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Abstract

An earthquake of magnitude M5.7 occurred in Yamutu village, Songyuan City, Jilin Province, NE China (45°16"12"N/
124°42'35"E) on May 28, 2018, with a focal depth of 13 km. The epicenter is located at the intersection of the Fuyu/
Songyuan-Zhaodong Fault, Second Songhua River Fault and Fuyu North Fault which lies northwest of Tancheng-
Lujiang Fault (Tan-Lu Fault). The earthquake-induced widespread liquefaction structures and ground surface fissures
within 3 km from the epicenter, caused serious disasters to the local surroundings. The visible liquefied structures
include sand volcanoes, liquefied sand mounds, sand dikes and sand sills. Sand volcanoes can be divided into sand
volcano with a crater, sand volcano without a crater and water volcano (no sand). Other soft-sediment deformation
structures (SSDS) induced by the earthquake include deformation lamination, load and flame structures,
deformation folds, dish structures, convolute bedding and water-escape structures. The formation process of the
sand volcanoes comprises three stages: (1) building up excess pore-fluid pressure in the liquefied layer, (2) cracking
of the low-permeable overlying layer, and (3) mixture of sand-water venting out of the ground surface. During the
upward movement, the liquefied sand is injected into the low-permeable layer to form sand veins, sand sills and
various types of deformation structures. Vertical distribution of seismic liquefaction structure can be divided into
four zones: the thoroughly liquefied zone, the lower liquefied zone with SSDS, the upper liquefied zone with SSDS,
and the ground surface liquefied zone. The liquefaction occurred at a burial depth of 2-5m, and the thickness of
liquefied sand is 2m. NE-SW (35°-215°) trending compressive stress is possibly the seismogenic trigger of the
Songyuan M5.7 earthquake that caused the fault (Fuyu/Songyuan-Zhaodong Fault) to reactivate. The study of the
Songyuan seismic liquefaction structures gives insight into the prediction of modern earthquakes and disaster-
prone areas. Meanwhile it provides abundant basic material for studying earthquake-induced SSDS in both ancient
and modern sediments. The research is obviously of great significance to reveal that the northern Tan-Lu Fault has
entered a stage of active seismic activity since the twenty-first century.
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1 Introduction
The formation of SSDS depends on three aspects: the
susceptibility of unconsolidated sediment to liquidiza-
tion, the triggers that change the physical state of sedi-
ment with low yield strength, and a sufficient amount of
force (Allen 1986). The deformation mechanism varies
with the properties of the materials. For elastic and plas-
tic sediments, a large enough stress that exceeds the
yield strength can lead to deformation. For viscous ma-
terials, liquefaction is the main deformation mechanism.
Viscous materials are easily deformed because of their
high thixotropy and sensitivity to liquefaction and
fluidization (Owen 1987). Shanmugam (2016) pointed
out that there are at least 21 triggers causing soft-
sediment deformation structures, including short-term
events, intermediate-term events and long-term events,
among which, earthquakes were believed to be the most
important trigger for the formation of SSDS.
Liquefaction structures are one kind of common SSDS
(Shanmugam 2017). It includes sand dikes, sand veins,
sand pillars, sand (mud) volcanoes (sand boils), sand tubes
(sand pipes), sand blow, sandcusps, deformation folds, de-
formation lamination, load structure, dish structure, con-
volute bedding, diapirs, draw-in structure, pseudonodules
and other water-escape structures (Lowe and LoPiccolo
1974; Lowe 1975, 1976; Allen 1977, 1982; Owen 1987,
1995; Obermeier 1996; Rodriguez-Pascua et al. 2000;
Takahama et al. 2000; Massari et al. 2001; Tuttle 2001;
Kholodov 2002; Lu et al. 2006; Glennie and Hurst 2007;
Moretti and Sabato 2007; Bonini 2009; Chen et al. 2009;
Gibert et al. 2011; Owen and Moretti 2011; Owen et al.
2011; Ross et al. 2011; Rowe 2013; Su et al. 2014; Valente
et al. 2014; Yi et al. 2015; Mazumder et al. 2016; Oppo
and Capozzi 2016; Ulvrova et al. 2016; Du and Yu 2017;
Hurst and Vigorito 2017; Zhong et al. 2018). Liquefaction
can even trigger a giant sand injection complex (Satur and
Hurst 2007; Grippa et al. 2019; Su et al. 2019).
Liquefaction can be distinguished into the three types of
static, impulsive and cyclic (Owen 1987), which can occur
in environments such as glaciers, deserts, intermountain
depressions, rivers, deltas, tidal zones, continental slopes
and submarine fans (Kuribayashi and Tatsuoka 1975;
Alfaro et al. 1997; Moretti e al. 2001; Moretti and Sabato
2007; Shi et al. 2007; van Loon 2009; Alfaro et al. 2010;
Moretti and Ronchi 2011; van Loon and Maulik 2011;
Phillips et al. 2013; Owen and Santos 2014; Ravier et al.
2015; Kog-Tasgin and Diniz-Akarca 2018; Zhong et al.
2018), but mainly in lakes and oceans. Some authors re-
ported the possibility of liquefaction on Mars (Mahaney
et al. 2004; Wang et al. 2005). Liquefaction occurs mostly
in clastic and carbonate sediments (Su et al. 2014) and in
bedrock (Friese et al. 2011). Earthquakes, volcanic erup-
tions, meteorite impacts, tsunamis and storm waves, depo-
sitional loading, thawing of ice-rich frozen soils, glacier
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melting, tides, flooding, slide and slump, turbidite, piping
and diversion of runoff, groundwater movement, sea level
changes, diapirism, gas leaks, digenesis and biological ac-
tivities can trigger liquefaction (Burne 1970; Allen and
Banks 1972; Owen 1987; Obermeier 1996; Harris et al.
2000; Murton et al. 2000; Moretti et al. 2001; Mahaney
et al. 2004; Mazumder et al. 2006, 2016; Zhong et al. 2006,
2008, 2018; Glennie and Hurst 2007; Greb and Archer
2007; Owen and Moretti 2008, 2011; Mei et al. 2009; van
Loon 2009; Zhong and Liang 2009; Alfaro et al. 2010;
Owen et al. 2011; Chen and Lee 2013; Li et al. 2013; Miya-
kawa et al. 2013; Phillips et al. 2013; Rowe 2013; Tian
et al. 2014; Owen and Santos 2014; Shao et al. 2014a;
Ravier et al. 2015; Ulvrova et al. 2016; Capaccioni et al.
2017; Du and Yu 2017; Feng 2017; Feng et al. 2017; Hurst
and Vigorito 2017; Ko et al. 2017; Kog-Tasgin and Diniz-
Akarca 2018).

