸ ︷︷ ︸
(6)

− ∂

∂xj
(φVm〈φTu′

iu′
j 〉〈ūk〉 + φVm〈φTu′

ku′
j 〉〈ūi〉)︸ ︷︷ ︸

(7)

− ∂

∂xj
(φVm〈φT ˜̄ui ˜̄uj 〉〈ūk〉 + φVm〈φT ˜̄uk ˜̄uj 〉〈ūi〉)︸ ︷︷ ︸

(8)

− ∂

∂xj
(φVm〈φT ˜̄uj 〉〈ūi〉〈ūk〉)︸ ︷︷ ︸

(9)

− 1
ρ

∂

∂xj
(φVm〈φTp̄〉〈ūk〉δij + φVm〈φTp̄〉〈ūi〉δkj )︸ ︷︷ ︸

(10)

+ ν
∂

∂xj

(
φVm

〈
φT
∂ui

∂xj

〉
〈ūk〉 + φVm

〈
φT
∂uk

∂xj

〉
〈ūi〉

)
︸ ︷︷ ︸

(11)

+
(
φVm〈φTu′

iu′
j 〉∂〈ūk〉
∂xj

+ φVm〈φTu′
ku′

j 〉∂〈ūi〉
∂xj

)
︸ ︷︷ ︸

(12)

+
(
φVm〈φT ˜̄ui ˜̄uj 〉∂〈ūk〉

∂xj
+ φVm〈φT ˜̄uk ˜̄uj 〉∂〈ūi〉

∂xj

)
︸ ︷︷ ︸

(13)

+
(
φVm〈φT ˜̄ui〉〈ūj 〉∂〈ūk〉

∂xj
+ φVm〈φT ˜̄uk〉〈ūj 〉∂〈ūi〉

∂xj

)
︸ ︷︷ ︸

(14)

+ φVm〈φTp̄〉
ρ

(
∂〈ūk〉
∂xi

+ ∂〈ūi〉
∂xk

)
︸ ︷︷ ︸

(15)

− ν

(
φVm

〈
φT
∂ui

∂xj

〉
∂〈ūk〉
∂xj

+ φVm

〈
φT
∂uk

∂xj

〉
∂〈ūi〉
∂xj

)
︸ ︷︷ ︸

(16)

+
⎛
⎝ 1
ρV0

∫
Sint

(〈ūk〉pni + 〈ūi〉pnk)dS
s
⎞
⎠

︸ ︷︷ ︸
(17)

−
⎛
⎝ 1

V0

∫
Sint

ν

(
〈ūk〉 ∂ui

∂xj
+ 〈ūi〉∂uk

∂xj

)
nj dS

s
⎞
⎠

︸ ︷︷ ︸
(18)

(16)

Terms 1 and 2 in Eq. (16) represent the time rate of change of
the double-mean stresses while terms 3 and 4 quantify the rate of
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change of the porosity-correlation stresses. Terms 5, 13 and 14
occur in both balance equations, for double-mean stresses (Eq.
(16)) and for the form-induced stresses (Eq. (18) below, terms
3, 5, and 6, respectively), but with opposite signs. Thus, these
terms express the energy exchanges between these two energy
balances. Term 6 represents the effect of gravity. Terms 7, 8 and
9 describe the transport of turbulent, form-induced and mobility-
induced stresses, while terms 10 and 11 are the pressure and
viscous transport terms. Term 12 is present in both Eq. (16) and
in the balance of the spatially-averaged turbulent stresses (Eq.
(20)) with opposite signs. For this reason, term 12 is interpreted
as a “bridge” for energy exchanges between mean and turbulent
flow fields. Term 15 reflects the effect of the pressure acting on
the strain rates, while term 16 quantifies the viscous dissipation.
The interfacial source/sinks of mean stresses are expressed by
terms 17 and 18.

The equation for the double-mean energy 1/2〈ūi〉〈ūi〉 is
obtained from Eq. (16) by choosing i = k, i.e.:

1
2
∂φVT〈ūi〉〈ūi〉

∂t︸ ︷︷ ︸
(1)

+ 1
2
∂φVT〈ūi〉〈ūi〉〈ūj 〉

∂xj︸ ︷︷ ︸
(2)

+ ∂

∂t
(φVm〈φT ˜̄ui〉〈ūi〉)︸ ︷︷ ︸

(3)

+ ∂

∂xj
(φVm〈φT ˜̄ui〉〈ūi〉〈ūj 〉)︸ ︷︷ ︸

(4)

−
(
φVm〈φT ˜̄ui〉∂〈ūi〉

∂t

)
︸ ︷︷ ︸

(5)

= φVT〈ūi〉gi︸ ︷︷ ︸
(6)

− ∂

∂xj
(φVm〈φTu′

iu′
j 〉〈ūi〉)︸ ︷︷ ︸

(7)

− ∂

∂xj
(φVm〈φT ˜̄ui ˜̄uj 〉〈ūi〉)︸ ︷︷ ︸

(8)

− 1
2
∂φVm〈φT ˜̄uj 〉〈ūi〉〈ūi〉

∂xj︸ ︷︷ ︸
(9)

− 1
ρ

∂

∂xi
(φVm〈φTp̄〉〈ūi〉)︸ ︷︷ ︸

(10)

+ ν ∂

∂xj

(
φVm

〈
φT
∂ui

∂xj

〉
〈ūi〉

)
︸ ︷︷ ︸

(11)

+ φVm〈φTu′
iu′

j 〉∂〈ūi〉
∂xj︸ ︷︷ ︸

(12)

+φVm〈φT ˜̄ui ˜̄uj 〉∂〈ūi〉
∂xj︸ ︷︷ ︸

(13)

+ φVm〈φT ˜̄ui〉〈ūj 〉∂〈ūi〉
∂xj︸ ︷︷ ︸

(14)

+ φVm〈φTp̄〉
ρ

∂〈ūi〉
∂xi︸ ︷︷ ︸

(15)

− νφVm

〈
φT
∂ui

∂xj

〉
∂〈ūi〉
∂xj︸ ︷︷ ︸

(16)

+ 〈ūi〉
ρV0

∫
Sint

pnidS
s

︸ ︷︷ ︸
(17)

− 〈ūi〉
V0

∫
Sint

ν
∂ui

∂xj
nj dS

s

︸ ︷︷ ︸
(18)

(17)

Terms 1 and 2 in Eq. (17) are the local and convective time
rates of change of 1/2〈ūi〉〈ūi〉, with terms 3 and 4 representing
the effects of the local and the convective parts of the porosity-
correlation. Term 5 defines an energy exchange with the balance
of the form-induced energy (Eq. (20)). Term 6 describes the
energy supply from the potential energy of gravity, while terms
7, 8, 10 and 11 represent the work of turbulent and form-induced
stresses, double-averaged pressure and double-averaged vis-
cous stresses on the double-averaged velocity field, respectively.
Term 9 represents the spatial transfer of the double-mean energy
1/2〈ūi〉〈ūi〉 by the form-induced flow and it is associated with
the boundary mobility, i.e. with potentially non-zero porosity-
velocity correlation. Terms 12, 13, 14, 15 and 16 relate to
the work of the spatially-averaged turbulent, form-induced,
and porosity-correlation stresses, double-averaged pressure, and
double-averaged viscous stresses on the double-mean strain
rate, respectively. Finally, terms 17 and 18 define the work of
mean pressure drag and viscous friction at the fluid–non-fluid
interfaces on the double-mean flow.

