
Capsule Routing via Variational Bayes

Fabio De Sousa Ribeiro, Georgios Leontidis, Stefanos Kollias
Machine Learning Group

School of Computer Science, University of Lincoln, UK
{fdesousaribeiro,gleontidis,skollias}@lincoln.ac.uk

Abstract

Capsule networks are a recently proposed type of neural net-
work shown to outperform alternatives in challenging shape
recognition tasks. In capsule networks, scalar neurons are re-
placed with capsule vectors or matrices, whose entries repre-
sent different properties of objects. The relationships between
objects and their parts are learned via trainable viewpoint-
invariant transformation matrices, and the presence of a given
object is decided by the level of agreement among votes
from its parts. This interaction occurs between capsule lay-
ers and is a process called routing-by-agreement. In this pa-
per, we propose a new capsule routing algorithm derived from
Variational Bayes for fitting a mixture of transforming gaus-
sians, and show it is possible transform our capsule network
into a Capsule-VAE. Our Bayesian approach addresses some
of the inherent weaknesses of MLE based models such as
the variance-collapse by modelling uncertainty over capsule
pose parameters. We outperform the state-of-the-art on small-
NORB using'50% fewer capsules than previously reported,
achieve competitive performances on CIFAR-10, Fashion-
MNIST, SVHN, and demonstrate significant improvement in
MNIST to affNIST generalisation over previous works.1

1 Introduction
Capsule networks are a recently proposed method of learn-
ing part-whole relationships between observed entities in
data, by using groups of neurons known as capsules. These
entities could be anything that possesses a consistent under-
lying structure across viewpoints. Capsules attempt to en-
code intrinsic viewpoint-invariant properties, and learn to
adjust instantiation parameters as the entity varies across its
appearance manifold (Hinton, Krizhevsky, and Wang 2011).
CapsNets have shown to outperform standard Convolutional
Neural Networks (CNNs) in specific tasks involving shape
recognition and overlapping digit segmentation. These tasks
are difficult for standard CNNs, as they struggle to exploit
the frame of reference humans impose on objects, and thus
often fail to generalise knowledge to novel viewpoints. Al-
though this drawback can often be mitigated by data aug-
mentation during training, it does not address the underlying
issue directly. Nonetheless, CNNs perform remarkably well

1https://github.com/fabio-deep/Variational-Capsule-Routing

k

d

c

(z)q⋆

k

U
P

D
A

T
E

⊙ai rij

U
P

D
A

T
E

capsules j ∈
L
j

ai

Vj|i

(π, μ, Λ)q⋆

d

Vj|i

I
Figure 1: Depiction of Variational Bayes (VB) routing be-
tween adjacent capsule layers: with lower layer capsules
i ∈ Li (orange) and higher layer capsules j ∈ Lj (blue).

in practice, partly because they make structural assumptions
that ring true with natural images. Capsules extend this ratio-
nale by assuming objects are composed of object parts, and
if we learn part-whole relationships perfectly then we can
better generalise to novel viewpoints and affine transforma-
tions. In CNNs, the convolution operator and sparse weight
sharing provides the useful property of equivariance under
translation, enabling efficient spatial transfer of knowledge.
CapsNets retain these benefits and only do away with pool-
ing operations in favour of learning more robust representa-
tions for disentangling factors of variation with routing-by-
agreement. Although promising, CapsNets remain underex-
plored, and few works thus far have proposed algorithmic
improvements to the original formulations. In this paper, we
propose a new capsule routing algorithm for fitting a mixture
of transforming gaussians via Variational Bayes, which of-
fers increased training stability, flexibility and performance.

ar
X

iv
:1

90
5.

11
45

5v
3 

 [
cs

.L
G

] 
 3

 D
ec

 2
01

9



Capsule Networks CapsNets are composed of at least one
layer of capsules in which capsules i from a lower layer Li
(children) are routed to capsules j in a higher layer Lj (par-
ents). Each layer contains multiple lower capsules, each of
which has a pose matrix Mi ∈ R4×4 of instantiation pa-
rameters and activation probability ai (see Figure 2). The
pose matrix may learn to encode the relationship of an en-
tity to the viewer, and the activation probability ai represents
its presence. Each lower level capsule uses its pose matrix
Mi to posit a vote for what the pose of a higher level cap-
sule should be, by multiplying it with a trainable viewpoint-
invariant transformation weight matrix

Vj|i = MiWij , (1)
where Vj|i denotes the vote coming from capsules i to cap-
sule j, and Wij ∈ R4×4 is the trainable transformation ma-
trix. To compute the pose matrix Mj of any higher level
capsule j we can simply take a weighted mean of the votes
it received from capsules in Li as in EM routing (Hinton,
Sabour, and Frosst 2018): Mj = 1/Rj

∑
i Vj|iRij , where

Rij represents the posterior responsibilities of each capsule
j for capsules i, and Rj =

∑
iRij . These routing coef-

ficients can be tuned via a variant of the EM algorithm
for Gaussian Mixtures, and are updated according to the
agreement between Vj|i and Mj , which in Dynamic rout-
ing (Sabour, Frosst, and Hinton 2017) for example, is sim-
ply the scalar product between capsule vectors and can be
trivially extended to matrices with

∥∥Mj −Vj|i
∥∥
F

. Lastly,
a parent capsule j is only activated if there is a measurably
high agreement among the votes Vj|i from child capsules i
for its pose matrix Mj , which forms a tight cluster in RD.