Earthquakes are one of the most important triggers
leading to liquefaction and fluidization. During an earth-
quake, unconsolidated saturated sediments are affected
by the seismic shear waves and the internal texture is
rearranged, thus forming viscous fluids with no yield
strength. Then effective stress transferring caused by li-
quefaction leads to excessive intergranlar pore-fluid
pressure which can last for seconds. Clastic particles re-
deposit after transitory seismic liquefaction (Allen 1982;
Owen 1987; Obermeier 1996; Obermeier and Pond
1999; Tuttle 2001; Owen and Moretti 2011). Pore-fluid
pressure gradually increases due to cyclical seismic
shock and then exceeds the overburden pressure or frac-
turing pressure, resulting in pressure release and
fluidization. Various deformation structures occur be-
cause of the movement of water and sand (Obermeier
1996; Owen et al. 2011; Shao et al. 2014a, 2014b, 2014<c).

The liquefaction intensity is related to the magnitude,
distance of the epicenter, focal depth and duration of
earthquakes, and is influenced by the grain size, thick-
ness, degree of consolidation of the liquefiable sand layer
and the thickness of the overlying low-permeable layer
(Burne 1970; Obermeier 1996; Moretti et al. 1999;
Valente et al. 2014).

Liquefaction occurs most easily in fine and coarse sand
(Owen and Moretti 2011) but has also been reported in
sandy conglomerate (Takahama et al. 2000). Generally,
the minimum earthquake magnitude causing liquefac-
tion is M5-6 (Yang 1985; Allen 1986; Obermeier and
Pond 1999; Ko et al. 2017), and most of the liquefaction
occurs at a depth of less than 5m (Obermeier 1996;
Rodriguez-Pascua et al. 2000; Owen et al. 2011; Berra
and Felletti 2011; Zhao 2012; Wei et al. 2016).

An earthquake of M5.7 occurred in Yamutu village,
Songyuan City of Northeast China (45°16'12"N/124°42°
35”E) on May 28, 2018, with a focal depth of 13 km,
followed by a series of M2-3 aftershocks in the



Shao et al. Journal of Palaeogeography (2020) 9:3

following days. Liquefaction and fluidization induced by
the earthquake distributed in a range of 3km and the
most common type is sand volcano. In this paper, the
types, their relations and spatial distribution of liquefac-
tion structures are introduced in detail, and their gener-
ation mechanism is illustrated to provide materials for
seismic researches of ancient time and modern time as
well.

2 Results

Lots of sand volcanoes and other liquefaction structures
were found which were induced by the Songyuan M5.7
earthquake that happened on May 28, 2018 within 3 km
from the epicenter. Sand volcanoes, sand mounds, sand
dike, and sand sill were the most common and main
seismic liquefaction structures. Sand volcanoes can be
divided into three types according to their morphologies
and structures: sand volcano with a crater, sand volcano
without a crater, and water volcano (no sand). Vertically,
the liquefaction structure distribution of the M5.7 earth-
quake in Songyuan has obvious stratification, which can
be divided into 4 zones: the thoroughly liquefied zone,
the lower liquefied zone with SSDS, the upper liquefied
zone with SSDS, and the ground surface liquefied zone.
From the characteristics of ground fissures and liquefac-
tion structures, it is inferred that the Fuyu/Songyuan-
Zhaodong Fault, which is part of the northern Tan-Lu
Fault, was the major seismogenic fault. Therefore, the
Songyuan M5.7 earthquake reveals that the northern
Tan-Lu Fault has entered a stage of active seismic activ-
ity since the twenty-first century.

3 Geological setting
Songyuan is located in the northwest of Jilin Province
and geomorphologically belongs to the Songnen Plain
area and tectonically is in the central depression zone of
the Songliao Basin, west of Northern Tan-Lu Fault. The
Songliao Basin was a Meso-Cenozoic continental poly-
cyclic superimposed basin sandwiched by the North
China Plate, the Siberian Plate and the Pacific Plate(Ge
et al. 2010; Meng et al. 2012; Wang et al. 2015b; Han
et al. 2018), with the Nenjiang-Kailu Fault and the Dax-
ing’anling Orogen to the west, the Yilan-Yitong Fault
and the Zhangguangcailing Orogen to the east, the
Nemor River Fault and the Xiaoxinganling Orogen to
the north, and the Chifeng-Kaiyuan Fault and the Yan-
shan Orogen to the south (Fig. 1). The tectono-
stratigraphic units of the NNE trending basin are fea-
tured by block fault, interior sag and structural inver-
sion, filling with clastic and volcanic deposits. The
direction of the fault in the basin is mainly NNE-NE and
NNW-NW (Zhang et al. 1997; He et al. 2011).

