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 1 

Abstract 2 

Calorie restriction (CR) has a positive impact on health and lifespan. Previous work however 3 

does not reveal the whole underlying mechanism of bahavioral phenotypes under CR. We 4 

propose a new approach based on phase space reconstruction (PSR) to analyze the bahavioral 5 

responses of mice to graded CR. This involved reconstructing high-dimensional attractors 6 

which topologically represent the intrinsic dynamics of mice based on low-dimensional time 7 

series of movement counts observed during the 90 day time course of restriction. PSR together 8 

with correlation dimensions (CD), Kolmogorov entropy (KE) and multifractal spectra builds a 9 

map from internal attractors to the phenotype of mice and reveals the mice with increasing CR 10 

levels undergo significant changes from a normal to a new state. Features of the attractors (CD 11 

and KE) were significantly associated with gene expression profiles in the hypothalamus of the 12 

same individuals. 13 

Keywords: calorie restriction; phase space reconstruction; attractors; gene expression 14 

 15 

1. Introduction 16 

Calorie restriction (CR) is one of the few environmental perturbations that has a positive 17 

impact on health and lifespan [1-4]. Despite its discovery 100 years ago (in 1918), and intense 18 

modern research activity, the mechanisms underlying its effects remain unclear and disputed. 19 

Graded levels of CR lead to graded responses in life span [5-6] and thus the factors that relate 20 

to the graded levels of CR are of particular interest [7]. During restriction, mice and other 21 

species, consistently alter their behavior, body temperature and body weight [8-10]. We have 22 

previously studied the responses of C57BL/6 mice to graded levels of CR, including recording 23 

their body composition [11], hormonal status [12] multi-tissue transcripomic profiles [13-16], 24 

plasma and multi-tissue metabolomics [17-18] body temperature [10] and physical activity 25 
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patterns [19]. These latter two bahavioral components have been monitored every minute over 1 

3 months of restriction using a remote logging device that interrogates a passive implanted 2 

transmitter (eMitter: vital view US). These data provide a window to investigate the dynamic 3 

responses of mice to the graded levels of CR [11-13, 20-21]. 4 

Previous work in these mice has explored some aspects of the dynamic changes that occur 5 

under graded CR. For example, Mitchell et al [11] investigated changes in body weight over 90 6 

days of restriction using nonlinear regression analysis and one-way ANOVA. They found that 7 

the body mass dynamically changed over the first 30 days under CR but thereafter it stabilized. 8 

The time to reach stability was unrelated to the level of restriction. They also studied how the 9 

body temperature of the mice responded to graded CR and protein restriction (PR) over 3 10 

months [10]. They showed that during the first 30-35 days, there was a dynamic change in daily 11 

average body temperature and then it stabilized until day 70, followed by a further decline. 12 

Taking a different approach Lusseau et al [21] used a hidden Markov model to analyse the 13 

changes in bahavioral phenotypes related to different levels of CR. They showed for the first 14 

time that mice under CR changed the characteristics of their activity states, rather than their 15 

activities. 16 

Although some existing work has used time domain methods, such as statistical methods 17 

or hidden Markov models to study mice under graded CR, and these approaches can reveal 18 

some of the features of the dynamic responses to CR, they do not reveal the whole underlying 19 

mechanism of bahavioral phenotypes. In this paper, we develop a new approach based on phase 20 

space reconstruction (PSR), or embedding theorem [22-23], to analyze the bahavioral responses 21 

to graded levels of CR. We show that the time series of movement counts obtained for mice in 22 

this experiment are chaotic, and thus they are appropriate to be analyzed using PSR. PSR can 23 

generate the attractor of a system, a subset of the system’s phase space, which may be 24 

considered as a geometric object to which all the system’s trajectories converge. In the mouse 25 
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movement situation, PSR generates the attractor of one mouse, which contains all the 1 

asymptotic states of the mouse’s trajectories. In another word, PSR generates the attractor of 2 

one mouse which is topologically equivalent to the actual bahavior of the mouse. An attractor 3 

can be further described by its correlation dimension (CD), Kolmogorov entropy (KE) and size. 4 

CD characterises the geometric complexity of the attractor of a mouse. A bigger CD means a 5 

more complex geometry of an attractor. KE quantifies how complex a chaotic (mouse) system 6 

is. The bigger a KE is, the more chaotic the system is. With PSR, we can both quantitatively 7 

and topologically have a global view on the dynamics of a system, which is described by the 8 

attractor of the system. PSR has been widely used in many areas; see, for example [24-27] for 9 

the applications to medical science and ecological science. 10 

In our experiment, we divide the mice into six groups, i.e, 24AL, 12AL, 10CR, 20CR, 11 

30CR and 40CR. 24AL means the mice were fed completely ad libitum without restriction for 12 