Form-induced stresses

By subtracting Eq. (16) from the equation for the spatially-
averaged mean stresses φVm〈φTūiūk〉 (following Eq. (4) and Eq.
(B6) in Appendix 2), the equation for the form-induced stresses
can be derived as:

∂φVm〈φT ˜̄ui ˜̄uk〉
∂t︸ ︷︷ ︸
(1)

+ ∂φVm〈φT ˜̄ui ˜̄uk〉〈ūj 〉
∂xj︸ ︷︷ ︸
(2)

+
(
φVm〈φT ˜̄ui〉∂〈ūk〉

∂t
+ φVm〈φT ˜̄uk〉∂〈ūi〉

∂t

)
︸ ︷︷ ︸

(3)

= φVm〈φT ˜̄uk〉gi + φVm〈φT ˜̄ui〉gk︸ ︷︷ ︸
(4)

−
(
φVm〈φT ˜̄ui ˜̄uj 〉∂〈ūk〉

∂xj
+ φVm〈φT ˜̄uk ˜̄uj 〉∂〈ūi〉

∂xj

)
︸ ︷︷ ︸

(5)

−
(
φVm〈φT ˜̄ui〉〈ūj 〉∂〈ūk〉

∂xj
+ φVm〈φT ˜̄uk〉〈ūj 〉∂〈ūi〉

∂xj

)
︸ ︷︷ ︸

(6)

− ∂φVm〈φT ˜̄ui ˜̄uk ˜̄uj 〉
∂xj︸ ︷︷ ︸
(7)

− ∂

∂xj
(φVm〈φTu′

iu′
j ˜̄uk + φTu′

ku′
j ˜̄ui〉)︸ ︷︷ ︸

(8)

− 1
ρ

∂

∂xj
(φVm〈φTp̄ ˜̄ukδij + φTp̄ ˜̄uiδkj 〉)︸ ︷︷ ︸

(9)
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+ ν
∂

∂xj

{
φVm

〈
φT
∂ui

∂xj

˜̄uk + φT
∂uk

∂xj

˜̄ui

〉}
︸ ︷︷ ︸

(10)

+ φVm

〈
φTu′

iu′
j
∂ ˜̄uk

∂xj
+ φTu′

ku′
j
∂ ˜̄ui

∂xj

〉
︸ ︷︷ ︸

(11)

+ φVm

ρ

〈
φTp̄

(
∂ ˜̄uk

∂xi
+ ∂ ˜̄ui

∂xk

)〉
︸ ︷︷ ︸

(12)

− νφVm

〈
φT
∂ui

∂xj

∂ ˜̄uk

∂xj
+ φT

∂uk

∂xj

∂ ˜̄ui

∂xj

〉
︸ ︷︷ ︸

(13)

+ 1
ρVo

∫
( ˜̄ukpni + ˜̄uipnk)dS

s

︸ ︷︷ ︸
(14)

− 1
Vo

∫
Sint

ν( ˜̄uk
∂ui

∂xj
+ ˜̄ui

∂uk

∂xj
)nj dS

s

︸ ︷︷ ︸
(15)

(18)

Terms 1 and 2 in Eq. (18) represent the rate of change of the
form-induced stresses φVm〈φT ˜̄ui ˜̄uk〉. Term 3 of Eq. (18) also
appears in Eq. (16) as term 5, but with an opposite sign, as men-
tioned in relation to Eq. (16). For this reason, it is interpreted as
a mobility-induced cross-energy exchange between balances in
Eqs (18) and (16). Term 3 may not be zero if there is a spa-
tial correlation between a form-induced velocity ˜̄ui and time
porosity φT. Likewise, terms 5 and 6 represent the covariance
exchange between double-mean and form-induced balances of
Eqs (18) and (16). Term 4 shows that the potential energy of
gravity may be directly supplied to the form-induced stress
balance, as in the double-mean energy balance in Eq. (17), if
〈φT ˜̄uk〉 > 0. Terms 7, 8, 9 and 10 represent the form-induced,
turbulent, pressure, and viscous transport effects, respectively.
Terms 11, 12 and 13 express the action of turbulent stresses,
pressure, and viscous stresses on the form-induced strain-rate,
respectively. Terms 14 and 15 are source/sink terms associated
with the pressure drag and viscous stresses on the interfacial sur-
face. The balance of the form-induced energy 1/2φVm〈φT ˜̄ui ˜̄ui〉 is
obtained from Eq. (18) by taking i = k, i.e.:

1
2
∂φVm〈φT ˜̄ui ˜̄ui〉

∂t︸ ︷︷ ︸
(1)

+ 1
2
∂φVm〈φT ˜̄ui ˜̄ui〉〈ūj 〉

∂xj︸ ︷︷ ︸
(2)

+φVm〈φT ˜̄ui〉∂〈ūi〉
∂t︸ ︷︷ ︸

(3)

= φVm〈φT ˜̄ui〉gi︸ ︷︷ ︸
(4)

−φVm〈φT ˜̄ui ˜̄uj 〉∂〈ūi〉
∂xj︸ ︷︷ ︸

(5)

− φVm〈φT ˜̄ui〉〈ūj 〉∂〈ūi〉
∂xj︸ ︷︷ ︸

(6)

− 1
2
∂φVm〈φT ˜̄ui ˜̄ui ˜̄uj 〉

∂xj︸ ︷︷ ︸
(7)

− ∂φVm〈φTu′
iu′

j ˜̄ui〉
∂xj︸ ︷︷ ︸
(8)

− 1
ρ

∂φVm〈φTp̄ ˜̄ui〉
∂xi︸ ︷︷ ︸
(9)

+ ν
∂

∂xj

(
φVm

〈
φT
∂ui

∂xj

˜̄ui

〉)
︸ ︷︷ ︸

(10)

+φVm

〈
φTu′

iu′
j
∂ ˜̄ui

∂xj

〉
︸ ︷︷ ︸

(11)

+ φVm

ρ

〈
φTp̄

∂ ˜̄ui

∂xi

〉
︸ ︷︷ ︸

(12)

− νφVm

〈
φT
∂ui

∂xj

∂ ˜̄ui

∂xj

〉
︸ ︷︷ ︸

(13)

+ 1
ρVo

∫
˜̄uipnidS

s

︸ ︷︷ ︸
(14)

− 1
Vo

∫
Sint

ν ˜̄ui
∂ui

∂xj
nj dS

s

︸ ︷︷ ︸
(15)

(19)

In Eq. (19), terms 1 and 2 describe the local and convective
change of the form-induced energy. Term 3 represents a part of
form-induced energy exchanged with the double-mean energy
balance of Eq. (17), where it is seen as term 5. Term 4 describes
the potential supply of energy from gravity, if 〈φT ˜̄ui〉 > 0.
Terms 5 and 6 relate to the work of form-induced and porosity-
correlation stresses against the bulk strain rate. The convection
of the form-induced energy is described by term 7. Terms 8,
9 and 10 reflect the mean work rate of the turbulent stresses,
mean pressure, and mean viscous stresses on the form-induced
velocity field, respectively. The work of turbulent stresses, mean
pressure, and mean viscous stress on the form-induced strain
rates are accounted for by terms 11, 12 and 13, respectively.
Terms 14 and 15 represent the work of pressure and viscous
stresses on the interfacial surface and have the meaning of the
source/sink terms in the form-induced energy balance. Note
that the sum of Eqs (17) and (19) describe the balance of the
spatially-averaged mean kinetic energy 1/2〈ūiūi〉.