Faults around Songyuan are frequently active (Fig. 2),
among which the most important are Fuyu/Songyuan-
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Zhaodong Fault, Second Songhua River Fault, Fuyu North
Fault, Gudian Fault, and Chaganhua-Daozijing Fault (Yang
et al. 2010; Shao et al. 2015; Xue et al. 2015; Liu et al.
2017b; Pan et al. 2018). These faults are decribed below.

1) Fuyu/Songyuan-Zhaodong Fault. Starting from
Zhaodong in the north and ending at Huaide in the
south, the early-middle Pleistocene active Fuyu/
Songyuan-Zhaodong Fault is the boundary of the
central sag and south-east uplift, striking NE, inclin-
ing SE and dipping 70°-80° (Liu et al. 2017b; Pan
et al. 2018).

2) Second Songhua River Fault. It was active during
early—middle Pleistocene period starting from Da’an
in the west and ending at Chongshan in the east
with a length of more than 500 km, striking N'W,
inclining NE, dipping 70°-80° (Yang et al. 2010).

3) Fuyu North Fault. A branch fault of the Fuyu-
Zhaodong Fault. This 30-km-long fault has been ac-
tive since the Holocene with striking EW, inclining
S, dipping 70°-80° (Liu et al. 2017b).

4) Gudian Fault. A branch fault of the Fuyu-Zhaodong
Fault. This 60-km-long fault has been active since
the Holocene with striking NW-SW, inclining NE—
SE (Shao et al. 2015; Liu et al. 2017b).

5) Chaganhua-Daozijing Fault. The southern branch of
the Fuyu-Zhaodong Fault. This 30-km-long fault
has been active since the Holocene with striking
NW-SW, inclining SE-NE (Liu et al. 2017b).

Songyuan area is located in the hinterland of the Song-
nen Plain. The Quaternary loose sediments are 80—100
m thick, and mainly consist of black silt and fine sand
interbedded deposits. The succession from bottom to
top is Lower Holocene Wenquanhe Formation, Middle
Holocene Tantu Formation and Upper Holocene Guo-
jiadian Formation, respectively (Guo et al. 2007; Zhao
2010). The burial depth of the underground water table
is generally less than 5m (Tian et al. 2011; Pan et al
2018). The loose sediments on the shallow surface
around Yamutu village (Guojiadian Formation) can be
divided into five stratigraphic units according to the re-
sults of three drilling wells approximately 1 km from the
epicenter (Fig. 3). From top to bottom these units are:
unit 1: Black clay layer rich in humus (black soil) with a
thickness of 50-70cm; unit 2: 45-60-cm-thick light
brown silty clay; unit 3: Orange-brown palaeo-
weathering crust depositional clay with a thickness of
10-15 c¢m, which can be traced in the whole area; unit 4:
10-15-cm-thick light gray silty clay; unit 5: Light yellow
well-sorted and rounded fine sand and siltstone with a
thickness of approximately 20 cm.

Earthquakes happened frequently in Songyuan, with
up to 77 of larger than M2 since 2006, particularly after
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Fig. 1 Geographic and tectonic location of Songyuan (black dots), Jilin Province, NE China. F1: Nenjiang-Kailu Fault; F2: Yilan-Yitong Fault; F3:
Chifeng-Kaiyuan Fault. The red dots are the epicenter of earthquakes that happened in the Songliao Basin and their surrounding area since 1976,
and the yellow dot is the epicenter of the M5.7 earthquake in Yamutu village, Songyuan on May 28, 2018
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2013 (Fig. 4). The largest recorded earthquake in Son-
gyuan was the M6% Qianguo earthquake in 1119 AD,
with its epicenter at the intersection of the Fuyu/Son-
gyuan-Zhaodong Fault and the Second Songhua River
Fault (Wu 1991). Two M5.5 earthquake clusters oc-
curred in Chaganhua town in Songyuan in March 2006
and October 2013, with the epicenter located at the
intersection of the Gudian Fault and the Chaganpao-
Daozijing Fault zone (Shao et al. 2015; Pan et al. 2018).
The epicenter of the M5.7 earthquake on May 28, 2018
was located at the intersection of the Fuyu/Songyuan-
Zhaodong Fault and the Second Songhua River Fault.

4 Earthquake-induced liquefaction structures

Songyuan M5.7 earthquake caused severe liquefaction of
loose sediments on the surface (stratigraphic unit 5 in
Fig. 3), leading to the eruption of sand volcanoes of sev-
eral meters high and more than 1 m in diameter. During
or shortly after the earthquake (within a few minutes),
the excessive pore fluid pressure in the liquefied layer
broke through the weight or fracture pressure of the
overlying layer and poured out of the surface with sand
distributing along caves or cracks. Sand volcanoes can

last up to half an hour and can vent up to 6-7 m if the
pressure is sufficiently large (Obermeier 1996). The
ejected sand and mud accumulate around the crater
after the eruption, forming various types of sand volca-
noes, as shown in Fig. 5; more than 60 sites of sand vol-
canoes were found after the M5.7 earthquake within 3
km around the epicenter. We conclude through detailed
analysis that the stratigraphic unit 5 was considered to
be the main liquefied layer, and the stratigraphic units
1-4 were impermeable or low-permeable cap layers.