24 hours per day; 12AL refers to ad libitum feeding for 12h per day during darkness. 10CR, 13 

20CR, 30CR and 40CR refer to caloric restriction by 10%, 20%, 30% and 40%, respectively, 14 

relative to the baseline intake of the same individual mouse. We illustrate our framework 15 

including our main idea in Supplementary eFigure 1. Traditionally, in the time domain, the time 16 

series of movement counts of mice under different CR levels show different behavior, and the 17 

clustering of time series of movement counts simply classifies mice under different CR into 18 

different groups. However, while we can superficially see the different effects due to distinct 19 

CR, we do not know how the underlying mechanism of bahavioral phenotypes of mice evolves 20 

or changes due to exposure to the distinct CR levels. Moreover, the analysis in the time domain 21 

may not be accurate due to limited observations. Therefore, we reconstructed a high-22 

dimensional time series based on low-dimensional time series of movement counts observed 23 

during the 90 day time course and further obtained the attractors for ten periods, topologically 24 

equivalent to real attractors that are not observed in real mice, by evenly dividing the whole 90 25 



5 

 

day time course of calorie restriction into ten nine-day periods, which represent the intrinsic 1 

dynamics. We show that the mice under distinct CR levels undergo significant changes of their 2 

underlying mechanism reflected by their attractors’ characteristics such as CD, KE and size. It 3 

is the change of the underlying mechanism that results in the change of phenotypes under 4 

distinct CR levels. It has also been found that the clusters characterized by the attractors are 5 

consistent with the classification of mice given by the hierarchical clustering method in the time 6 

domain. We also perform multifractal spectrum analysis on each mouse at distinct CR levels, 7 

which further validates the conclusions of the PSR. 8 

In particular, we build a map from the intrinsic attractors to the bahavioral phenotypes 9 

under distinct CR levels. This map not only explains and characterizes the phenotypes of mice 10 

but also predicts their dynamic behaviors due to the asymptotic states of the respective attractor 11 

for a biological system. Because we have extensively phenotyped the same individual mice by 12 

constructing the phase space attractor, we further leveraged this phenotype to address the 13 

relationship between characteristics of the attractors (CD and KE) and gene expression in the 14 

hypothalamus, based on the measured RNA-Seq data [13], which provides a unique biological 15 

insight into the dynamics of mice at various CR levels. 16 

2. Results 17 

2.1. Three patterns revealed by hierarchical clustering 18 

Figure 1(a) shows the average movement counts of each of six groups of mice with time. 19 

These average time series reveal differences in behavior among these groups. We further used 20 

hierarchical clustering to group mice together with similar patterns of response (see Figure 1(b)). 21 

This classified the mice into three categories. That is, the blue category consists of all the mice 22 

from the 24AL and 12AL groups (i.e., mice numbered as 1-16), the green category included 23 

mice mainly from 10CR and 20CR groups with one exception (i.e., the mouse numbered 38 24 

from 30CR), and the red category included mice mainly from 30CR and 40CR with three 25 
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exceptions (i.e., the mice numbered 18 from 10CR and 27 and 32 from 20CR). 1 

Both the time series and the hierarchical clustering results reveal different phenotypic 2 

behaviors under different levels of CR. However, we do not know how the underlying 3 

mechanism of bahavioral phenotypes of mice evolves or changes due to the distinct CR levels. 4 

To investigate how different levels of CR make the underlying bahavioral mechanism change, 5 

we took advantage of PSR to gain more insight into the impacts of CR on the mice by 6 

characterising the underlying attractor structure and how this varies over time on restriction and 7 

at different levels of restriction. 8 

2.2. Distinct CR levels exhibit different shapes of attractor with PSR 9 

We had six groups of mice exposed to different levels of restriction/food access. Before 10 

reconstructing the phase space, we first pre-processed the data by eliminating outliers (see 11 

Supplementary Methods for the detailed method) and removing noises with wavelet domain 12 

denoising. 13 

For each group, we computed the average movement counts of all the mice, thus producing 14 

a new time series of movement counts for each group. This was to understand the collective 15 

underlying behavior pattern of each group of mice. To observe the changes in the dynamics of 16 

each group with time, we evenly divided the whole time range (7190 time points) into ten 17 

periods each covering 9 days and having 719 time points. We then reconstructed the phase space 18 

of the average movement counts at each of the ten periods for each group (See Supplementary 19 

eFigure 2 for the detailed computation procedure and Supplementary eTable 1 for the delay 20 

time   and embedding dimension   for each group of mice). Due to space limitations we 21 

illustrate here the attractors of three typical periods in Figure 2 and detailed periods are shown 22 

in Supplementary eFigure 3. To ease comparisons of these complex shapes, we describe the 23 

shape of attractors using specific letters like ‘Z’, ‘T’, ‘V’ and ‘Vs’ (scattered V).  24 