Spatially-averaged turbulent stresses

Integrating the local stress balance of Eq. (12) over Vm, divid-
ing by V0, and applying the double-averaging theorems given
in Appendix 1 yield the balance for the spatially-averaged
turbulent stresses, i.e.:

∂φVm〈φTu′iu′k〉
∂t︸ ︷︷ ︸
(1)

+ ∂φVm〈φTu′iu′k〉〈ūj 〉
∂xj︸ ︷︷ ︸
(2)

= −
(
φVm〈φTu′iu′j 〉∂〈ūk〉

∂xj
+ φVm〈φTu′ku′j 〉∂〈ūi〉

∂xj

)
︸ ︷︷ ︸

(3)
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−
(
φVm

〈
φTu′iu′j

∂ ˜̄uk

∂xj

〉
+ φVm

〈
φTu′ku′j

∂ ˜̄ui

∂xj

〉)
︸ ︷︷ ︸

(4)

− ∂φVm〈φTu′iu′k ˜̄uj 〉
∂xj︸ ︷︷ ︸
(5)

− ∂φVm〈φTu′iu′ku′j 〉
∂xj︸ ︷︷ ︸
(6)

− 1
ρ

∂

∂xj
(φVm〈φTu′kp ′〉δij + φVm〈φTu′ip ′〉δkj )︸ ︷︷ ︸

(7)

+ ν
∂

∂xj

(
φVm

〈
φTu′k

∂u′i
∂xj

+ φTu′i
∂u′k
∂xj

〉)
︸ ︷︷ ︸

(8)

+ φVm

ρ

〈
φTp ′

(
∂u′k
∂xi

+ ∂u′i
∂xk

)〉
︸ ︷︷ ︸

(9)

− 2νφVm

〈
φT
∂u′i
∂xj

∂u′k
∂xj

〉
︸ ︷︷ ︸

(10)

+ 1
ρVo

∫
(u′kpni + u′ipnk)dS

s

︸ ︷︷ ︸
(11)

− 1
Vo

∫
Sint

ν

(
u′k
∂ui

∂xj
+ u′i

∂uk

∂xj

)
nj dS

s

︸ ︷︷ ︸
(12)

(20)

The interpretation of the terms in Eq. (20) is similar to that of
the terms in Eq. (12), although here it relates to the spatially-
averaged quantities. Terms 1 and 2 represent the rate of change
of the spatially-averaged turbulent stresses. Terms 3 and 4
express the cross-energy (covariance) exchange between Eq.
(20) and Eqs (16), (18), respectively. Terms 5 and 6 describe the
convective transport by the form-induced and turbulent veloc-
ity fields. Terms 7 and 8 are pressure and viscous transport
terms. Terms 9 and 10 express the redistributive and dissipa-
tive effects. The final two terms, 11 and 12, are the source/sink
terms associated with the boundary motion. The equation for
the spatially-averaged turbulent kinetic energy 1/2φVm〈φTu′

iu′
i〉

is obtained from Eq. (20) by imposing i = k, i.e.:

1
2
∂φVm〈φTu′

iu′
i〉

∂t︸ ︷︷ ︸
(1)

+ 1
2
∂φVm〈φTu′

iu′
i〉〈ūj 〉

∂xj︸ ︷︷ ︸
(2)

= −φVm〈φTu′
iu′

j 〉∂〈ūi〉
∂xj︸ ︷︷ ︸

(3)

−φVm

〈
φTu′

iu′
j
∂ ˜̄ui

∂xj

〉
︸ ︷︷ ︸

(4)

− 1
2
∂φVm〈φTu′

iu′
i ˜̄uj 〉

∂xj︸ ︷︷ ︸
(5)

− 1
2
∂φVm〈φTu′

iu′
iu′

j 〉
∂xj︸ ︷︷ ︸
(6)

− 1
ρ

∂φVm〈φTu′
ip ′〉

∂xi︸ ︷︷ ︸
(7)

+ ν ∂

∂xj

(
φVm

〈
φTu′

i
∂u′

i

∂xj

〉)
︸ ︷︷ ︸

(8)

+ φVm

ρ

〈
φTp ′ ∂u′

i

∂xi

〉
︸ ︷︷ ︸

(9)

− νφVm

〈
φT
∂u′

i

∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

(10)

+ 1
ρVo

∫
u′

ipnidS
s

︸ ︷︷ ︸
(11)

− 1
Vo

∫
Sint

νu′
i
∂ui

∂xj
nj dS

s

︸ ︷︷ ︸
(12)

(21)

The local and convective rates of change of the spatially-
averaged turbulent energy are given by terms 1 and 2 in Eq.
(21). Term 3 represents the work of the spatially-averaged tur-
bulent stresses against the double-mean strain-rate, while term 4
describes the mean work rate of the turbulent stresses against the
form-induced strain-rate. Terms 5 and 6 reflect the form-induced
and turbulent convection effects. Terms 7 and 8 represent the
work rate of turbulent pressure and viscous stresses, while terms
9 and 10 express the work of pressure and viscous stresses
against the turbulent strain rate. Terms 11 and 12 are source/sink
terms that relate to the work of pressure and viscous stresses
on the interfacial (fluid–non-fluid) surface. In other words,
these two terms highlight possibilities for the energy exchange
between fluid flow and its moving boundary.

5 Discussion

The second-order equations reported in this paper supplement
the double-averaged equations of mass and momentum con-
servation proposed in Nikora et al. (2013) for the study of
mobile-bed flows (e.g. open-channel flows over mobile granular
beds or terrestrial flows over wind-turbine arrays). The spatially-
averaged turbulent stress, form-induced stress, and drag terms
which arise in the double-averaged momentum equation due to
averaging are the unknown variables that need to be parame-
terized or modelled. In this paper, we propose the equations
describing the dynamics of the spatially-averaged turbulent
and form-induced stresses. These equations can serve as the
basis for the construction of predictive models and for the
interpretation of experimental data in the studies of mobile-
boundary flows. The interrelations between the double-mean,
form-induced and turbulent components, as well as between
these and boundary motions, should also be considered and
modelled. The roughness mobility effects and the boundary
energy fluxes are features that differentiate the proposed equa-
tions from the double-averaged equations reported by others.
These features are highlighted in the following discussion, along
with some examples of applications of the proposed equations
(after employing appropriate simplifying assumptions).
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5.1 Roughness mobility effects