4.1 Sand volcanoes

A sand volcano, also named a sand boil (Lowe 1975;
Obermeier et al. 1992; Obermeier 1996; Li et al. 1996;
Moretti et al. 1999; Massari et al. 2001; Tuttle 2001;
Kanibir et al. 2006; Bhattacharya et al. 2011; Moretti and
Ronchi 2011; Ross et al. 2011; Yamaguchi et al. 2012;
Capaccioni et al. 2017), is the most common and domin-
ant seismic liquefaction structure type in Songyuan.
Sand volcanoes are assembled in groups and in a certain
dominant direction (Fig. 5), and can be divided into
three types according to their morphologies and
structures.



Shao et al. Journal of Palaeogeography (2020) 9:3 Page 5 of 19
p
124° 125° 126°E
Zhaodong
z L]
N Vi
< N //
AN
X i
SN 7
6’0 N / \>\
o, N\ 7 Q'b
20 N Zhaozhou
%6 N\ K 7O
O/) \ // 060
Qs N anx®
% N Daan Zhaoyuan b
° . 7 o
'3; S 5 ?
o, N 7 0_,*.
RN PR
S, \2 , \%
(// \ s O
( 4 P QO*
North Fault 4 = '
FuyuRNo b *\. Songyuan
78N\,
: i 2 <
< Qian’an SRR $ 2 Fuyu
& 490 N *
< /N, (3
@Q{D\VG ES N\
\\§(z§6 (\'Gudlan
N34 ~
! |
\l\\ _ —~ Late Pleistocene fault
\l O _ Early-middle
l’ N -~ Pleistocene fault
eoei)i/;/)(/ Nong’an 4 A\)) Normal fault
QA\G\ ,‘H/‘( Reverse fault
0 10 20  40km iz
— %~ Strike-slip fault
° City/County
Fig. 2 Faults distribution around Songyuan (modified from Liu et al. 2017b, the red pentagram is the epicenter of the Songyuan
M5.7 earthquake)

4.1.1 Sand volcano with a crater

During the process of liquefaction and fluidization, over-
pressure fluid carries the liquefied sand during upwelling
process forming channels (cavities) along the fracture
zone or stress-reduced zone (Lowe and LoPiccolo 1974
Lowe 1983; Owen 1996; Harris et al. 2000; Owen 2003;
Massari et al. 2001; van Loon 2009; Yamaguchi et al.
2012; Phillips et al. 2013; Su et al. 2014), and then pours
out of ground surface, which is a sand volcano eruption.
The eruption ends as the energy reduces, creating
crater-like depressions (Collinson et al. 2006), draw-in
structures (Takahama et al. 2000), and sand blows
(Obermeier 1996; Tuttle 2001; Owen and Moretti 2011).
After fluid pressure is released, the sands deposit as
lobes, which are of round shape in plain view and con-
ical or dome-shaped vertically, with varying widths out-
side and inclined lamination inside (Collinson et al.
2006).

The scale of a sand volcano is directly related to the
magnitude and epicentral distance. Generally, the larger
the earthquake magnitude is and the smaller the epicen-
tral distance is, the larger scale the sand volcano is. It
has been reported that the M5.8 earthquake that oc-
curred in Songyuan in 2013 induced an area of more
than 300 m? of sand volcanoes (Wei et al. 2016).

The maximum diameter of the sand volcano caused by
the Songyuan M5.7 earthquake exceeded 12 m (Fig. 6a).
The scale of sand volcanoes decreased as the epicentral
distance increased. The minimum diameter of the sand
volcano was only 5 cm. The common sand volcano scale
was 2—-8 m in diameter, and the crater was usually 0.5-1
m in diameter. The thickness of the sand volcanic de-
posit was large around the crater and gradually de-
creased outwards, with a variation range of 2-50 cm.
The distribution of sand volcanoes can be divided into
symmetrical and asymmetric types. Generally, the distri-
bution of sand bodies is symmetrical, widely distributing
in a flat surface without obstacles (Fig. 6b); whereas dis-
tribution of sand bodies is asymmetric when affected by
high topographic fluctuation, surface fractures and ob-
stacles (Fig. 6¢, d). In addition, the symmetrical shape of
the sand volcano may be affected by the wind direction
and other factors. The sand volcanoes were distributed
either in isolation (Fig. 6a, d) or in groups (Fig. 6b, c).
Volcanoes distributed in groups generally had a domin-
ant orientation, and the dominant distribution direction
in Songyuan was N-§, followed by NW-SE (Fig. 5).

Influenced by periodic seismic waves, sand volcanoes
also erupt periodically. The sand flows laterally after the
eruption to form inclined lamination, as shown in Fig. 7.
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The morphology of inclined lamination is essentially
consistent with that of the sand volcanic deposit, which
points out from the crater’s center to distal end. In the
interior, the lamination mostly extends to the interior of
the sand volcanic channel due to the refluxing effect of
eruption, forming the draw-in structures (Takahama
et al. 2000) and gully at the inner edge of the crater (Fig.
6b). The thickness of inclined laminae within the sand
volcanoes varied from (Fig. 8a—c) 0.5cm to 5cm and
normally-graded bedding developed (Figs. 7 and 8b).
This represented a single eruption process in which
pore-fluid pressure gradually decreased (Rodriguez-Pas-
cua et al. 2015), coarser sediments deposited at the be-
ginning, and then finer sediments deposited as energy
reduced. In the vertical profile, sand volcanic sediment-
ary lenses are often mistaken as beddings, and inclined

layering is mistaken for cross-bedding (Collinson et al.
2006).