In both the 24AL and 12AL groups, there was no significant change in the shape of 25 
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attractors over the 10 periods and the shape consistently looked like the letter ‘Z’ from the front 1 

view. In the 10CR group, the shape of the attractors in the first six periods also looked like a 2 

‘Z’; however, it changed to look more like ‘T’ from period 7 to 10. In the 20CR group, the shape 3 

of the attractors from period 1 to 6 looked like ‘Z’, then changed to ‘T’ from period 7 to 8, and 4 

finally changed to ‘V’ in the last two periods. In the 30CR group, the shape of attractors looks 5 

also looked like ‘Z’ in the first five periods, however, this changed to ‘V’ in the last five periods. 6 

In the 40CR group, the shape of the attractors looked like ‘Z’ in period 1 and ‘V’ from period 2 7 

to 6; after that, it changed to a more scattered ‘V’, denoted by ‘Vs’. See Supplementary eTable 8 

2 for a summary. 9 

So far, we have explored the dynamic characteristics of each group of mice under different 10 

CR levels, with different CR levels giving rise to distinct attractors. However, this plotting of 11 

attractors only gives a collective and qualitative illustration. We now switch from the qualitative 12 

collective analysis to the quantitative individual analysis by investigate three important 13 

quantitative characteristics: CD, KE and size of the volume of the phase space for each 14 

individual mouse to statistically characterize and distinguish the attractors of the six groups. 15 

2.3. Distinct CR levels exhibit different characteristics (CD, KE and size) of the attractors 16 

In this section, we statistically investigate the characteristics (CD, KE and size) of the 17 

attractors of mice as they changed over the ten periods. For this analysis we first computed CD, 18 

KE and size of the attractor of each mouse in each period. We then fitted regression models to 19 

the parameters over time for each mouse. For KE and CD these regressions were best fit by 20 

linear relationships (based on inspection of residuals) but for size the best fit model was a log-21 

linear regression. For each mouse we derived the gradient and intercept values of the fitted 22 

regression and the explained variance (r2). Supplementary eTable 3 summarizes these derived 23 

parameters relating to the change over time in CD, KE and size for each mouse in each group. 24 

Figure 3 shows how the fitted intercepts and gradients for CD, KE and size differed between 25 
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the CR groups. From Figure 3 and Supplementary eTable 3, we obtain the following 1 

observations. 2 

For CD there was a significant difference in the fitted intercepts between the groups 3 

(ANOVA F5,40 = 3.5, p =0.01: Figure 3A), post-hoc tukey tests indicated the intercept for 40CR 4 

was significantly lower than the intercepts of the 10CR and 30CR groups (both p < .01). All 5 

other comparisons were not significantly different. The gradient of change in CD over the 10 6 

periods however showed a much greater difference between groups (F5,40 = 32.13, p < .0005: 7 

Figure 3B) with the 24AL, 12AL, 10CR and 20CR all having positive gradients that were not 8 

significantly different from each other (CD increasing over time on restriction) but the 30CR 9 

and 40CR groups having negative gradients (CD decreasing over time) that did not differ 10 

between these 2 groups, but were significantly different from the other 4 groups. For KE there 11 

was a significant difference in the fitted intercepts between the groups (ANOVA F5,40 =13.58, p 12 

< .0005: Figure 3C). Post-hoc tukey tests indicated the intercepts for 30CR and 20CR groups 13 

were significantly higher than the other 4 groups (p < .05 for both comparisons). While 12AL 14 

and 10CR were significantly lower than the other 4 groups (p < .05 for all comparisons). All 15 

other comparisons were not significantly different. The gradient of change in KE over the 10 16 

periods however was not different between the different levels of CR (F5,40 = 1.83, p =0.128: 17 

Figure 3D) with all groups showing a slight increase over time. Finally, for size, there was no 18 

significant difference in the fitted intercepts between the groups (ANOVA F5,40 = 1.34, p = 0.268: 19 

Figure 3E). However, the gradient of change in size over the 10 periods showed a highly 20 

significant difference (F5,40 = 61.82, p < .0005: Figure 3F) with the 24AL, 12AL, 10CR and 21 

20CR all having negative gradients that were not significantly different from each other (size 22 

decreasing over time on restriction) but the 30CR and 40CR groups having positive gradients 23 

(size increasing over time) that did not differ between these 2 groups, but were significantly 24 

different from the other 4 groups. 25 
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We further explored the state change using the method of coefficient of variation (see 1 

Supplementary Methods for the detailed method and Supplementary eFigure 4 for the analysis 2 

result), where we can see that there was a large change between 30CR and 40CR. 3 

2.4. Distinct CR levels exhibit different multifractal spectra 4 

Similarly, we divided the whole time series into 10 parts (phases), and computed their 5 

multifractal spectra, illustrated in Supplementary eFigure 5, where we can see the time series 6 

of each mouse in each group is multifractal as the values of the singular exponent   vary. 7 