Motivation & Contributions In this paper, we propose
a new capsule routing algorithm derived from Variational
Bayes. We show that our probabilistic approach provides ad-
vantages over previous routing algorithms, including more
flexible control over capsule complexity by tuning priors
to induce sparsity, and reducing the well known variance-
collapse singularities inherent to MLE based mixture mod-
els such as EM. Contextually, these singularities occur in
part due to the single parent assumption–whereby a parent
capsule (gaussian cluster) can claim sole custody of a child
capsule (datapoint), yielding infinite likelihood and zero
variance. This leads to overfitting and unstable training. By
modelling uncertainty over the capsule parameters as well
as the routing weights, we can avoid these singularities in a
principled way, without adding arbitrary constants of min-
imum variance to ensure numerical stability, which can af-
fect performance in EM. Furthermore, we provide some in-
sight into capsule network training for practitioners includ-
ing weight initialisation and normalisation schemes that im-
prove training performance. Lastly, we show it’s possible to
transform our capsule network into a Capsule-VAE by sam-
pling latent code from capsule parameter approximate poste-
riors. We outperform the state-of-the-art on smallNORB us-
ing '50% fewer capsules than previously reported, achieve
highly competitive performances on CIFAR-10, Fashion-
MNIST, SVHN, and demonstrate significant improvement
in MNIST to affNIST generalisation over previous works.

2 Variational Bayes Capsule Routing
Next, we briefly outline some necessary background on
Variational Inference (VI), before contextualising some of
these ideas with our proposed capsule routing algorithm.

2.1 Variational Inference
The Evidence Lower Bound Let x denote the observed
data, z denote latent variables associated with x, and let θ
represent some model parameters. Typically we’d like to in-
fer the unknown latent variables, by evaluating the condi-
tional p(z|x,θ) which is the posterior on z. However, this
distribution cannot be computed for most complex models
due to the intractability of a normalising integral. VI pro-
vides an elegant solution to posterior inference by posing
it as an optimisation problem. We approximate the poste-
rior p(z|x,θ) by choosing a variational distribution over
the latent variables qφ(z) from a tractable family, with its
own variational parameters φ. We can measure the quality
of our approximation via the Kullback-Leibler (KL) diver-
gence KL[qφ(z) || p(z|x,θ)] between the two distributions,
which can be minimised via the variational parameters φ

φ̂ = argmin
φ

Eqφ(z)[log qφ(z)− log p(z|x,θ)]. (2)

However, since p(z|x,θ) is unknown we cannot minimise
the KL directly, so instead we maximise the variational
lower bound (ELBO) on the log marginal likelihood

log p(x|θ) = KL[qφ(z) || p(z|x,θ)] + LELBO(qφ(z)), (3)

where the ELBO can be derived using Jensen’s inequality
log(E[X]) ≥ E[log(X)] applied to log p(x|θ) giving

log p(x|θ) ≥ LELBO(qφ(z)) =

= Eqφ(z)[log p(x, z|θ)]− Eqφ(z)[log qφ(z)].
(4)

Here we use the joint log p(x, z|θ) which is tractable,
rather than the unknown posterior log p(z|x,θ). Recall that
from the product rule of probability we simply have that
p(x, z|θ) = p(z|x,θ)p(x|θ). Given that the log marginal
likelihood of the data log p(x|θ) is always negative and is
independent of qφ(z), maximising the ELBO is therefore
equivalent to minimising the KL divergence.

Mean Field A popular way of performing VI is to posit a
factorised form of the approximating family of distributions
qφ(z), such that each variable is assumed to be independent

p(z|x,θ) ≈ qφ(z) =
N∏
i=1

qφi(zi),
∑
zi

qφi(zi) = 1. (5)

Recall that the log marginal is given by log p(x|θ) =
log
∑

z p(x, z|θ), and therefore the factorised objective to
be maximised can be written in the following form

argmax
qφi (zi)∈qφ(z)

N∑
i=1

Eqφi (zi)[logp(xi, zi|θ)]

− Eqφi (zi)[log qφi(zi)].
(6)



k

d

c

(z)q

⋆

k

UPDATE

⊙a

i

r

ij

UPDATE

capsules j∈

L

j

a

i

votes V

j|i

w

c

V

j|i

route

k

k

capsules j∈ L

j

capsules i∈ L

i

w

h

c

∈W

ij

R

4×4

h

M

i

a

i

d

w

′

h

′

(,μ,Λ)q

d

W

ij

M

i

activate j 

M

j

a

j

Variational Bayes Routing

V

j|i

transform

Figure 2: Architectural depiction of our capsule network with Variational Bayes routing between convolutional capsule layers.
Each capsule has an activation probability a and a pose matrix M ∈ R4×4. Parent capsules j (blue) only receive votes from
child capsules i (orange) within their receptive field. c and d denote the number of child and parent capsule types respectively.

2.2 Variational Bayes for a Mixture of
Transforming Gaussians

Relation to Clustering Capsule routing naturally resem-
bles clustering logic. This is reflected in the fact that any
higher layer parent capsule j (cluster) is composed of, and
receives votes from, many lower layer child capsules i (data
points) within its receptive field (see Figure 2 for intuition).

However, capsule routing does differ from regular clus-
tering substantially, as every cluster has its own learnable
viewpoint-invariant transformation matrix Wij with which
it transforms its data points, and predictions are made by
measuring similarity among them. Therefore, each cluster
sees a different view of the data, and the algorithm con-
verges much faster since it’s easier to break symmetry com-
pared to simply initialising the gaussian clusters with differ-
ent means (Hinton, Sabour, and Frosst 2018). Next we pro-
pose our capsule routing algorithm borrowing some ideas
from (Bishop 2006), and begin by picking up from our gen-
eral description of capsule networks in section 1.