Upwelling water and sand erode the clay of the sur-
rounding sidewall, forming mud clasts, which erupt and
deposit together with sand and water (Obermeier 1996;
Su et al. 2014). These mud clasts are often well-sorted
and elliptical, forming imbricate structures after depos-
ition (Fig. 7; Fig. 8d). Mud clasts may not occur in sand
volcanoes in a few cases (cf. Li et al. 1996).

4.1.2 Sand volcano without a crater

This type of volcanoes is often in the shape of a mound
or dune with no craters. They are relatively thicker in
the center and wedge out to all sides, and circular or el-
liptical in the plane and lenticular or conical in vertical
direction. Most sand volcanoes without craters are
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distributed in isolation, while others are linear, 0.2—10 m
in diameter and 0.1-0.6 m in height. As shown in Fig.
6d, the elliptical sand volcano without a crater is ap-
proximately 0.5m high, with the long axis direction
close to N-S.

Two conditions are necessary to form sand volcano
without a crater. First, there must be sufficient supply of
liquefied sand, so that the volcanic vent formed by
erupting can be filled in time. Second, the excessive
pore-water pressure must be appropriate, which can
make the fluid only eject to the ground surface without

causing a large crater. Therefore the continuous sand-
blasting forms sand volcanoes without craters.

4.1.3 Water volcano (no sand)

The presence of water volcanoes indicates that there is
no sand ejection and deposition during the eruption
process. When the earthquake is over, one crater is
formed with no sand deposition. As shown in Fig. 9, the
water volcano crater is nearly circular with a diameter of
2.2m and a settlement of 45 cm. Concentric ring normal
faults are developed on the rim of the crater, and it is
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Sand ridge

Fig. 6 Morphology and combination features of liquefied sand volcanoes induced by the Songyuan M5.7 earthquake. a An isolated sand
volcano, approximately 12m in diameter with a crater of approximately 1.3 m in diameter (photo was taken from site A in Fig. 5); b Sand
volcanoes distributed in group with craters of 0.7-1.0 m in diameter, concentric ring terraces formed by multistage sand volcano eruptions, gully
developed in the crater margin and runoff on the surface of sand volcano deposition (photo was taken from site B in Fig. 5); ¢ Small-scale linear
sand volcano distributed in groups with a thickness of 2.cm (photo was taken from site D in Fig. 5); d Hill-shaped isolated sand volcano with no
crater, 3.1 m long, 1.6 m wide, and 045 m high, with the direction of long axis close to N-S (photo was taken from site E in Fig. 5)
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Fig. 7 Sketch of the internal structure of a sand volcano (modified from Obermeier 1996; Su et al. 2014)
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Fig. 8 Internal structure of a sand volcano caused by the Songyuan M5.7 earthquake. a Laterally inclined bedding and load structure of sand
volcanic deposits; b Normal graded bedding and inclined lamination in sand volcanic deposits; ¢ Internal inclined lamination of the sand volcano;
d The mud clasts and load structure inside the sand volcano. Photos were taken from the interior of a small exploratory trough (with a depth of

approximately 30 cm), which located at about 1 m on the flank of a sand crater (site A in Fig. 5)

inferred that inside the crater, several groups of faults
with different directions developed.

Except for one water volcano found in the study area,
there were no reports of this type by other researchers.
Special geological and hydrodynamic conditions are
needed for the formation of this type. First, sands must
be inadequate or don’t exist in the liquefaction area, as
well as in the upwelling fluid. Second, the pore-water
pressure should be just appropriate, making it impos-
sible for sand to erupt out of the surface except when

carried by water. The dynamic process of this type of
volcanic deposition requires further detailed study.

4.1.4 Model of forming mechanism
The sand volcanoes induced by earthquakes mainly form
in three stages as follows: the preseismic, the coseismic
and the postseismic (Fig. 10).

In the preseismic stage, the water-saturated unconsoli-
dated sediments are dominated by well-sorted and
rounded fine sands, which are overlain by low-permeable

Fig. 9 A water volcano caused by the Songyuan M5.7 earthquake (photo was taken from site C in Fig. 5)
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Fig. 10 Sketch of the formation process of a sand volcano induced by an earthquake (modified from Rodriguez-Pascua et al. 2015

clay and silty clay. The thickness of the overlying layer
must be less than a certain value to induce liquefaction
(Fig. 10a). During the coseismic stage, the ground shakes
under the influence of seismic wave shear force, resulting
in cracks. The water moves up because of liquefaction,
which gathers at the interface between the clay layer and
sand layer (Fig. 10b). The sands redeposit and become
tightly packed after one single liquefaction event. The up-
ward buoyancy generated by the gradually increasing ex-
cessive pore-water pressure makes the ground surface
shake continuously and cracks further expand (Fig. 10c).
During the postseismic stage, hydraulic fractures are gen-
erated once the excessive pore-water pressure exceeds the
hydrostatic pressure, at which point water erupts out and
forms a volcano (Fig. 10d). Later, extensive liquefaction
and fluidization are caused, making sands vent out with
upwelling water through the crater forming a sand vol-
cano (Fig. 10e). More fractures were formed in the process
that allows sand and water to continue to erupt and form

sand volcanoes (Fig. 10f). When all the seismic energy is
released, the excessive pore-water pressure decreases to be
less than the hydrostatic pressure, which ends liquefaction
and fluidization. As the movement of the surface water
and sands stops, the sand volcanism comes to an end (Fig.
10g).