Moreover,   ranges from 2 to 5 for almost all mice of 24AL, 12AL and 10CR, while   8 

exceeded 5 for almost all mice of 30CR and 40CR and almost 1/2 mice of 20CR. 9 

Furthermore, the singular spectrum ( )f   varied considerably from 24AL to 40CR, 10 

although the main part of each ( )f   looks like an inverted parabola. The MSA results given 11 

in Supplementary eFigure 5 generally classify the six groups of mice into two categories, which 12 

is consistent with the result given by PSR above (compare Table 1). One category involves 13 

24AL, 12AL, 10CR and 20CR, which have similar singular spectra ( )f  , i.e., most mice in 14 

these groups have a tail for only on the left side. The other category involves 30CR and 40CR, 15 

both of which have similar singular spectra, i.e., some mice have a tail on the left part, but each 16 

mouse has a tail on the right side. Similarly, different groups of mice show distinct multifractal 17 

spectra, which result in distinct phenotype behaviors. Besides, the MSA result also reveals that 18 

the behavior of 24AL and 12AL is a bit different, as most mice of 24AL have a tail on the left 19 

part in terms of ( )f   . Moreover, there is a big change from 20CR and 30CR, i.e., the 20 

parabola-like curves without a tail (for 20CR) become to have a tail (30CR and 40CR). 21 

2.5. PSR gives accurate predictions of movement counts 22 

Using the PSR technique together with the Volterra adaptive filter, we further achieved an 23 

accurate prediction of movement counts over time. We randomly selected a mouse from each 24 

group, i.e., 24AL (mouse 3), 12AL (mouse 9), 10CR (mouse 17), 20CR (mouse 25), 30CR 25 
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(mouse 34) and 40CR (mouse 45). Each time series of movement counts (in total 7190 time 1 

points) was scaled in the range (-1, 1) and divided into two parts: the first 6200 values being 2 

the training set, used to reconstruct the model, and the rest treated as the test set. We then applied 3 

the above-mentioned technique to the time series, and obtained the plots given in eFigure 6, in 4 

which the measured and predicted time series are given and the mean square errors are also 5 

given on the right of the plots. From each plot, we can see the error was always lower than 3.6% 6 

and hence the PSR technique together with the Volterra adaptive filter gives a precise prediction 7 

of future movement counts of the mice. Hence by applying the PSR technique to movement 8 

counts, we achieved not only a good characterization of the behavior, but also a precise 9 

prediction of their future behaviors. 10 

2.6. Mapping phenotypes to gene expression in the hypothalamus 11 

As illustrated above, different groups of mice under CR produce distinct phenotypes, 12 

represented by distinct attractors. For the same individual mice we also have the gene 13 

expression profiles in the hypothalamus at the end of the 3 month long restriction period. To 14 

explore the relationships between the characteristics of the attractors in individual mice with 15 

their gene expression profiles we calculated the correlation coefficients between expression of 16 

each gene (normalized counts) and the individual values of the parameters KE and CD in the 17 

final period. The genes that correlated significantly (see methods for definition of false 18 

discovery cut-offs) with KE and CD are shown in eTable 4. We performed this analysis only 19 

for the values of KE and CD for the final time period since this was the point at which the mice 20 

were killed and the gene expression measured. Hypothalamic gene expressions of only five 21 

genes were correlated with the values of KE, all of which were positively correlated. The genes 22 

were Lbp, Wfikkn2, Gm2518, Msx1 and Krt18. In contrast for CD there were 23 significant 23 

genes (10 positive and 13 negative). The positively correlated genes were Fcrls, Tubb2b, Stmn4, 24 

Ccnd1, Serpinb1a, Oxct1, Phyhipl, Lmcd1, Ccdc148 and Ppid. The significantly negatively 25 
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correlated genes were Pla2g3, Errfi1, Stx3, Cdnk1a, Eif2s3y, Fkbp5, Agrp, Adipor2, Sgk1, 1 

Ovgp1, Plin4 and Hif3a. Expression levels of these genes were not independent of each other. 2 

We performed a stepwise multiple regression (forward inclusion and backward deletion with F 3 

to enter or leave = 0.15) to identify the most significant predictors. Although we use the term 4 

predictors for this analysis, this should not be taken to imply a direction of causality in the 5 

relationship of gene expression to the attractor structure. For CD, four of the 23 genes were 6 

retained in the best fit equation. We also performed a best-subsets regression and then selected 7 

the best combination of predictors based on minimisation of the Akiake Information criterion 8 

(AIC) to avoid overfitting. This also identified the same 4 genes as the best combination of 9 

predictors for CD. The four genes were Tubb2b (t = 2.79, p = 0.009), Stmn4 (t = 2.83, p = 0.008), 10 