The mobility of the flow boundaries causes an intermittent
occupation of the near-bed domain by either the fluid or bed
roughness elements. This intermittency is tracked using the clip-
ping function γ (xi, t) that is defined as 1 when a point xi is
occupied by the fluid and 0 otherwise. Using function γ we
define the “fluid” averaging period Tf (xi, t) as the collection
of time periods when the fluid occupies a particular point xi of
the domain, and then employ the ratio Tf / T0 = φT as a mea-
sure of boundary mobility. As shown by Eq. (9), the variation
of φT in time and space can impose a non-zero mean strain rate
(∂ ūi/∂xi) that may be interpreted as a “compressibility” effect in
the time-averaged flow field. Due to Eq. (9) and the fluid incom-
pressibility, i.e. ∂ui /∂xi = 0, a non-zero turbulent strain-rate
∂ui

′ /∂xi is implied. Consequently, the associated work of mean
and turbulent pressure on the mean and turbulent strain-rates,
attributed to terms 8 and 7 in Eqs (11) and (13) respectively,
is retained in the balances of mean and turbulent energy. After
spatial averaging, similar terms can be noted in the equations
of double-mean, form-induced and turbulent energy balances,
i.e. term 15 in Eq. (17), term 12 in Eq. (19) and term 9 in
Eq. (21). In addition, spatial correlations between time-averaged
velocity and porosity φT arise in the double-averaged equa-
tions that may be interpreted as momentum fluxes due to the
boundary mobility. Furthermore, the intermittent occupancy of
the domain points by fluid within the averaging time period
can cause changes in fluid mean momentum (losses or gains),
mean energy, and turbulent energy when the domain occupancy
changes. These sharp changes are attributed to the final two
terms in each of Eqs (10)–(13).

The effects of time porosity φT and the boundary mobility-
related time integrals constitute the main difference between the
proposed time-averaged equations for mobile-boundary flows
and the conventional Reynolds-averaged equations for fixed-
boundary flows. Operators and theorems for time-averaging
over variables that may not be continuous within the averag-
ing time period have been proposed earlier by Ishii and Hibiki
(2006) and others (e.g. Drew & Passman, 1999). The concep-
tual difference between their approach and the one proposed in
this paper is the use of the distribution function γ that allows
the transition from the time-averaged equations for mobile-
boundary flows to those for fixed-boundary conditions. With the
current approach, the problem associated with a possible zero
velocity vi of the boundary in the denominator of the interfacial
terms in the equations of Drew and Lahey (1979) is avoided, as
for γ = 1 its derivatives are ∂γ /∂t = 0 and ∂γ /∂xi = 0 and the
gain/loss integral terms do not emerge. For the fixed-bed flows,
the time porosity is φT ≡ 1 (Nikora et al., 2013) and the opera-
tions of time-averaging and differentiation commute. Then, the
proposed time-averaged equations coincide with the conven-
tional Reynolds-averaged equations. The effects of the rough-
ness geometry and bed mobility are introduced in the double-
averaged equations for the second-order moments through the

roughness geometry functions (i.e. time and spatial porosities)
and the work of pressure and viscous drag on the interfacial
surfaces. These are the main differences between the proposed
double-averaged equations and the equations developed by oth-
ers for the form-induced energy (Raupach & Shaw, 1982) or for
the spatially-averaged turbulent stresses/energy (Brunet et al.,
1994; Mignot et al., 2008; Pedras & de Lemos, 2001).

5.2 Some physical interpretations

A preliminary interpretation of the terms involved in the double-
averaged second-order Eqs (17), (19) and (21) can be based
on the theoretical definitions of the rate of work and strain
power (Malvern, 1969). Given the form of Eqs (17), (19) and
(21), kinetic energy is supplied to the flow from the potential
energy of gravity and is directed to the double-mean and form-
induced energy balances through the right-hand-side terms of
the following relation:

φVm〈φTūi〉gi︸ ︷︷ ︸
supply of the potential
energy of gravity

= φVT〈ūi〉gi︸ ︷︷ ︸
energy supply to the double-

mean energy balance (Eq.(17))

+ φVm〈φT ˜̄ui〉gi︸ ︷︷ ︸
energy supply to the form-

induced energy balance (Eq. (19))

(22)

Due to the work rate of pressure, viscous stresses, and turbulent
stresses, mechanical energy is redistributed over space. Through
the work of viscous stresses against the strain rate a part of the
mechanical energy is converted into heat, removing energy from
the double-mean, form-induced and turbulent fields, i.e.:

νφVm

〈
φT
∂ui

∂xj

∂ui

∂xj

〉
︸ ︷︷ ︸

total double-averaged kinetic
energy converted into heat

= νφVm

〈
φT
∂ui

∂xj

〉
∂〈ūi〉
∂xj︸ ︷︷ ︸

fluid kinetic energy dissipated from
the double-mean field (Eq. (17))

+ νφVm

〈
φT
∂ui

∂xj

∂ ˜̄ui

∂xj

〉
︸ ︷︷ ︸

fluid kinetic energy dissipated from
the form-induced field (Eq. (19))

+ νφVm

〈
φT
∂u′

i

∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

fluid kinetic energy dissipated from
the turbulent field (Eq. (21))

(23)

Owing to the work of pressure and viscous stresses on the inter-
facial surface, the energy is exchanged between the three con-
stituting flow fields (double-mean, form-induced, and turbulent)
and boundary motions, i.e.:

1
V0

∫
Sint

ui(− 1
ρ

pni + ν
∂ui

∂nj
)dS

s

︸ ︷︷ ︸
work of hydrodynamic forces at the

interfacial boundary
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= 〈ūi〉
V0

∫
Sint

(− 1
ρ

pni + uiν
∂ui

∂nj
)dS

s

︸ ︷︷ ︸
work of pressure drag and viscous friction
on the double-mean flow (Eq. (17))

+ 1
V0

∫
Sint

˜̄ui(− 1
ρ

pni + ν
∂ui

∂nj
)dS

s

︸ ︷︷ ︸
work of hydrodynamic forces
on the form-induced flow (Eq. (19))

+ 1
V0

∫
Sint

u′
i(− 1

ρ
pni + ν

∂ui

∂nj
)dS

s

︸ ︷︷ ︸
work of hydrodynamic forces
on the turbulent flow (Eq. (21))

(24)

The modified Reynolds decomposition gave rise to the terms
that do not emerge in the equation for the total double-averaged
kinetic energy 1/2φVm〈φTuiui〉 (sum of Eqs (17), (19) and (21)).
These are the terms 13 and 14 in Eq. (17) and equivalent terms 5
and 6 in Eq. (19), term 12 in Eq. (17) and corresponding term 3
in Eq. (21), and term 11 in Eq. (19) and its counterpart term 4 in
Eq. (21). Such terms represent the energy exchange between the

respective balances of the double-mean energy, form-induced
energy, and turbulent energy. Figure 1 illustrates the energy
exchanges between the double-mean, form-induced and turbu-
lent fields, as well as the conversion of the kinetic energy to
heat and the energy transferred through the action of mobile
boundaries.