4.2 Sand mounds

The Songyuan M5.7 earthquake induced a wide range of
sand mounds (Fig. 11). Sand mounds are formed in two
environments: one is on the dune approximately 2 m
above the ground surface, which is dominated by fine
sand and silt (Fig. 11a). The other occurs on sand volca-
noes, which can form in both the crater interior and the
lateral lobes (Fig. 11b, c). The shape of the sand mounds
is similar to that of a volcanic cone, with or without a
crater. They are round in plain view and lens-like in ver-
tical profile, 3—15 cm in diameter and 3-8 cm in height.
Sand mounds are most commonly developed in groups,
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.

Fig. 11 Sand mounds induced by the Songyuan M5.7 earthquake. a An isolated sand mound, 13 cm in diameter (photo was taken from site C in
Fig. 5); b An isolated sand mound inside a sand crater, 4-7 cm in diameter (photo was taken from site B in Fig. 5); ¢ Groups of sand mounds on
the flanking surface of a sand volcano, 3-5 cm in diameter (photo was taken from site B in Fig. 5)

and the sand piles are relatively coarse grained and grad-
ually transfer to finer sands towards the cone top. Small
inclined lamination can be found inside the sand
mounds, with the tilting angle of approximately 30°.

Sand mound is a special type of sand volcano (Su et al.
2014), which is also induced by earthquake liquefaction.
However special conditions are required for forming this
type of structure. First, sand mounds are formed by sand
layers rather than low-permeable clay, and the sands
within the layers are well-sorted and rounded, which are
easy to liquefy. Second, the excessive pore-water pres-
sure must be appropriate, as a too small pressure cannot
induce eruption while a too large one leads to large sand
volcanoes formation. Otherwise, the sand layer is in
undersaturation condition when sand mounds form,
which means sands are unable to flow or just able to be
transported for a short distance after ejection. Sands ac-
cumulated due to the weight near the crater with coarser
sands distributing at proximal end, which is different
from the deposition feature of conventional sand
volcanoes.

Due to liquefaction, the water and sand moving up to
the clay surface continue upward migration and vent out
of the sand dune surface to form the first type (Fig. 11a).
The water and sand continuously erupt to the surface to
from the second type of sand mound when excessive
pore-water pressure inside the sand volcano is just ap-
propriate. This type of sand mound is of small scale and
without a crater due to the reduced energy (Fig. 11b, c).

4.3 Sand dike and sand sill

The scale of the sand dike and sand sill is controlled by
the magnitude and epicenter distance. The width of the
sand dike caused by the Songyuan M5.7 earthquake is
3-11cm, and the lateral extension length is 0.2-2m.
The thickness of the sand sill is 5-15 ¢cm, and the lateral
extension is more than 50 m (Fig. 12). Generally, a large
thickness of the liquefied sand layer, a moderate thick-
ness of the overlying low-permeable seal and a high
groundwater level favor the formation of sand dikes and
sills. Sand dikes and sills are two of the most important
structures caused by earthquakes (Obermeier and Pond
1999; Obermeier and Dickenson 2000; Rodriguez-Pascua
et al. 2000; Tuttle 2001; Shi et al. 2007; van Loon 2009;
Berra and Felletti 2011; Topal and Ozkul 2014; Hilbert-
Wolf et al. 2016; Ko et al. 2017; Brogi et al. 2018; Zhong
et al. 2018).

There are three mechanisms for the formation of sand
dikes and sand sills: hydraulic fracturing, lateral spread-
ing and surface oscillation (Obermeier and Pond 1999).
As liquefaction intensifies, the sand dikes and sand sill
evolve into a large sand intrusive complex that can be
tens of meters thick, extending up to thousands of
square kilometers (Satur and Hurst 2007; Zhong et al.
2018; Grippa et al. 2019).

In addition to forming sand volcanoes, the liquefied
sand invades the overlying cap layer, which tends to de-
velop along the volcanic channel and the interface be-
tween the sand and clay, as well as the interface of
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Fig. 12 Liquefied sand dike and sand sill induced by the Songyuan M5.7 earthquake. a Columnar liquefied sand dike, 3-7 cm wide, 10 cm high,
filling a vertical surface fracture (photo was taken from site A in Fig. 5); b Liquefied sand dike in a shallow drilling core with a burial depth of 45
c¢m (photo was taken from site A in Fig. 5); ¢ Liquefied sand dike, cloud-like (photo was taken from site A in Fig. 5); d Liquefied coarse-grained
sand dike with gravel at a burial depth of 1.1 m (photo was taken from site B in Fig. 5); e Sand sill, 7-15 cm thick, 55 cm deep from the surface

(photo was taken from site G in Fig. 5)

various lithologies within the clay layer (Fig. 3). The dir-
ection and shape of sand dikes can be various, cloud-
like, floating band, mushroom-like, columnar, etc. Sand
sills are one kind of sand dikes that develop horizontally
or parallel to the bedding and are generally larger than
the normal size of sand dikes.