Agrp (t = -2.51, p = 0.018) and Eif2s3y (t = -2.13, p = 0.042), and together expression of these 11 

genes explained 77% of the variation in CD (F4,33 = 24.22, p < .005). Relationships between 12 

CD and these 4 predictors are shown in Figure 4. For KE the multiple regression analysis 13 

identified 2 significant predictors. These were Wfikkn2 (t = 3.11, p = 0.004) and Gm2518 (t = 14 

3.9, p = 0.004) and together they explained 56.5% of the variation in KE (F2,33 = 20.16, p 15 

< .0005). Relationships between these 2 predictors and KE are shown in Figure 4. 16 

3. Discussion 17 

3.1. PSR characterized mouse groups consistent with hierarchical clustering in the time 18 

domain 19 

Traditional time domain methods for time series only give a superficial and one-sided 20 

understanding of the behavior of a system (compare Figure 1) with partial observations of some 21 

properties of a system such as movement counts. To find the underlying mechanism that results 22 

in the phenotype change of distinct groups of mice, PSR was used to reconstruct the observed 23 

time series of a system and thus reveal the real system’s behavior, which clearly shows in each 24 

group of mice there is a change of the intrinsic behavior (attractors) with time due to different 25 
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CR levels (compare Figure 2 and Figure 3) and this change causes the classification of mice 1 

given in Figure 1(b). With PSR, we build a map from the internal attractors to phenotypic 2 

behavior (2D plot of time series and classification). It has also been found that attractors refine 3 

the classification of mice given by the hierarchical clustering method in the time domain. That 4 

is, hierarchical clustering classified the mice into three categories, one consisting of 24AL and 5 

12AL, one of 10CR and 20CR, and one of 30CR and 40CR, which is confirmed by the PSR 6 

approach (see Table 1). 7 

3.2. PSR builds a map from internal attractors to phenotypic behavior of mice under 8 

distinct CR levels 9 

As indicated by Supplementary eFigure 7, the KE and CD increase, but the size decreases 10 

for the 24AL, 12AL, 10CR and 20CR groups, while the KE and size increase but the CD 11 

decreases for the 30CR and 40CR groups. This observation first gives an impression that the 12 

CR less than 20% does not affect the behavior too much, as the 10CR and 20CR groups have a 13 

similar change trend to 12AL. The increasing size of the 30CR and 40CR groups reveals that 14 

their movement space increases, which may imply that they move further seeking to find food 15 

than other groups of mice. The decreasing CD of the 30CR and 40CR groups indicates a less 16 

geometric complexity than other groups, which means less forms of behavior these two groups 17 

take. In this case, these two groups of mice may have to save energy and only concentrate on 18 

food searching due to insufficient food intake. Besides, the increasing KE of the 30CR and 19 

40CR groups implies that these mice become more chaotic, which means the bahavior of these 20 

mice becomes more irregular and unpredictable.  21 

In summary, from Figure 3 and Supplementary eFigure 7 and eTable 3, we can see that the 22 

mice under distinct CR undergo significant changes of their underlying mechanism reflected 23 

by their attractors’ characteristics, CD, KE and size. It is the change of the underlying 24 

mechanism that results in the change of phenotypes of mice under distinct CR and thus the 25 
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classification of mice given in Figure 1(b). With PSR, we build a map from the internal 1 

attractors to phenotype behavior (2D plot of time series and classification). Multifractal 2 

spectrum analysis further validates this mapping. 3 

3.3. Links of the attractor parameters CD and KE to the gene expression profiles in the 4 

hypothalamus 5 

There were only five genes significantly correlated with the values of KE, all of which 6 

were positively correlated. The most significantly correlated gene was lipopolysaccharide 7 

binding protein (Lbp) involved in the immune response to bacterial infection. Its role in this 8 

context is unclear. The second most correlated gene expression was with the wap 9 

follistatin/kazai immunoglobulin kunitz and netrin domain containing 2 (Wfikkn2), a gene that 10 

contains multiple binding domains and may be a regulator of proteases. It is known to bind to 11 

tumor growth factor beta and bone morphogenic proteins 2 and 4, although apparently does not 12 

affect their signaling activity [40]. The third highest correlation was with expression of Gm2518 13 

which may be a pseudogene. Mouse homeobox 1 (Msx1) was the fourth highest correlated gene 14 

expression to KE. This is a transcriptional regulator during development and is also expressed 15 

in the pituitary. Its potential function in this context is unclear. Finally, the firth most correlated 16 

gene was keratin18 (Krt18). This gene is expressed in a wide range of tissues although not 17 

previously suggested to be a feature of hypothalamic gene expression. Again the function in 18 

this context is uncertain. The multiple regression analysis suggested that the two most important 19 

genes influencing KE were Wfikkn2 and Gm2518. 20 

There were 10 genes positively related to the level of CD. The most highly correlated gene 21 

to CD was Fcrls. This is a receptor expressed on microglia but it has no known ligand and no 22 

known function. The gene contains immunoglobulin domains and hence has been suggested to 23 

be linked to brain inflammation. Discovery of the function of this gene and its ligand should be 24 

a key goal because it may play a significant part in structuring the behavioral response to CR 25 