The exchange between the double-mean and turbulent flow
fields φVm〈φTu′

iu′
j 〉(∂〈ūi〉/∂xj ) (i.e. term 3 in Eq. (21) and

term 12 in Eq. (17)) may be interpreted as the production
of the turbulent energy, as in considerations of the conven-
tional Reynolds-averaged equations. This interpretation is sup-
ported by estimates for fixed-gravel-bed flows (e.g. Mignot,
Barthelemy, & Hurther, 2009; Yuan & Piomelli, 2014). The
energy exchange between the form-induced and turbulent fields
φVm〈φTu′

iu′
j (∂ ˜̄ui/∂xj )〉 (term 4 in Eq. (21) and term 11 in

Eq. (19)) are assessed in Yuan and Piomelli (2014) where
they are considered as bidirectional energy exchange depending
on the characteristic scales present in the flow. In an ear-
lier study, Mignot et al. (2009) noted that this term may be
insignificant compared to the turbulence production term 3 in
Eq. (21). Atmospheric flow studies (e.g. Raupach & Shaw,

Figure 1 Simplified representation of the energy fluxes between the double-mean, form-induced and turbulent flow fields, conversion of the kinetic
energy to heat and the energy exchange (source or sink of energy) with the mobile boundaries of the flow (where Tik/ρ = −pδik/ρ + ν∂ui/∂xk
denotes the hydrodynamic stress tensor)
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1982; Raupach, Coppin, & Legg, 1986) have associated this
term with the work of drag on the interfacial boundary (term
17 in Eq. (17)), assuming the form-induced transport terms
are insignificant. The exchange between the double-mean and
form-induced flow fields φVm〈φT ˜̄ui ˜̄uj 〉(∂〈ūi〉/∂xj ) (term 5 in Eq.
(19) and term 13 in Eq. (17)) is interpreted as mainly the conver-
sion of the double-mean energy into to the form-induced energy
(Yuan & Piomelli, 2014). The terms associated with the energy
exchange at the boundary, i.e. the interfacial terms 14, 15 in Eq.
(19) and terms 11, 12 in Eq. (21), are introduced in this paper
and thus have never been assessed. Similarly, terms 3, 4, 5 in
Eq. (17) and term 3 in Eq. (19), which appear in the equations
due to potential correlations of the time-averaged quantities with
the time porosity, are introduced here for the first time and their
role remains to be clarified. At a first step, their assessment and
interpretation can be done based on appropriate numerical sim-
ulations. The experimental capabilities will hopefully become
available soon to complement simulations.

The equations proposed in this paper are applicable for flows
over both mobile and immobile boundaries. For flows over
immobile rough beds, the fluid averaging time Tf is equal to
the total averaging period T0, and thus φT ≡ 1. The repre-
sentation of the roughness geometry in the double-averaged
equations then may be simplified by replacing φVT and φVm

with the roughness geometry function (or spatial porosity) φ, as
φVT = φVm = φ. The double-mean energy balance in Eq. (17)
can therefore be rewritten as:

1
2
∂〈ūi〉〈ūi〉
∂t

+ 〈ūj 〉
2
∂〈ūi〉〈ūi〉
∂xj

= 〈ūi〉gi − 1
φ

∂φ〈u′
iu′

j 〉〈ūi〉
∂xj

− 1
φ

∂φ〈 ˜̄ui ˜̄uj 〉〈ūi〉
∂xj

− 1
ρφ

∂φ〈p̄〉〈ūi〉
∂xi

+ ν

φ

∂

∂xj

(
∂φ〈ūi〉
∂xj

〈ūi〉
)

+ 〈u′
iu′

j 〉∂〈ūi〉
∂xj

+ 〈˜̄ui ˜̄uj 〉∂〈ūi〉
∂xj

+ 〈p̄〉
ρ

∂〈ūi〉
∂xi

− ν

〈
∂ ˜̄ui

∂xj

〉
∂〈ūi〉
∂xj

− ν
∂〈ūi〉
∂xj

∂〈ūi〉
∂xj

+ 〈ūi〉
φV0

∫
Sint

p
ρ

nidS − 〈ūi〉
φV0

∫
Sint

ν
∂ui

∂xj
nj dS (25)

Similarly, the form-induced energy balance in Eq. (19) takes the
following form for immobile-bed flows:

1
2
∂〈 ˜̄ui ˜̄ui〉
∂t

+ 〈ūj 〉
2
∂〈 ˜̄ui ˜̄ui〉
∂xj

= −〈˜̄ui ˜̄uj 〉∂〈ūi〉
∂xj

− 1
2φ
∂φ〈 ˜̄ui ˜̄ui ˜̄uj 〉

∂xj

− 1
φ

∂φ〈u′
iu′

j ˜̄ui〉
∂xj

− 1
ρφ

∂φ〈 ˜̄p ˜̄ui〉
∂xi

+ ν

φ

∂

∂xj

(
φ

〈
∂ ˜̄ui

∂xj

˜̄ui

〉)
+
〈

u′
iu′

j
∂ ˜̄ui

∂xj

〉
− 〈p̄〉

ρ

∂〈ūi〉
∂xi

− ν

〈
∂ ˜̄ui

∂xj

∂ ˜̄ui

∂xj

〉
− ν

∂〈ūi〉
∂xj

〈
∂ ˜̄ui

∂xj

〉
− 〈ūi〉
φV0

∫
Sint

p
ρ

nidS

+ 〈ūi〉
φV0

∫
Sint

ν
∂ui

∂xj
nj dS (26)

where ˜̄ui = −〈ūi〉 was used at the interface for modifying terms
14 and 15 in Eq. (19). The work of pressure on double-mean
strain rate 〈p̄〉∂〈ūi〉/∂xi (as ∂〈ūi〉/∂xi is non-zero if φ spatially
varies, Eq. (9)) and the work of pressure drag and viscous fric-
tion (surface integral terms) are terms that arise with opposite
signs in both Eqs (25) and (26). Hence, these terms can be inter-
preted as bridges for energy exchange between the double-mean
and form-induced fields due to the roughness spatial hetero-
geneity and the effect of drag. For fixed-bed flows, the energy
from gravity is supplied to the double-mean flow only, while
the energy to the form-induced filed is likely provided from the
double-mean flow through work of the form-induced stresses on
the double-mean strain rate −〈˜̄ui ˜̄uj 〉∂〈ūi〉/∂xj , as was mentioned
above. The balance of the spatially-averaged turbulent energy
for the fixed-bed flows follows from Eq. (21) as:

1
2
∂〈u′

iu′
i〉

∂t
+ 〈ūj 〉

2
∂〈u′

iu′
i〉

∂xj
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iu′
j 〉∂〈ūi〉
∂xj

−
〈

u′
iu′
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∂ ˜̄ui

∂xj

〉

− 1
2φ
∂φ〈u′

iu′
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∂xj
− 1

2φ
∂φ〈u′

iu′
iu′

j 〉
∂xj

− 1
ρφ

∂φ〈u′
ip ′〉

∂xi
+ ν

2φ
∂2φ〈u′

iu′
i〉

∂xj ∂xj
− ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
(27)

As time porosity is φT ≡ 1 and the mean strain rate is
∂ ūi/∂xi = 0, the turbulent pressure-strain rate correlation
(term 9 in Eq. (21)) vanishes to zero.

5.3 Application example: flow over an array of wind or tidal
turbines

For some tasks, the equations proposed in Section 4 can be
simplified by applying appropriate assumptions and boundary
conditions. Such simplified equations may help clarify the flow
interactions with mobile boundaries where energy is extracted
from or supplied to the boundary motion. Below, we consider a
hypothetical example related to flows over a large array of wind
or tidal turbines, as represented schematically in Fig. 2.