Proposed Method Let vj|i ∈ RD denote a vectorised ver-
sion of the 4x4 votes Vj|i matrix, and let µj ∈ RD denote
a vectorised version of capsule j’s 4x4 pose matrix Mj ,
where D = 16. Assuming independence, consider the log
likelihood function maximised in a Gaussian Mixture Model
(GMM), applied to routing capsules i from a lower layer to
capsules j in a higher layer

log p(v|π,µ,Λ) =
∑
i∈Li

log
∑
j∈Lj

πjN (vj|i|µj ,Λ
−1
j ).

(7)
In EM routing, point estimates of the parameters µj and
diag(Λj) are computed in the M-step, and the routing prob-
abilities Rij are evaluated in the E-step. The mixing coef-
ficients πj however, are replaced with activations aj which
represent the probability of cluster j being switched on, and
are computed by a shifting logistic non-linearity. The aj’s
play the role of the mixing proportions but

∑
j aj 6= 1. Re-

call from section 1 that the votes play the roles of the data
points and are computed as Vj|i = MiWij , using different
transformation matrices Wij for each capsule j.

In order to model uncertainty over the capsule parameters
in our algorithm, we place conjugate priors over π, µ and Λ.
Our model’s generative process for any lower layer capsule
i’s vectorised pose µi:Li can be derived from the following

vj|i | zi = j ∼ N (µj ,Λ
−1
j )

zi ∼ Cat(zi|π)
π | α0 ∼ Dir(α0)

µj |m0, κ0,Λj ∼ N (m0, (κ0Λj)
−1)

Λj |Ψ0, ν0 ∼Wi(Ψ0, ν0),

(8)

and µi can be retrieved by simply inverting the vec-
torised vote transformation µi = w−1ij vj|i. The joint dis-
tribution of the model factorises as p(v, z,π,µ,Λ) =
p(v|z,µ,Λ)p(z|π)p(π)p(µ|Λ)p(Λ), where the latent vari-
ables z are a collection of Li one-hot vectors denot-
ing the cluster assignments of each of the lower cap-
sules votes vj|i, to their corresponding higher capsules’
gaussians. Following from the VI discussion in sec-
tion 2.1, we approximate the posterior p(z,π,µ,Λ|v) ∝
p(v|z,µ,Λ)p(z|π)p(π)p(µ,Λ) with a factorised varia-
tional distribution

p(z,π,µ,Λ|v) ≈ q(z)q(π)
∏
j∈Lj

q(µj ,Λj), (9)

and we choose conjugate priors that factor in the following
standard form as in Bayesian Gaussian Mixtures

p(π)p(µ,Λ) = Dir(π|α0)

×
∏
j∈Lj

N
(
µj |m0, (κ0Λj)

−1)Wi(Λj |Ψ0, ν0). (10)

To parameterise diagonal precisions in practice, we simply
let λj ∈ RD represent the diagonal entries of Λj , and re-
place the Gaussian-Wishart prior with Gaussian-Gamma pri-
ors over each diagonal entry λdj as follows

p(µ|λ)p(λ) =∏
j∈Lj

D∏
d=1

N (µdj |m0, (κ0λ
d
j )
−1)Ga(λdj |s0, ν0).

(11)



Algorithm 1 Variational Bayes Capsule Routing
1: function VB ROUTING(ai,vj|i) . Input votes and activations from preceding capsule layer Li

2: Initialise routing weights ∀ i,j : rij ← 1/Lj

3: Initialise capsule priors ∀ j : α0,m0, κ0,S0, ν0
4: for n iterations do
5: UPDATE SUFF. STATS
6: UPDATE q?(π,µ,Λ)
7: UPDATE q?(z)

8: aj ← sigmoid
(
βa − (βu + E[lnπj] + E[ln det(Λj)])� rj

)
. Activate using approximate H[q?(µj ,Λj)]

9: return aj ,mj

10: function UPDATE SUFF. STATS(ai,vj|i, rij) . Calculate sufficient statistics of incoming votes vj|i
11: rij ← rij � ai

12: rj ←
∑

i rij
13: ṽj ← 1/rj

∑
i rijvj|i

14: Sj ←
∑

i rij(vj|i − ṽj)(vj|i − ṽj)
T

15: function UPDATE q?(π,µ,Λ) . Update capsule pose parameter distributions
16: αj ← α0 + rj , κj ← κ0 + rj , νj ← ν0 + rj
17: mj ← (rj ṽj + κ0m0)κ

−1
j

18: Ψ−1
j ← Ψ−1

0 + Sj + κ0rjκ
−1
j (ṽj −m0)(ṽj −m0)

T

19: ln det(Ψj)← −2trace(lnCholesky(Ψ−1
j ))

20: function UPDATE q?(z) . Update posterior routing responsibilities
21: E[lnπj ]← ψ(αj)− ψ(

∑
j αj)

22: E[ln det(Λj)]← D ln 2 + ln det(Ψj) +
∑D−1

i=0 ψ
(
(νj − i)/2

)
23: E[Dmaha(vj|i,µj)]← Dκ−1

j + νj(vj|i −mj)
TΨj(vj|i −mj)

24: lnpj ← E[ln det(Λj)]/2− E[Dmaha(vj|i,µj)]/2

25: rij ← softmax
(
E[lnπj ] + lnpj

)
. Normalise over capsules j ∈ Lj

In order to perform routing, we simply iterate between op-
timising parent capsule parameter distributions q?(π,µ,Λ)
using the responsibilities over child capsules fixed, and eval-
uating the new expected responsibilities q?(z) using the cur-
rent distributions over parent capsule parameters fixed. See
Algorithm 1 for the standard closed-form update equations,
which assume the same functional form as the priors through
conjugacy, and for further details refer to (Bishop 2006).