4.4 Other liquefaction-associated structures

There are some other soft-sediment deformation struc-
tures induced by earthquake liquefaction, such as load
structure (Alfaro et al. 1997, 2010; Owen et al. 2011; Tian
et al. 2014; Topal and Ozkul 2014), flame structure
(Pisarska-Jamrozy et al. 2019), sand pillar (Lowe and
LoPiccolo 1974; Mount 1993; Moretti et al. 1999; Valente
et al. 2014; Oppo and Capozzi 2016), slump fold (Alsop
and Marco 2011; Martin-Chivelet et al. 2011; Ko et al.

2017), convolute bedding (Allen 1977; Obermeier 1996;
Alfaro et al. 2010; Kundu et al. 2011), dish structure
(Owen 1987; Alfaro et al. 2006), water-escape structure
(Lowe 1975, 1976; Owen 1996; Moretti et al. 1999; Gibert
et al. 2011) and so on. The soft-sediment deformation
structures found in this study include load structure, flame
structure and deformation bedding (Fig. 8a, ¢, d; Fig. 12a).

5 Vertical succession across the liquefied zone

Vertically, the liquefaction structure formed in Songyuan
MB5.7 earthquake distributes in four obvious zones from
bottom to top (Fig. 13): (1) Thoroughly liquefied zone.
Fine unconsolidated sand with a large thickness is easily li-
quefied under the influence of seismic shear stress. The
groundwater table is also located in this zone, generally at
a depth of 2-5m. One criterion for the formation of
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liquefaction is that the unconsolidated sand is water-
saturated. Thus, the groundwater table should not be too
low; otherwise, no liquefaction will occur. Deformation
bedding, convolute bedding and water-escape structure
can also be found in this zone. (2) Lower liquefied zone
with SSDS. It is located at the lower part of the overlying
low-permeable clay, closer to the sand layer. Affected by
liquefaction and fluidization, high pore-pressure fluid and
sand mixture upwells through the lithologic boundary and
invade into the overlying clay to form sand dikes, sand
sills, associated deformation beddings and load structures.
(3) Upper liquefied zone with SSDS. It is located near the
surface. Influenced by fractures, lithologic interfaces and
beddings, the upwelling water with sand and clay particles
intrudes into the clay layer to form sand dikes and sand
sills, as well as associated deformation beddings and load
structures. (4) Ground surface liquefied zone. The main li-
quefaction structures are sand volcanoes, sand mounds,
sand dikes, load structures, and so on. Based on the re-
gional geological characteristics, the 3D liquefaction
model of Songyuan M5.7 earthquake is summarized in
Fig. 13.

6 Discussion

Songyuan area has been seismically active since 2006, es-
pecially in 2013, and an M5.8 earthquake cluster oc-
curred in the Qianguo area, indicating an active tectonic

movement. Some researchers proposed that the activity
of the NE-SW trending and NW-SE trending faults was
the focal mechanism (Chen et al. 2015; Li and Wang
2018). However, different specific faults were determined
as the seismogenic faults (Fig. 1b), such as the Tongyu-
Changchun Fault (Xue et al. 2015), the Second Songhua
River Fault (Yang et al. 2010), the Gudian Fault (Shao
et al. 2015), the Fuyu/Songyuan-Zhaodong Fault (Wang
et al. 2015a; Liu et al. 2017b), and the Chaganhua-
Daozijing Fault (Pan et al. 2018). It was also reported
that the earthquakes can be caused by the exploration
and production activities of oil companies (Liu et al
2017a). Therefore, many controversies have made it dif-
ficult to draw a conclusion.

A normal ground fault, the Yamutu Fault in this paper
developed near the epicenter after the Songyuan M5.7
earthquake (Fig. 5). As shown in Fig. 14, the fault struck
NE35°, 1.5-2.8 m in width, with a fault distance of 10—
30cm. The Yamutu Fault is characterized by a typical
double-fault graben structure, which reflects the release
of seismic stress to the surface. Tensile fissures devel-
oped widely around the earthquake zone, and the scale
and distribution density of fissures were larger surround-
ing the Yamutu Fault compared to other areas neigh-
bouring the earthquake zone (Fig. 15). The fissures can
be divided into two types. One type was conjugate joints,
which occur in pairs, acting as tracking tension joints,
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Normal fault [

Fig. 14 Yamutu Fault formed after the Songyuan M5.7 earthquake. a Double-fault graben structure in Yamutu Fault (photo was taken from site A
in Fig. 5); b Local feature of Yamutu Fault (magnification of the rectangle in a), cutting off the road (photo was taken from site H in Fig. 5)

and the joint trends of the two groups were 0°~180° and
80°-260° (Fig. 15a, a’). The other type of tensile fissure
was 0°—180° dominant in the direction, with a stable dis-
tribution of approximately 1 m, 0—4 cm in width, extend-
ing over 50 m. Except for a few, most of the fissures

were not filled with sand (Fig. 15b). Based on the re-
gional geological setting, ground fault type and extension
direction, and the conjugate joints after the earthquake,
it is preliminarily judged that the regional stress field for
the M5.7 earthquake in Songyuan on May 28, 2018 is

Fissure ( \

Oo
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Fissure

| \

Tracking tension joints

Fig. 15 Ground fissure and stress field pattern of the Songyuan M5.7 earthquake. a Tracking tension joints; the extension directions are 0°~180°
and 80°-260°, respectively (photo was taken from site | in Fig. 5); @’ Sketch of a; b Ground fissures with extension directions of 0°~180° (photo
was taken from site | in Fig. 5); b" Sketch of b; ¢ Model diagram of the stress field in the Songyuan M5.7 earthquake area
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characterized by its maximum compressive stress with a
main direction of 40°-220°, and its minimum tensile
stress with a main direction of 130°-~310° (Fig. 15c). The
extension direction of the Yamutu Fault is essentially the
same as that of the Fuyu/Songyuan-Zhaodong Fault (Fig.
1b). It is speculated that the Fuyu/Songyuan-Zhaodong
Fault is a seismogenic fault, however further research is
needed to verify this viewpoint.