The characteristic length scale of the flow is assumed to be
small enough for the Coriolis effects to be negligible. In such
conditions, the flow is driven by a streamwise pressure gradi-
ent. The efficiency of the deployed array, in terms of power
extraction from the flow, can be studied using the balances of
the double-mean energy, form-induced energy, and spatially-
averaged turbulent energy. For simplicity we use an averaging
volume V0 that includes all the turbines in the streamwise and
spanwise direction, as noted in Fig. 2. In the vertical direction,
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Figure 2 Sketch of flow over a wind turbine array. The region within
dotted lines represents the total averaging volume V0

the averaging domain is thin enough to resolve hydrodynamic
gradients in the surface-normal direction. We also assume flow
two-dimensionality in terms of the double-averaged quantities,
and so any spanwise derivatives of the double-averaged quanti-
ties are negligible, i.e. ∂〈θ̄〉/∂x2 = 0. Furthermore, we assume
the following conditions:

• The flow is steady, i.e. ∂〈θ̄〉/∂t = 0, and fully developed
uniform, i.e. ∂〈θ̄〉/∂x1 = 0.

• Spatial correlations between time-porosity φT and the time-
averaged fields are negligible, i.e. 〈φT

˜̄θ〉 = 0.
• The flow is turbulent and fully developed and the effects

of viscous fluid stresses on the double-averaged momentum
balance are neglected, except viscous friction at the flow
surface(s).

With these assumptions, the average loading fD from pressure
drag and viscous friction on the turbine array can be expressed
using the double-averaged momentum Eq. (15) as:

fD = − 1
φρ

∂φ〈p̄〉
∂x1

− 1
φ

∂

∂x3
(φ〈u′

1u′
3〉 + φ〈 ˜̄u1 ˜̄u3〉) (28)

where φ = φVT is the space-time porosity. The equation for the
double-mean energy Eq. (17) is simplified to the form:

0 = −〈ū1〉
φρ

∂φ〈p̄〉
∂x1

− 1
φ

∂

∂x3
(φ〈u′

iu′
3〉〈ūi〉 + φ〈 ˜̄ui ˜̄u3〉〈ūi〉)

+ 〈u′
iu′

3〉∂〈ūi〉
∂x3

+ 〈˜̄ui ˜̄u3〉∂〈ūi〉
∂x3

− 〈ūi〉
Vf

⎛
⎝−

∫
Sint

p
ρ

nidS
s

+
∫

Sint

ν
∂ui

∂nj
dS

s
⎞
⎠

︸ ︷︷ ︸
PD

(29)

where viscous transport and viscous dissipation are assumed to
be negligible, as in fully developed turbulent flows they are
orders of magnitude smaller than their turbulent counterparts.
The interpretation of terms in Eq. (29) is the same as in Eq. (17).

The equations for the form-induced and turbulent kinetic energy
(Eqs (19) and (21)) can also be simplified, i.e.:

0 = −〈˜̄ui ˜̄u3〉∂〈ūi〉
∂x3

− 1
φ

∂

∂x3

(
1
2
φ〈 ˜̄ui ˜̄ui ˜̄u3〉 + φ〈φTu′

iu′
3 ˜̄ui〉

+δi3

ρ
φ〈 ˜̄p ˜̄ui〉

)
+
〈
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iu′

j
∂ ˜̄ui

∂xj

〉
+
〈
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ρ
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∂xi

〉

− ν

〈
∂ui

∂xj

∂ ˜̄ui

∂xj

〉
+ 1
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ρ

nidS
s

+
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︸ ︷︷ ︸
PF

(30)
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iu′

3〉∂〈ūi〉
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iu′
i ˜̄u3〉 + 1
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iu′
iu′
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ip ′〉
)

−
〈
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iu′

j
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〉
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〈
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ρ

∂u′
i

∂xi

〉

− ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
− 1

Vf

⎛
⎝−

∫
u′

i
p
ρ

nidS
s

+
∫

Sint

νu′
i
∂ui

∂nj
dS

s
⎞
⎠

︸ ︷︷ ︸
PT

(31)

Viscous transport effects are considered negligible and are not
included in Eqs (30) and (31). Terms PD, PF and PT represent
the work spent on the surface of the turbines by the double-
mean, form-induced and turbulent velocity fields, respectively.
The role of these terms is two-fold: (1) generation of the turbine-
scale turbulence (or “wake turbulence”) by pressure drag, and
(2) energy transfer with the rotating blades. If the turbine
blades are “frozen” then the second role vanishes, as in the
conventional situation of immobile rough-bed turbulent flows.
Equations (28)–(31) may serve as a physically justified basis
for numerical modelling of the flows through and over turbine
arrays. Furthermore, through the interfacial terms PD, PF and
PT they provide a way of coupling the turbulent flow with the
turbine operations.

It should be noted that equations, similar to Eq. (29), have
already been used in studies of turbulent boundary layers over
wind-turbine arrays to determine the mean power extracted by
the turbines (Cal, Lebrón, Castillo, Kang, & Meneveau, 2010;
Calaf, Meneveau, & Meyers, 2010). In these works, the rate
of the energy extraction was fully assigned to term PD. It is
worth emphasizing that in this respect Eq. (29) provides addi-
tional methodological support to Cal et al. (2010) and Calaf
et al. (2010) who used equations originally developed for flows
over immobile boundaries. Also, we believe that the terms PD

are associated with actual energy extraction only partially, as in
addition to them there may be contributions from the turbulent
and form-induced terms PF and PT.
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However, no systematic information is available regarding
turbine interactions with the turbulent and the form-induced
fields in terms of the energy exchange. Thus, it is not clear
how blade motions interact with the form-induced and turbulent
flow fields. According to Eqs (29)–(31), the energy exchange
between the turbine rotors and fluid motions (at the array scale)
can occur from all three sources, i.e. the double-mean, form-
induced and turbulent components of the flow. The energy
exchange with these fields may be important when the total
power that is extracted from the flow is determined. Considering
similar boundary conditions for flows over tidal turbine arrays,
Eqs (29)–(31) can be used for the study of such cases. Equa-
tions (29)–(31) can be applied to the analysis of data coming
from high resolution experiments or simulations to investigate
such problems.

6 Conclusions

We have proposed a set of the first- and second-order time-
averaged equations for mobile-boundary conditions that include
mass, momentum, and momentum flux (i.e. stress) conser-
vation equations. These equations can be used directly as a
basis for consideration of mobile-boundary flows or in the
spatially-averaged forms that are more suitable when dealing
with flows over complex and mobile boundaries. Therefore, in
addition to the time-averaged equations, we also proposed the
double-averaged second-order equations that describe conser-
vation of momentum fluxes and energy for the double-mean,
form-induced, and turbulent components of the flow. The inter-
relations between these components as well as the effects of
temporally and spatially varying roughness geometry are explic-
itly accounted for in the proposed equations. These features
differentiate these equations from their counterparts that are
already available for flows over immobile boundaries.

The complete interpretation of the terms of the derived bal-
ances of the double-mean, form-induced, and turbulent stresses
and energies is not possible without involvement of high-
resolution data. As a first step, highly resolved data from direct
numerical simulations of open-channel flows over mobile gran-
ular beds (Vowinckel & Fröhlich, 2012) were used in Vowinckel
et al. (2017a) to assess the terms of the double-averaged momen-
tum equation. The same dataset was then used in Papadopoulos
et al. (2018a) to evaluate the double-mean and form-induced
energy balances, and in Papadopoulos et al. (2018b) to assess
the spatially-averaged turbulent energy balance.