Agreement & Activation We propose to measure agree-
ment between the votes from lower capsules i using the dif-
ferential entropy of a higher capsule j’s Gaussian-Wishart
variational posterior distribution q?(µj ,Λj). Firstly, the dif-
ferential entropy of a multivariate gaussian distributed ran-
dom variable x is by definition given by

H[x] , −
∫ +∞

−∞
f(x) ln f(x)dx

= −E[lnN (x|µ,Σ)]

=
1

2
ln det(Σ) +

D

2
ln(2πe) ≈ ln det(Σ).

(12)

Let f(x) be capsule j’s variational posterior: q?(µj ,Λj) =

N (µj |mj , (κjΛj)
−1)Wi(Λj |Ψj , νj), where mj , κj , Ψj

and νj are the updated prior parameters for a capsule j as
detailed in Algorithm 1. We then approximate the entropy

H[q?(µj ,Λj)] ≈ E[ln det(Λj)] =

=

D−1∑
i=0

ψ

(
νj − i
2

)
+D ln 2 + ln det(Ψj),

(13)

where ψ(·) is the digamma function, and we use
E[ln det(Λj)] to indirectly measure the differential entropy
of capsule j’s variational posterior distribution, up to con-
stant factors. Intuitively, the determinant of the precision
matrix measures the concentration of data points across the
volume defined by the matrix. The higher the concentration
the higher the agreement is among votes for capsule j. To
compute any capsule j’s activation probability aj , we pass in
both its mixing proportion and posterior entropy, as a mea-
sure of vote agreement through a logistic non-linearity

aj = σ
(
βa−

(
βu+E[lnπj ]+E[ln det(Λj)]

)
�rj

)
, (14)

where βa and βu are learnable offset parameters as in (Hin-
ton, Sabour, and Frosst 2018). Unlike EM or Dynamic rout-
ing, we only activate the capsules after the routing iterations.
We find this to have a stabilising effect during training, and
we can add in the expected mixing coefficients as a weight
on the differential entropy of each capsule, encouraging a
trade-off between activating the capsule with the most votes
and our measure of how concentrated they are. This deci-
sion is in part motivated by context-dependent weighted in-
formation and entropy principles, wherein two separate low
probability events incurring equally high surprisal can yield
contextually unequal informative value (Guiaşu 1971).

Note that the updated prior parameters mj , κj , Ψj and νj ,
have a dependency on the routing weights rj =

∑
i rij�ai,

which represent the amount of data assigned to capsule j,
weighted by the previous capsule layer activations. From the
perspective of any capsule j’s cluster, previous layer activa-
tions ai simply dictate how important each data point is.



Table 1: Test error rate comparisons with CapsNet literature. (·) denotes ensemble size, and (†) denotes our EM implementation.

smallNORB Fashion-MNIST SVHN CIFAR-10
Method Error (%) Param Error (%) Param Error (%) Param Error (%) Param

HitNet (Delige et al. 2019) - - 7.7% '8.2M 5.5% '8.2M 26.7% '8.2M
DCNet (Phaye et al. 2018) 5.57% 11.8M 5.36% 11.8M 4.42% 11.8M 17.37% 11.8M
MS-Caps (Xiang et al. 2018) - - 7.3% 10.8M - - 24.3% 11.2M
Dynamic (Sabour, Frosst, and Hinton 2017) 2.7% 8.2M - - 4.3% '1.8M 10.6% 8.2M (7)
Nair et al. (Nair, Doshi, and Keselj 2018) - - 10.2% 8.2M 8.94% 8.2M 32.47% 8.2M
FRMS (Zhang, Zhou, and Wu 2018) 2.6% 1.2M 6.0% 1.2M - - 15.6% 1.2M
MaxMin (Zhao et al. 2019) - - 7.93% '8.2M - - 24.08% '8.2M
KernelCaps (Killian et al. 2019) - - - - 8.6% '8.2M 22.3% '8.2M
FREM (Zhang, Zhou, and Wu 2018) 2.2% 1.2M 6.2% 1.2M - - 14.3% 1.2M
EM-Routing (Hinton, Sabour, and Frosst 2018) 1.8% 310K - - - - 11.9% '460K

VB-Routing: {64, 8, 16, 16, d4} 1.93% 142K 5.46% 145K 4.75% 145K 13.1% 145K
VB-Routing: {64, 16, 32, 32, d4} 1.84% 318K 5.61% 323K 3.9%±.06 323K 11.2%±.09 323K
vs. EM-Routing†: {64, 16, 32, 32, d4} - - - - 5.17% 323K 12.26% 323K

VB-Routing: {64, 16, 16, 16, d4} 1.6%±.06 169K 5.2%±.07 172K 4.18% 172K 12.4% 172K
vs. EM-Routing†: {64, 16, 16, 16, d4} 1.97% 169K 6.14% 172K - - - -

2.3 Capsule-VAE
It is possible to transform our CapsNet into a Variational
Autoencoder (VAE) (Kingma and Welling 2013) by sam-
pling from the approximate variational posterior on the
capsule parameters q?(µj ,Λj). We can do so by saving
the updated prior parameters mj , κj , Ψj and νj , at the
end of the routing procedure of the final layer, and out-
put the capsule means and precisions as latent code. Re-
call that the approximate posterior on the mean and preci-
sion of any capsule j is a Gaussian-Wishart q?(µj ,Λj) =

N (µj |mj , (κjΛj)
−1)Wi(Λj |Ψj , νj), and we can sample

from this distribution in the following way

Λj |Ψj , νj ∼Wi(Ψj , νj)

µj | Λj ,mj , κj ∼ N (mj , (κjΛj)
−1).