14 

 

and potentially therefore also the life and healthspan benefits. In fact, 2 other genes in the top 1 

10 positively correlated genes are also associated with inflammation: Serpinb1 which is a serine 2 

protease inhibitor, and strathmin 4 (Strm4) which is involved in microtubule destabilization. 3 

This gene is known to be regulated by leptin which shows large changes under CR (12). A 4 

microtubule link is also evident for the second most positively correlated gene to CD and that 5 

was Tubulin (Tubb2b) which binds GTP as a major component of microtubules. Mutation of 6 

this gene leads to cognitive impairment. The 4th highest correlation to CD is for expression 7 

levels of cyclin D1 (Ccnd1). This is a key gene involved in regulation of the cell cycle. Why it 8 

should be linked to this bahavioral parameter is unclear at present. The 6th most positively 9 

correlated gene was Oxct1 (succinyl coA ketoacid coA transferase), involved in the breakdown 10 

of ketones. This is potentially significant because animals under the highest levels of restriction 11 

may be involved in cyclic utilization of ketones during the daily cycle. Such ketone use may be 12 

a driver of the attractor structure. The 7th most significant positive gene was Phyhypl (phytanoyl 13 

coA 2 hydroxylase interacting protein) involved in brain specific BAI-1 binding and regulation 14 

of endogenous siRNAs. This may then be a key regulator of other genes that control the 15 

behavior. The 10th highest positively correlated gene was Ppid (Cyclophilin d1) which has been 16 

linked to motor dis-cordination and autism spectrum disorder, hence also potentially involved 17 

some presently unknown manner in physical activity regulation. The two other genes 18 

significantly positively associated to CD were Ccdc148 and Lmcd1. The former has unknown 19 

functions in the brain, and the latter is associated with restricting GATA function. 20 

Among the genes that were negatively correlated to CD the most negatively correlated was 21 

Hif3a (hypoxia inducible factor 3a). This gene is typically upregulated in conditions of hypoxia 22 

where it mediates the adaptive response. Why it should be strongly related to the attractor 23 

underpinning the bahavioral response to CR is unclear. The second and third genes Plin4 24 

(perilipin4) and Arrdc2 (arrestin domain containing 2) also have well established functions. The 25 
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former encodes a protein that coats lipid droplets, while the latter regulates g-protein coupled 1 

signaling and cargo protein trafficking in endo-lysosomal system. Again why these might link 2 

to bahavioral responses to CR is unclear. The 5th negatively associated gene was Sgk1 (serum 3 

glucocorticoid regulated kinase 1). Since this responds to glucocorticoids, which are modulated 4 

by CR, this gene may form a link between circulating levels of glucocorticoids and the 5 

bahavioral response. This is also true for 2 other genes that are significantly negatively related 6 

to CD. These are the adiponectin receptor (Adipor2) in 6th position and Agouti-regulated peptide 7 

Agrp in 7th position, which is regulated by both leptin and insulin. These three genes may 8 

provide an important link between peripheral signals reflecting the CR state and the bahavioral 9 

response. Sgk1 is also involved in the cellular stress response and this is also true for Errfi1 10 

(erbb receptor feedback inhibitor 1) in 12th place. The 8th most negatively correlated gene was 11 

Fkbp5 (FK506 binding protein 5) which is an immunophilin protein. Stx3 (Syntaxin3) was the 12 

11th most negatively correlated gene to CD and is related to protein trafficking. Finally, Cdkn1a 13 

in 10th position is a cyclin dependent kinase regulating the cell cycle at G1, clearly linked to 14 

Cyclin D1, which appears in the positive related list. The function of the ninth most negatively 15 

correlated gene (Eif2s3y) in the brain is unknown. 16 

These genes therefore include 4 genes linked to peripheral hormones that may mediate the 17 