Together with the double-averaged conservation equations
for mass and momentum, the second-order double-averaged
equations provide a solid framework for experimental and
numerical investigations of hydraulic problems involving flow
over or through mobile boundaries. This framework can help
in significant data reduction and assist in understanding the key
physical mechanisms involved in mobile-bed complex flows, at
scales relevant to the selected averaging domains. The proposed

energy budgets may provide useful insights into the interplay
between boundary heterogeneity and mobility, flow (spatial)
near-wall heterogeneity, and turbulence. After appropriate sim-
plifications (as per the wind turbine example), the proposed
equations can help in the conceptual development of improved
hydraulic models and associated parameterizations. In addition
to the design, optimization, and monitoring of wind turbine
installations, applications include studying the effects of chang-
ing river bed morphology on the flow for flood control, the
movement of fish schools, and river habitat management and
restoration projects.
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Appendix 1. Averaging conditions and theorems

It is assumed that for the purpose of this paper, the following
Reynolds conditions (as discussed e.g. in Monin & Yaglom,
1971) can be used:

θ + ψ = θ̄ + ψ̄ , αθ = αθ̄ , ᾱ = α, θ̄ψ = θ̄ ψ̄ (A1)

where ψ and θ are random hydrodynamic variables and α is
a constant. For the condition θ̄ψ = θ̄ ψ̄ to apply, the averaging
time should be much larger than the characteristic time scale
of the turbulent fluctuations θ ′ = θ − θ̄ and much smaller than
the scale of the mean variable θ̄ (e.g. Monin & Yaglom, 1971).
The four averaging conditions (Eq. (A1)) are often accompa-
nied with the fourth Reynolds condition ∂θ/∂s = ∂θ̄/∂s that
establishes a relation between a time-averaged derivative and
a derivative of a time-averaged variable, where s stands for xi

or t.
When a variable θ is not continuous within the averaging

time period, the condition ∂θ/∂s = ∂θ̄/∂s needs special con-
sideration as it may not apply for mobile-bed flows below
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roughness tops, and a more general relation for linking ∂θ/∂s
and ∂θ̄/∂s may be required. Such a relation is defined here as
a “time-averaging theorem”. The starting point for its deriva-
tion is to express the indicator function γ in terms of the
one-dimensional unit step function H :

H(t − ts) =
{

0, t < ts
1, t ≥ ts

(A2)

where ts is a “transition” time instant when γ at a point in space
changes from 0 to 1. Following a sketch shown in Fig. A1, γ
at a point A can be written as γ = H (t – t1) − H (t − t2).
The time derivative of γ can be expressed as ∂γ / ∂t = β δ(t
- ts), where β indicates the sign of ∂γ / ∂t (i.e. β = ± 1) and
δ denotes the one-dimensional analogue of the Dirac delta func-
tion (Gray & Lee, 1977). With the help of Fig. A1a, one may
note that β = 1 when a point experiences a transition from being
within non-fluid to being within fluid and β = − 1 when the
point occupation changes back from fluid to non-fluid. More-
over, the sign of the inner product of the fluid velocity at the
fluid–non-fluid interface vi with the normal unit vector ni (both
parallel with the direction of the flow) is indicative of the fluid’s
position with respect to the position of the interfacial surface
at any transition time instant (Figs A1d and A1e). Normaliz-
ing the velocity vi with its magnitude |vi| gives the unit vector
v̂i = vi/|vi|. Then, the product v̂ini is − 1 when the fluid reaches
the point under consideration and 1 when it leaves it. Hence, the
scalar function β can be expressed as β = −v̂ini. The partial
time and spatial derivatives of γ can then be presented as:

Time instants t1 and t2 correspond to crossings of the fixed
point by the interfacial surface between the flow and particle

∂γ

∂t
= −v̂iniδ(t − ts) = −viniδ(t − ts)

|vi| ,
∂γ

∂xi
= niδ(t − ts)

|vi|
(A3)

given that the total derivative of γ is (e.g. Gray & Lee, 1977):

dγ
dt

= ∂γ

∂t
+ vi

∂γ

∂xi
= 0 (A4)

where vi is the ith component of the interfacial surface velocity
(the no-slip condition is assumed at the interfacial boundary).
The time averaging theorems for time and spatial partial deriva-
tives are obtained by applying the operators of Eq. (2) on the
partial time and spatial derivatives of θ and then using the
relations of Eq. (A3), i.e.:

∂θ

∂t

s

= 1
T0

∫
T0

∂θγ

∂t
dt − 1

T0

∫
T0

θ
∂γ

∂t
dt = ∂φTθ̄

∂t

+ 1
T0

∫
T0

θv̂iniδ(t − ts)dt and

∂θ

∂xi

s

= 1
T0

∫
T0

∂θγ

∂xi
dt − 1

T0

∫
T0

θ
∂γ

∂xi
dt = ∂φTθ̄

∂xi

− 1
T0

∫
T0

θni
δ(t − ts)

|vi| dt (A5)

Using θ̄ s = φTθ̄ in Eq. (A5) gives the theorems for intrinsic time
averaging:

∂θ

∂t
= 1
φT

∂φTθ̄

∂t
+ 1
φT

1
T0

∫
T0

θv̂iniδ(t − ts)dt,

∂θ

∂xi
= 1
φT

∂φTθ̄

∂xi
− 1
φT

1
T0

∫
T0

θni
δ(t − ts)

|vi| dt (A6)

Considering now spatial averaging, the following relations are
needed (Nikora et al., 2007):

〈θ + ψ〉 = 〈θ〉 + 〈ψ〉, 〈αθ〉 = α〈θ〉,
〈α〉 = α, 〈〈θ〉ψ〉 = 〈θ〉〈ψ〉 (A7)

A wide separation between the characteristic length scales of the
spatially-averaged value and the scales of the spatial fluctuations
θ̃ = θ − 〈θ〉 is required for the condition 〈〈θ〉ψ〉 = 〈θ〉〈ψ〉 to
apply (Nikora et al., 2007). The conditions in Eq. (A7) are spa-
tial counterparts of the conventional Reynolds averaging rules
in Eq. (A1). The theorems for consecutive time-space averaging
proposed in Nikora et al. (2013) are:

〈
∂θ

∂t

s〉s

= ∂φVm〈φTθ̄〉
∂t

+ 1
V0

∫
Sint

θvinidS
s

,

〈
∂θ

∂xi

s〉s

= ∂φVm〈φTθ̄〉
∂xi

− 1
V0

∫
Sint

θnidS
s

(A8)

Equation (A8) can be also obtained by integrating the right-hand
side terms of Eq. (A5) over Vm, dividing by V0, expanding the
volume integrals considering Vm = V0 − (V0 − Vm), express-
ing the time coordinates in δ in terms of the spatial coordinates
and applying the no-slip condition and the scaling property of
the Dirac delta function. The theorems defined in Eqs (A5)
and (A8) can be used for performing spatial averaging over the
time-averaged equations of motion proposed in Section 3.