(15)

It is straight forward to condition the sample on the target
class capsule during training based on the label, and make
the process differentiable using the reparameterisation trick

z ∼ N (µj ,σj) = gµj ,σj (ε) = µj + ε� σj (16)

where ε ∼ N (0, I), and σj , diag(Λj)
− 1

2 . This formula-
tion also reduces computational time since we can avoid ex-
plicit redo of VB for each sample. Capsule-VAEs are inter-
esting models as the output latent code is composed of cap-
sule instantiation parameters, and we know from (Sabour,
Frosst, and Hinton 2017) that each capsule dimension learns
to encode different variations of object properties that we
can visualise/tweak. We leave further exploration of these
ideas and analysis of Capsule-VAEs to future work.

3 Related Work
Capsules were first introduced by (Hinton, Krizhevsky, and
Wang 2011), wherein the encoding of instantiation parame-
ters was established in a transforming autoencoder. More re-
cently, work by (Sabour, Frosst, and Hinton 2017) achieved
state-of-the-art performance on MNIST with a shallow

CapsNet, using a Dynamic routing algorithm. Shortly af-
ter, EM routing was proposed in (Hinton, Sabour, and
Frosst 2018), replacing capsule vectors with matrices to
reduce the number of parameters. State-of-the-art perfor-
mance was achieved on smallNORB, outperforming CNNs.
More recently, Group Equivariant CapsNets were proposed
in (Lenssen, Fey, and Libuschewski 2018), leveraging ideas
from group theory to guarantee equivariance and invari-
ance properties. In (Zhang, Zhou, and Wu 2018) a new
routing algorithm based on kernel density estimation was
proposed, providing a speed up compared to EM routing.
Capsules have also been extended to action recognition in
videos by (Duarte, Rawat, and Shah 2018), where the pro-
pose to average the votes before routing them for speed.
Work in (Zhang, Edraki, and Qi 2018) proposes learning
groups of capsule subspaces and project embedded features
onto these subspaces. Despite these interesting works among
others, CapsNets are still difficult to train and the original
state-of-the-art benchmarks are yet to be beaten fairly.

4 Experiments
Capsule Network Architecture Our CapsNet follows the
EM routing formulation and comprises 4 capsule layers,
starting with a primary capsule (PrimaryCaps) layer fol-
lowed by 3 convolutional capsule (ConvCaps) layers. The
stem of the network consists of a 5 × 5 Conv layer us-
ing F filters and stride 2, and is followed by two 3 × 3
Conv layers with F filters each, all using BatchNorm and
ReLU activations. The PrimaryCaps layer transforms the
F filters into d1 capsule pose 4x4 matrices and d1 activa-
tions using 1 × 1 convolutions. This is followed by a 3 × 3
ConvCaps layer with d2 capsules types and stride 2, and a
3×3 ConvCaps layer with d3 capsule types and stride 1. The
final ConvCaps layer shares weight matrices across spatial
dimensions, yielding a capsule for each class of d4 classes,
and we perform coordinate addition as in (Hinton, Sabour,
and Frosst 2018). In summary, we describe our network ar-
chitectures using the notation {F , d1, d2, d3, d4}.



0 50 100 150 200 250 300 350

Epoch

4

6

8

10

12

14

16
V

al
id

at
io

n
E

rr
or

(%
)

VB vs. EM† (Fashion-MNIST)

EM-Routing† (Adam)

VB-Routing (Adam)

VB-Routing (SGDM)

0 50 100 150 200 250 300 350

Epoch

4

6

8

10

12

14

16
VB vs. EM† (SVHN)

EM-Routing† (Adam)

VB-Routing (Adam)

VB-Routing (SGDM)

0 50 100 150 200 250 300 350

Epoch

10

12

14

16

18

20

22
VB vs. EM† (CIFAR-10)

EM-Routing† (Adam)

VB-Routing (Adam)

VB-Routing (SGDM)

0 50 100 150 200 250 300 350

Epoch

2

6

10

14

18

22

26
VB vs. EM† (smallNORB Viewpoints)

EM-Routing† (Azimuth)

VB-Routing (Azimuth)

EM-Routing† (Elevation)

VB-Routing (Elevation)

Figure 3: Direct comparison between VB and EM† routing validation set error using identical networks and hyperparameters.

Objective Function We experiment with both a negative
likelihood loss LNLL, and the spread loss LSL in (Hinton,
Sabour, and Frosst 2018), then add the VAE loss LVAE as
an optional capsule reconstruction based regulariser

LSL =
∑
i 6=j

max
(
0,m− (at − aj)

)2
,

LNLL = −
∑
j

∑
k

yjk log
(
ŷjk
)
.

(17)

LVAE =
1

2

∑
d

(
σ2
jd+µ2

jd − lnσ2
jd − 1

)
+

1

K

∑
k

‖xk − f(xk)‖2F .
(18)

The total loss is a linear combination of a classification
loss and the optional VAE loss i.e. L = LNLL + ηLVAE.
CapsNet regularisation by reconstruction was first proposed
in (Sabour, Frosst, and Hinton 2017) with a fully-connected
decoder, in our VAE we use a simple 5 layer deconvnet.

Uninformative Priors We set the gaussian priors on the
mean parameters m0 to be zeros with precision scaling
κ0 = 1, and the wishart priors on the precision matrix Ψ0

to be identities ID with degrees of freedom ν0 = D+1. For
the diagonal case, λ0 is a vector of 1’s. These priors have a
regularising effect since they encourage the parent capsule
clusters j to remain close to the origin, and not to be too
irregular in shape. The Dirichlet prior on the mixing coeffi-
cients α is set to 1, and reducing this value favours routing
solutions with less active parent capsules. In section 4.4, we
provide some analysis on sensitivity to prior initialisations.