CR state to the bahavioral response (Sgk1, Agrp, Adipor2 and Stmn4), two genes linked to the 18 

cell cycle regulation (Ccnd1 and Cdkn1a), two genes linked to microtubules (Tubb2d and Stmn4) 19 

and three genes potentially linked to inflammation (Fcrls1, Serpinb1a and Stmn4). It is 20 

important to recognize that the directional in causality in their associations to the attractors for 21 

all these genes is unknown. Hence the genes may cause the behavior changes, or the changes 22 

in the gene expression may be a consequences of the attractor structure. At present we cannot 23 

separate these possibilities. Some of the other genes have well known functions but why they 24 

should provide any link to the bahavior is unclear (eg Hif3a and Plin4) while others do not have 25 
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a known function in the brain at present. It is important to recognize that these associations are 1 

only correlations and no causality can be inferred. The multiple regression analysis indicated 2 

that perhaps the most significant of these genes were Tubb2b, Stmn4, Agrp and Eif2y3. Now we 3 

have identified these potentially important genes it will be interesting to experimentally 4 

manipulate these genes in the brain using genetic techniques to evaluate their causative role in 5 

the mediation of the attractor structure. 6 

4. Methods 7 

4.1. Overall design and rationale 8 

All the experiments were performed at the University of Aberdeen, UK under Home office 9 

project licence (PPL 60/4366 held by JRS), following ethical approval of the protocols by the 10 

local ethical review committee. Male 6 week old C57/BL6 mice (Charles River, Ormiston, UK) 11 

were acclimated for 6 weeks and then transmitters were implanted at 12 weeks of age. The 12 

physical activities registered as movement counts, were measured using the VitalView ™ 13 

telemetry and data acquisition system (MiniMitter, OR, USA). The transmitters, implanted 14 

intraperitoneally, are unrestrictive and allow completely free movement of the mice. The data 15 

are transmitted via an ER-4000 receiving platform and VitalView TM software was used to 16 

acquire data (MiniMitter, OR, USA). 17 

The 48 mice were randomly divided into six experimental groups (24AL, 12AL, 10CR, 18 

20CR, 30CR and 40CR), with eight mice in each group. Mice were kept at room temperature 19 

(21-23oC) on a 12:12 photoperiod and fed a commercial diet providing 20% calories as protein 20 

and 10% calories as fat (Research diets: D12450B) 24AL means the mice were fed completely 21 

ad libitum without restriction for 24 hours per day; 12AL refers to ad libitum feeding for 12h 22 

per day during darkness. 10CR, 20CR, 30CR and 40CR refer to caloric restriction by 10%, 23 

20%, 30% and 40%, respectively, relative to the baseline intake of the same individual mouse. 24 

All mice were exposed to the same feeding regime (12AL) during the baseline period of two 25 
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weeks and were then exposed to CR for a period of 12 weeks starting at age 20 weeks. For 1 

further details of the experimental rationale, see [11]. We do not have information on the time 2 

it took the different groups to ingest their food. It is possible that those mice who were on 3 

greater levels of restriction ate their food more quickly, and hence the level of restriction is 4 

confounded with the period of each day that the mice were fasting. There is no data at present 5 

to support or refute this possibility.   6 

We removed the data for two mice where the transmitter malfunctioned before the end of 7 

the experiment leaving 46 mice in total. We recorded the movement counts at 7190 time points 8 

after the baseline period. Each time point reflected the accumulated counts over 15 minutes. 9 

The original mice were randomly allocated and therefore had random numbers but to facilitate 10 

the presentation in the following sections, we renumbered all the included mice as follows. That 11 

is, we number the mice from 1 to 8 for 24AL, 9 to 16 for 12AL, 17 to 24 for 10CR, 25 to 32 for 12 

20CR, 33 to 38 for 30CR, and 39 to 46 for 40CR. 13 

4.2. Phase space reconstruction (PSR) 14 

PSR is one of main approaches to analyse nonlinear time series and can generate the 15 

attractor of a system, a subset of the system’s phase space, which may be considered as a 16 

geometric object to which all the asymptotic states of the system’s trajectories belong [28-31]. 17 

A detailed description of PSR is given in Supplementary Methods. 18 

4.3. Correlation dimensions and Kolmogorov entropy of attractors 19 

Correlation Dimension (CD) is an important measure of an attractor in the phase space, 20 

and it characterises the geometric complexity of the attractor [32-34]. A bigger CD means a 21 

more complex geometry of an attractor. Kolmogorov entropy (KE) quantifies "how complex or 22 

chaotic" a signal is [35,36]. A detailed description of CD and KE is given in Supplementary 23 

Methods. 24 

4.4. Multifractal spectrum analysis 25 
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Multifractal describes the characters of different scales when a fractal geometric body 1 

grows, and multifractal spectrum analysis (MSA) is an important method for complex dynamic 2 

systems with multi-fractal features [37-38]. A detailed description of MSA is given in 3 

Supplementary Methods. 4 

4.5. Time series prediction with Volterra adaptive filter 5 

We used the Volterra adaptive filter [39] to predict the movement counts of mice, which is 6 

described in Supplementary Methods. 7 

4.6. Correlation of KE and CD to hypothalamic gene expression 8 

The detailed description of the establishment of the key genes that are associated with the 9 

attractor characteristics [40] is given in Supplementary Methods. 10 
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Table 1. A map between the characteristi cs of attractors (and multifractal spectra) and the 

behavioural phenotypes. 