Appendix 2. Key steps in derivation of the time- and
double-averaged second-order equations

Balance equation for local (at a point) turbulent stresses

(1) In the first step, the balance of the time-averaged momen-
tum flux φTuiuk is obtained by using the momentum and
mass conservation Eq. (6) to express the time derivatives in
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(a)

(b)

(c) (e)

(d)

(f)

(g)

Figure A1 Sketch of a flow domain containing fixed particles (white) and rightward moving particles (shaded) at different time instants (a–e). The
distribution of the indicator function γ (f) and its derivative ∂γ / ∂t with respect to time t at a position A is shown in (g) following Gray and Lee
(1977).

the following identity:

φT
∂ρuiuk

∂t
= φTuk

∂ρui

∂t︸︷︷︸
Eq. (6)

+ φTui
∂ρuk

∂t︸ ︷︷ ︸
Eq. (6)

− φTuiuk
∂ρ

∂t︸︷︷︸
Eq. (6)

(B1)
where the time averaging is performed using the oper-
ators of Eq. (1), the averaging conditions of Eq. (A1),
the averaging theorems of Eq. (A5), and the Reynolds
decomposition.

(2) Then, in the same manner, time-averaging is performed on
Eq. (6) to obtain the time-averaged continuity and momen-
tum Eqs (7) and (8).

(3) Equations (7) and (8) are used in the third step to replace the
right-hand side terms in the expansion of the time derivative
of the mean momentum flux φTūiūk:

∂φTūiūk

∂t
= ūk

∂φTūi

∂t︸ ︷︷ ︸
Eq. (8)

+ūi
∂φTūk

∂t︸ ︷︷ ︸
Eq. (8)

−ūiūk
∂φT

∂t︸︷︷︸
Eq. (7)

(B2)

(4) Using the Reynolds decomposition θ = θ̄ + θ ′, the time-
averaged momentum flux φTuiuk is decomposed into mean
and turbulent momentum fluxes, i.e.:

∂φTuiuk

∂t
= ∂φTūiūk

∂t
+ ∂φTu′

iu′
k

∂t
⇒ ∂φTu′

iu′
k

∂t

= ∂φTuiuk

∂t︸ ︷︷ ︸
Eq (B1)

− ∂φTūiūk

∂t︸ ︷︷ ︸
Eq. (B2)

(B3)

(5) Finally, the outcomes of steps 1 and 3 (based on Eqs (B1)
and (B2)) are used to express the right-hand side time

derivatives in Eq. (B3) to obtain the equation for local (at
a point) turbulent stresses.

Equations (B2) and (B3) underpin Eqs (10) and (12) reported
in Section 3.
Double-averaged equation for form-induced stresses

(1) The starting point is to obtain the equation for the spatially-
averaged mean stresses φVm〈φTūiūk〉 by integrating Eq. (10)
over Vm, dividing by V0, and then applying the averaging
theorems given in Eq. (A8). For brevity, the final equation
is not shown in full here as it represents an intermediate step
in the derivation.

(2) At a next step, the combined balance equation for the
quantities φVT〈ūi〉〈ūk〉, φVm〈φT ˜̄ui〉〈ūk〉 and φVm〈φT ˜̄uk〉〈ūk〉
is obtained by substituting the double-averaged mass and
momentum conservation Eqs (14) and (15) in the identity:

∂

∂t
(φVT〈ūi〉〈ūk〉)+ ∂

∂t
(φVm〈φT ˜̄ui〉〈ūk〉)+ ∂

∂t
(φVm〈φT ˜̄uk〉〈ūi〉)

= 〈ūk〉 ∂φVm〈φTūi〉
∂t︸ ︷︷ ︸

Eq. (15)

+〈ūi〉 ∂φVm〈φTūk〉
∂t︸ ︷︷ ︸

Eq. (15)

−〈ūi〉〈ūk〉 ∂φVm〈φT〉
∂t︸ ︷︷ ︸

Eq. (14)

− φVm〈φT ˜̄ui〉∂〈ūk〉
∂t

− φVm〈φT ˜̄uk〉∂〈ūi〉
∂t

(B4)

(3) The third step involves the decomposition θ̄ = 〈θ̄〉 + ˜̄θ
that is used to subdivide the spatially-averaged mean
stress φVm〈φTūiūk〉 into double-mean φVT〈ūi〉〈ūk〉 and form-
induced φVm〈φT ˜̄ui ˜̄uk〉 momentum fluxes as well as contribu-
tions from the porosity-velocity correlations, as explicitly
shown in Eq. (3). The balance equation for the form-induced



150 K. Papadopoulos et al. Journal of Hydraulic Research Vol. 58, No. 1 (2020)

stresses is then obtained by implementing Eqs (4) and (B4)
as:

∂

∂t
φVm〈φT ˜̄ui ˜̄uk〉 = ∂

∂t
(φVm〈φTūiūk〉)︸ ︷︷ ︸

Eq. (B4)

− ∂

∂t
(φVT〈ūi〉〈ūk〉 + φVm〈φT ˜̄ui〉〈ūk〉 + φVm〈φT ˜̄uk〉〈ūi〉)︸ ︷︷ ︸

Eq. (B5)
(B5)

The outcomes of Eqs (B4) and (B5) are Eqs (16) and (18),
respectively.
Equation for the spatially-averaged turbulent stresses

To obtain the double-averaged equation for turbulent
momentum fluxes (i.e. spatially-averaged Reynolds stresses),
the outcome of Eq. (B3), i.e. Eq. (12), is integrated over Vm,
divided by V0, and then expanded using the averaging theorems
given in Eq. (A8) to give Eq. (20).

Notation

g = gravitational acceleration (m s−2)
ni = unit vector normal to the interfacial surface Sint,

directed into the fluid (–)
p = pressure (kg m−1 s−2)
T0 = total averaging time (s)
Tf = sum of time intervals during which a specific point is

occupied by the fluid (s)
ui = instantaneous velocity component in the ith direc-

tion (i = 1,2,3: streamwise, spanwise, and vertical
directions respectively) (m s−1)

vi = velocity at the fluid–non-fluid interfacial surface in
the ith direction (m s−1)

V0 = total averaging volume (m3)
Vm = volume occupied by the fluid within T0 (m3)
xi = position coordinate in the ith direction (m)
γ = distribution function (–)
θ = a fluid quantity (velocity m s−1 or pressure kg m−1 s−2)
θ̄ = time-averaged fluid quantity (velocity m s−1 or pres-

sure kg m−1 s−2))
〈θ〉 = spatially-averaged fluid quantity (velocity m s−1 or

pressure kg m−1 s−2)
〈θ̄〉 = double-averaged fluid quantity (velocity m s−1 or

pressure kg m−1 s−2)
˜̄θ = spatial fluctuation of a time-averaged fluid quantity

(velocity m s−1 or pressure kg m−1 s−2), ˜̄θ = θ̄ − 〈θ̄〉
θ

′ = turbulent fluctuation of an instantaneous fluid quan-
tity (velocity m s−1 or pressure kg m−1 s−2), θ ′ = θ −
θ̄

ν = fluid kinematic viscosity (m2 s−1)
ρ = fluid mass density (kg m−3)
φT = local time porosity (–)

φVm = space porosity (–)
φVT = space-time porosity (–)
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