Weight Initialisation CapsNets are known to be difficult
to train, in fact, the EM routing results were yet to be fairly
matched before this paper. With that said, we provide some
valuable suggestions for practitioners on how to initialise
the various parameters of the model that worked well for
us experimentally, and helped stabilise training significantly.
We offer the following two ways of initialising the Wij

viewpoint-invariant transformation weight matrices:
(i) As identities I4 ∈ R4×4 with added random uniform

noise ε ∼ Unif(0, b) on the off diagonal entries. In this
way, at the start of training the capsule pose transfor-
mations don’t stray too far from computing the identity
function, which we find to have a stabilising effect.

(ii) To help maintain constant variance of activa-
tions across capsule layers and help avoid explod-
ing/vanishing gradients, we propose initialising Wij

with a modified (Glorot and Bengio 2010) scheme as

Wij ∼ Unif
(
− r, r

)
,

r =

√
6

(cik2p2 + djk2p2)
1
2

,
(19)

where ci and dj denote the number of capsules types in
layers Li and Lj , k is the convolutional kernel size and
p2 is the number of neurons per capsule matrix (4×4).

Lastly, we also normalise the argument of the logistic func-
tion for aj using BatchNorm without the learnable param-
eters γ and β. This restricts the range of input values from
being too high/low and helps prevent vanishing gradients.

4.1 Image Classification Results
The main comparative results are reported in Table 1, using
smallNORB (LeCun et al. 2004), Fashion-MNIST (Xiao,
Rasul, and Vollgraf 2017), SVHN (Netzer et al. 2011) and
CIFAR-10 (Krizhevsky, Hinton, and others 2009). In all
cases, we use the diagonal parameterisation in Eq. (11), 3
VB routing iters and batch size 32. All hyperparameters
were tuned using validation sets, then models were retrained
with the full training set until convergence before testing.

smallNORB smallNORB consists of grey-level stereo
96x96 images of 5 objects. Each object is given at 18 dif-
ferent azimuths (0-340), 9 elevations and 6 lighting condi-
tions, and there are 24,300 training and test set images each.
Following (Hinton, Sabour, and Frosst 2018), we standard-
ise and resize all images to 48x48 and take random 32x32
crops during training. At test time, we simply center crop
the images to 32x32. Our best model {64, 16, 16, 16, 5} was
trained for 350 epochs using Adam, LNLL loss, and 3e-3
initial learning rate with exponentially decay. A 20% valida-
tion split of the training set was used to tune hyperparame-
ters. As reported in Table 1, we achieve a best test error rate
of 1.55% (1.6%±.06 over 5 runs) compared to the previ-
ous state-of-the-art 1.8% reported in (Hinton, Sabour, and
Frosst 2018). Note that by averaging multiple crops at test
time they can get 1.4% and we reach 1.29%. Our result is
obtained without adding random brightness/contrast or any
other augmentations/deformations during training. We also
stress that our capsule network has ' 50% fewer capsules.



Table 2: Comparing novel viewpoint generalisation. (†) de-
notes our implementation of EM with same network as VB.

Viewpoints Azimuth (%) Elevation (%)
(Test) VB EM† EM VB EM† EM

Novel 11.33 12.67 13.5 11.59 12.04 12.3
Familiar 3.71 3.72 3.7 4.32 4.29 4.3

60 120 180 240 300 360 420

Training Time (min)

4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0

T
es

t
E

rr
or

(%
)

1 iter
2 iter

3 iter1 iter

2 iter

3 iter

5.15%

2 iter Zhang et al. 2018

Runtime (Fashion-MNIST)

EM-Routing†

VB-Routing

FREM/FRMS

10−2 10−1 100 101

Prior Coefficients

5.0

5.2

5.4

5.6

5.8

6.0

5.19%

5.2± 0.07%

Prior Sensitivity (Fashion-MNIST)

α

λ0 / diag(Ψ0)

Backprop α

Our Best Result

Figure 4: Test error (%) sensitivity to priors (Right), and run-
time/error comparisons using {3,2,1} routing iters (Left).

Fashion-MNIST Fashion-MNIST is a more difficult ver-
sion of MNIST comprised of 10 clothing item classes. The
images are 28x28 and the training/test sets have 60,000
and 10,000 examples respectively. We normalise and pad
to 36x36, and randomly crop 32x32 image patches during
training. At test time we pad the images to 32x32. Our best
model {64, 16, 16, 16, 10} was trained for 200 epochs using
LNLL loss, with SGDM and a weight decay of 1e-6. The ini-
tial learning rate was set to 0.1 with step decay at 80, 120,
160 epochs and a decay rate of 0.1. As reported in Table 1
we achieve a best test error rate of 5.15% (5.2%±.07 over
3 runs) outperforming other works with fewer parameters.

SVHN SVHN comprises challenging real-world 32x32
images of house numbers (10 digit classes). We trained on
the core training set only, consisting of 73,257 examples and
tested on the 26,032 in the test set. We normalise and pad to
40x40 and take random 32x32 crops during training. Our
best model {64, 16, 32, 32, 10} was trained for 350 epochs
using LNLL loss with SGDM. The initial learning rate was
set to 0.1 with step decay at 150, 250, 300 epochs and a de-
cay rate of 0.1. As reported in Table 1, we achieved a best
test error of 3.87% (3.9%±.06 over 3 runs), outperforming
the Dynamic routing capsules (Sabour, Frosst, and Hinton
2017) and others, with significantly fewer parameters.