Group Attractor characteristics Multifractal 

spectra(curves) 

State 

Shape KE CD Size 

24AL Z→Z→Z KE↑ CD↑ size↓,  

small variance 

Most mice have a tail 

on the left part 

Normal 

attractor 

12AL Z→Z→Z KE↑ CD↑ size↓,  

small variance 

Some mice have a 

tail on the left part 

Normal 

attractor 

10CR Z→Z→T KE↑  CD↑ size↓,  

big variance 

Some mice have a 

tail on the left part 

Almost normal 

attractor 

20CR Z→T→V KE↑   CD↑ size↓,  

big variance 

Some mice have a 

tail on the left part 

Almost normal 

attractor 

30CR Z→Z→V KE→   CD↓ size↑,  

bigger variance 

Each mouse has a 

tail on the right part 

New attractor 

40CR Z→V→Vs KE↑   CD↓ size↑,  

bigger variance 

Each mouse has a 

tail on the right part 

New attractor 
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Figure 1. Time series and hierarchical clustering analysis of movement counts of mice. (a) 

Average movement counts of each of six groups of mice with time. These average time series 

show differences of these groups, especially between the first four and the last two groups. (b) 

Hierarchical clustering analysis of 46 mice, which classifies the mice into three categories. 

Specifically, the blue category mainly consists of the mice from 24AL (8/20) and 12 AL (8/20), 

the green category mainly from 10CR (5/10) and 20CR (4/10), and the red category mainly 

from 30CR (5/16) and 40CR (8/16). This also reveals that mice under different levels of CR 

exhibit distinct behaviour time series. In our experiment, we divide the mice into six groups, 

i.e, 24AL, 12AL, 10CR, 20CR, 30CR and 40CR. 24AL means the mice were fed completely 

ad libitum without restriction for 24 hours per day; 12AL refers to ad libitum feeding for 12h 

per day during darkness. 10CR, 20CR, 30CR and 40CR refer to caloric restriction by 10%, 20%, 

30% and 40%, respectively, relative to the baseline intake of the same individual mouse. 

Figure 2. The evolution of the dynamics (attractors) of each group of mice with time, illustrated 

with typical three periods (1, 7, 9 for the first five groups and 1, 5, 9 for the 40CR group) from 

left to right. We divide the total 7190 time points into 10 periods, each occupying 719 time 

points, and here illustrate the attractors of typical 3 periods. From each row, representing a 

group, we can see the attractors evolve smoothly for 24AL and 12AL, and even for 10CR and 

20CR, but significantly differently for the rest groups. To ease comparisons of these complex 

shapes, we describe the shape of attractors using specific letters like ‘Z’, ‘T’, ‘V’ and ‘Vs’ 

(scattered V). 

Figure 3. Evolution of the characteristics of attractors over the ten time periods. For each 

individual we fitted a linear regression of the attractor values (CD, KE and loge Size) against 
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time over the ten time periods. The derived intercepts and gradients of these regressions are 

shown here in relation to the level of restriction. Each point is a different individual. A: intercept 

CD. B: gradient of change in CD, C: intercept KE, D: gradient of change in KE. E: intercept 

loge size and F: gradient of change in loge size. For CD there was a significant difference in the 

fitted intercepts between the groups (ANOVA F5,40 = 3.5, p =0.01: Figure 3A), post-hoc tukey 

tests suggested the intercept for 40CR was significantly lower than the intercepts of the 10CR 

and 30CR groups. The gradient of change in CD over the 10 periods however showed a much 

greater difference between the groups (F5,40 = 32.13, p < .0005: Figure 3B) of 24AL, 12AL, 

10CR and 20CR and the groups of 30CR and 40CR. For KE there was a significant difference 

in the fitted intercepts between the groups (ANOVA F5,40 =13.58, p < .0005: Figure 3C). The 

gradient of change in KE over the 10 periods however was not different between the different 

levels of CR (F5,40 = 1.83, p =0.128: Figure 3D) with all groups showing a slight increase over 

time. For size, there was no significant difference in the fitted intercepts between the groups 

(ANOVA F5,40 = 1.34, p = 0.268: Figure 3E). However, the gradient of change in size over the 

10 periods showed a highly significant difference (F5,40 = 61.82, p < .0005: Figure 3F) between 

the groups of 24AL, 12AL, 10CR and 20CR and the groups of 30CR and 40CR. 

 

Figure 4. Bivariate plots of the relationships between the expression levels of 4 genes expressed 

in the hypothalamus (Tubb2b, Strm4, Agrp and Eif2s3y) and the correlation dimension (CD) of 

the attractor and 2 genes (Wfikkn2 and Gm2518) and the Kolmogorov entropy (KE) of the 

attractor. 