CIFAR-10 CIFAR-10 consists of 60,000 32x32 colour
images of 10 classes. There are 50,000 training and 10,000
test images. We normalise and pad to 40x40, and randomly
crop 32x32 patches during training. We also apply ran-
dom horizontal flips with probability 1

2 . Our best model
{64, 16, 32, 32, 10} was trained for 350 epochs using LNLL

loss with SGDM. Initial learning rate was 0.1 with step
decay at 150, 250, 300 epochs and decay rate of 0.1. We
achieved a best test error of 11.14% (11.2%±.09 over 3
runs), which is lower than EM routing (Hinton, Sabour, and
Frosst 2018), and using considerably fewer parameters than

98.2 98.4 98.6 98.8 99.0 99.2 99.4 99.6

Test Accuracy (MNIST)

76

80

84

88

92

96

T
es

t
A

cc
u

ra
cy

(a
ff

N
IS

T
)

Dynamic

HitNetBaseline CNN

LadderCaps
GCaps

SparseCaps‡
Attn-Routing

SCAE‡
EM-Routing

Ours

Ours

MNIST → affNIST

Test Accuracy (%)
Method MNIST affNIST
Dynamic (Sabour et al. 2017) 99.2 79
HitNet (Delige et al. 2019) 99.6 83.03
Baseline CNN (Hinton et al. 2018) 99.2 85.9
LadderCaps (Jeong et al. 2019) 99.3 87.8
GCaps (Lenssen et al. 2018) 98.42 89.1
SparseCaps (Rawlinson et al. 2018) 99‡ 90.1
Attn-Routing (Choi et al. 2019) 99.46 91.6
SCAE (Kosiorek et al. 2019)‡ 98.5 92.2
EM-Routing (Hinton et al. 2018) 99.2 93.1

VB-Routing: {64, 16, 16, 16, 10} 99.2 96.9
VB-Routing: {64, 16, 16, 16, 10} 99.7 98.1

Figure 5: MNIST to affNIST generalisation performance
comparisons. (‡) denotes unsupervised learning was used,
and the light blue line denotes matched performance on
MNIST test set before testing on affNIST for fairness.

other capsule works (Table 1). CIFAR-10 is the most chal-
lenging of the 4 datasets, and to get better performance, a
deeper network is required for learning better representa-
tions. To test this hypothesis, we simply replaced the stem
of our capsule network with 4 residual blocks (8 layers), and
achieved a much lower test error rate of 7.8%, outperform-
ing even deeper Residual Networks (He et al. 2016).

4.2 Generalisation to Novel Viewpoints
In order to verify that our proposed capsule routing al-
gorithm preserves generalisation to novel viewpoints, we
trained our {64, 16, 16, 16, 5} model on the smallNORB
training data containing azimuths of (300, 320, 340, 0, 20,
40), and tested on the test data containing azimuths from 60
to 280. For elevation viewpoints, we trained on the 3 smaller
and tested on the 6 larger elevations. During training, we
validated using the portion of test data containing the same
viewpoints as in training and measured the generalisation to
novel viewpoints after matching the performance on famil-
iar ones. As reported in Table 2, we compare VB routing
to the original EM routing performance in (Hinton, Sabour,
and Frosst 2018) as well as our implementation of EM us-
ing the same network for fairness. In our experiments, VB
routing does not sacrifice the ability to generalise to novel
viewpoints, and outperforms EM routing in all cases.

4.3 Affine Transformation Robustness
To further demonstrate our methods generalisation and in-
variance to affine-transformations, we train our {64, 16, 16,
16, 10} CapsNet on MNIST, and assess generalisation per-
formance on the affNIST test set. AffNIST images are 40x40
so we train by randomly padding MNIST training set images
as done in works we compare to. We achieve a significantly
superior generalisation accuracy of 98.1% comparatively
(Figure 5). For fairer comparisons, we also match the 99.2%
test set accuracy on MNIST reported in Dynamic/EM rout-
ing, before testing on the affNIST test set, achieving 96.9%.



4.4 Sensitivity to Prior Hyperparameters
We took our {64, 16, 16, 16, 5} CapsNet, and performed
sensitivity analysis on the hyperparameters of the Wishart
and Dirichlet priors, with respect to test error on Fashion-
MNIST (Figure 4). We initialise λ0 ≡ diag(Ψ0) as identi-
ties scaled by coefficients {0.01, 0.1, 1, 10}. The same coef-
ficients were used for initialising the Dirichlet prior param-
eter α. In general, we find that our models are quite robust
to prior initialisations in terms of final test set performance,
whereas convergence speed is mildly affected. It is also pos-
sible to learn prior parameters from data via backpropa-
gation ( la empirical Bayes), avoiding manual tuning alto-
gether. We tested this on the Dirichletα and observed no per-
formance degradation (5.19% compared to 5.2%±0.07).

4.5 VB vs. EM Routing
For direct comparisons with the leading capsule routing
algorithm, we took our best performing models for each
dataset and replaced VB with our implementation of EM.
Table 1 and Figure 3 report VB outperforming EM in terms
of convergence rate, stability, and final test error with identi-
cal networks. VB routing is also almost 20% faster than EM.
This is partly because capsule priors don’t require gradient
updates, and mainly because we propose to measure agree-
ment/activate capsules after the routing iterations. As shown
in Figure 4, our method compares favourably, and we find
that the number of VB routing iterations has a bigger impact
on training time than test error, so we can reduce the number
iterations to train faster, and still perform competitively.

5 Conclusion
In this paper, we propose a new capsule routing algorithm
for learning a mixture of transforming gaussians via Vari-
ational Bayes. We model uncertainty over the capsule pa-
rameters in addition to the routing coefficients, which pro-
vides: (i) more flexible control over capsule complexity by
tuning priors to induce sparsity, and (ii) reduces the well
known variance-collapse problem inherent to MLE based
mixture models, such as EM. We outperform the state-of-
the-art on smallNORB using'50% fewer capsules than pre-
viously reported, achieve highly competitive performances
on CIFAR-10, Fashion-MNIST, SVHN, and demonstrate
significant improvement in MNIST to affNIST generalisa-
tion over previous methods. For future work, we plan to
extend our Bayesian framework to obtain calibrated uncer-
tainty estimates over predictions using capsule networks.

References
Bishop, C. M. 2006. Pattern recognition and machine learning.
springer.
Choi, J.; Seo, H.; Im, S.; and Kang, M. 2019. Attention routing
between capsules. In Proceedings of the IEEE International Con-
ference on Computer Vision Workshops, 0–0.
Deliège, A.; Cioppa, A.; and Van Droogenbroeck, M. 2019. An ef-
fective hit-or-miss layer favoring feature interpretation as learned
prototypes deformations. In Thirty-Third AAAI Conference on Ar-
tificial Intelligence.
Duarte, K.; Rawat, Y.; and Shah, M. 2018. Videocapsulenet: A
simplified network for action detection. In Advances in Neural
Information Processing Systems, 7610–7619.

Glorot, X., and Bengio, Y. 2010. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and
statistics, 249–256.
Guiaşu, S. 1971. Weighted entropy. Reports on Mathematical
Physics 2(3):165–179.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.
Hinton, G. E.; Krizhevsky, A.; and Wang, S. D. 2011. Transform-
ing auto-encoders. In International Conference on Artificial Neural
Networks, 44–51. Springer.
Hinton, G. E.; Sabour, S.; and Frosst, N. 2018. Matrix capsules
with em routing. In International Conference on Learning Repre-
sentations (ICLR).
Jeong, T.; Lee, Y.; and Kim, H. 2019. Ladder capsule network. In
International Conference on Machine Learning, 3071–3079.
Killian, T.; Goodwin, J.; Brown, O.; and Son, S.-H. 2019. Kernel-
ized capsule networks. arXiv preprint arXiv:1906.03164.
Kingma, D. P., and Welling, M. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.
Kosiorek, A. R.; Sabour, S.; Teh, Y. W.; and Hinton, G. E. 2019.
Stacked capsule autoencoders. arXiv preprint arXiv:1906.06818.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple layers
of features from tiny images. Technical report, Citeseer.
LeCun, Y.; Huang, F. J.; Bottou, L.; et al. 2004. Learning methods
for generic object recognition with invariance to pose and lighting.
In CVPR (2), 97–104. Citeseer.
Lenssen, J. E.; Fey, M.; and Libuschewski, P. 2018. Group equiv-
ariant capsule networks. In Advances in Neural Information Pro-
cessing Systems, 8844–8853.
Nair, P.; Doshi, R.; and Keselj, S. 2018. Pushing the limits of
capsule networks. Technical note.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and Ng,
A. Y. 2011. Reading digits in natural images with unsupervised
feature learning.
Phaye, S. S. R.; Sikka, A.; Dhall, A.; and Bathula, D. 2018. Dense
and diverse capsule networks: Making the capsules learn better.
arXiv preprint arXiv:1805.04001.
Rawlinson, D.; Ahmed, A.; and Kowadlo, G. 2018. Sparse
unsupervised capsules generalize better. arXiv preprint
arXiv:1804.06094.
Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic routing
between capsules. In Advances in Neural Information Processing
Systems (NIPS), 3856–3866.
Xiang, C.; Zhang, L.; Tang, Y.; Zou, W.; and Xu, C. 2018. Ms-
capsnet: A novel multi-scale capsule network. IEEE Signal Pro-
cessing Letters 25(12):1850–1854.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning algo-
rithms. arXiv preprint arXiv:1708.07747.
Zhang, L.; Edraki, M.; and Qi, G.-J. 2018. Cappronet: Deep fea-
ture learning via orthogonal projections onto capsule subspaces. In
Advances in Neural Information Processing Systems, 5814–5823.
Zhang, S.; Zhou, Q.; and Wu, X. 2018. Fast dynamic routing based
on weighted kernel density estimation. In International Symposium
on Artificial Intelligence and Robotics, 301–309. Springer.
Zhao, Z.; Kleinhans, A.; Sandhu, G.; Patel, I.; and Unnikrishnan,
K. 2019. Capsule networks with max-min normalization. arXiv
preprint arXiv:1903.09662.



Airplane

airplane animal car human truck

ite
r1

ite
r2

ite
r3

Figure 6: Histograms of the squared distances (X axis) between votes Vj|i averaged over all airplane images in the smallNORB
dataset, and each of the all 5 class capsules Mj throughout training (epochs on Y axis). Variational Bayes Routing iterations
1-3 are depicted per row, and each column represents a different class capsule. As can be seen above, the average votes from
the airplane images learn to agree with the airplane class capsule during training, and therefore the discrepancies between the
votes and the target capsule parameters increasingly gather around 0 over time, more so than the other class capsules.

Car

airplane animal car human truck

ite
r1

ite
r2

ite
r3

Figure 7: Histograms of the squared distances (X axis) between votes Vj|i averaged over all car images in the smallNORB
dataset, and each of the all 5 class capsules Mj throughout training (epochs on Y axis). Variational Bayes Routing iterations
1-3 are depicted per row, and each column represents a different class capsule. A very clear difference in the agreement between
target (car) and non-target capsules as training progresses can be seen without inspecting the absolute distances on the X axis.


	1 Introduction
	2 Variational Bayes Capsule Routing
	2.1 Variational Inference
	2.2 Variational Bayes for a Mixture of Transforming Gaussians
	2.3 Capsule-VAE

	3 Related Work
	4 Experiments
	4.1 Image Classification Results
	4.2 Generalisation to Novel Viewpoints
	4.3 Affine Transformation Robustness
	4.4 Sensitivity to Prior Hyperparameters
	4.5 VB vs. EM Routing

	5 Conclusion