The Second Songhua River in the Songnen Plain flows
through Songyuan, which is less than 500 m from the
epicenter of the M5.7 earthquake. The average water
level of the river is 129.32—-134.95 m (Tian et al. 2014).
The altitude around Yamutu village is 128—-137 m. The
ground ice in this area melts late, and the burial depth
of the groundwater table in the earthquake zone is rela-
tively shallow, which is estimated to be 2—5m deep. The
cyclic shear force generated by seismic activities is
greater than the initial liquefaction shear force at this
depth (see Obermeier 1996: Fig. 3). Another important
condition for an earthquake-induced liquefied sand vol-
cano is that the impermeable layer should not be too
thick. Sufficient sand thickness is a prerequisite for li-
quefaction. A thick seal layer increases the load pressure
and shear strength so that liquefaction cannot occur.
The thickness of the sealing layer is usually 1-5m, and
may be up to 16 m (Obermeier and Pond 1999). The
thickness of clean unconsolidated sands under the clay
layer in the Songyuan area exceeds 20 m (Fig. 3: Unit 5).
According to the China earthquake intensity scale
(1980) (Lu 1981), M5.7 of Songyuan earthquake was VII.
According to the research method of Ishihara (1985)
(Obermeier and Dickenson 2000), the surface acceler-
ation of the Songyuan earthquake was 0.17 ¢ (g is the
gravity acceleration), and it was concluded that the
thickness of the liquefied sand zone of the Songyuan
M5.7 earthquake was approximately 2 m.

The range of surface liquefaction is controlled by the
magnitude and focal depth. According to different formu-
las or charts of the correlation between the maximum li-
quefaction epicenter distance and magnitude proposed by
different researchers, the maximum liquefaction radius of
the Songyuan M5.7 earthquake was 2.878 km (Kuribayashi
and Tatsuoka 1975), 2-10km (Obermeier and Pond
1999), and 4-13 km (Tuttle 2001; Bonini 2009), respect-
ively. In this study, through field investigation and calcula-
tion, we found that the maximum liquefaction radius of
the Songyuan M5.7 earthquake was 3 km.

7 Research significance

The liquefaction structures induced by the Songyuan
M5.7 earthquake provide a good example for studying
modern earthquakes. Liquefaction-related deformation
structures can occur in a variety of sedimentary environ-
ments and can be triggered by a variety of factors (Moretti
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et al. 2016; Shanmugam 2016), of which the identification
of earthquake genesis is a topic of research interest yet re-
mains challenging. Our study provides three-dimensional
spatial parameters for the analysis of palaeoearthquakes
and liquefaction structures (Tuttle 2001), which makes up
for the shortcomings of experimental simulation (Nichols
et al. 1994; Owen 1996; Moretti et al. 1999; Ross et al.
2011; Tian et al. 2014). Liquefaction structures are also
important in restoring earthquake magnitude.

Songyuan is located in a seismically active zone, and fre-
quent earthquakes have brought serious disasters to local
agriculture and hydrocarbon exploration and production
activities. Research on earthquake liquefaction structures
can predict disaster-prone areas and influencing areas and
thus can guide local industrial and agricultural production,
construction and oil field exploration and production dy-
namic monitoring.

Songyuan is located at the hinterland of the Songliao
Basin. Frequent earthquakes reveal active tectonic move-
ments in the surrounding areas. This study is helpful in
determining the rules of regional tectonic stress field
and fault activity, and providing basic data for basin evo-
lution and plate activity research.

8 Conclusions

1) The Songyuan M5.7 earthquake resulted in various
liquefaction structures. The most common type is
sand volcano, including sand volcano with a crater,
sand volcano without a crater, water volcano (no
sand), sand mounds, sand dikes and sand sills. Some
liquefaction-related structures, such as load struc-
ture, flame structure, deformation bedding, slump
fold, sandstone pillar, convolute bedding, dish struc-
ture and water-escape structure, are also induced
by earthquakes but occur relatively infrequently.

2) The formation of liquefied sand volcanoes includes
three stages respectively as excessive pore-water
pressure building up in the liquefied sand layer,
rupture of the overlying low-permeable layer, and
eruption of water and sand. The vertical distribu-
tion of liquefaction structures can be divided into
four zones from bottom to top, i.e., the thoroughly
liquefied zone, the lower liquefied zone with SSDS,
the upper liquefied zone with SSDS, and the ground
surface liquefied zone. The distribution of liquefied
sand volcanoes is zonal, mainly extending in the
direction of N-S, followed by NW-SE. The under-
ground liquefaction structures are mainly sand
dikes, sand sills and others.

3) In addition, 2-5-m-deep groundwater table, 1.35—
1.5-m-thick low-permeable clay, and more than 20-
m-thick unconsolidated clean fine sand are favor-
able conditions for the formation of extensive
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liquefaction structures induced by the Songyuan
MB5.7 earthquake. The liquefied sand was more than
2 m thick, and liquefied sand volcanoes can be seen
within the range of epicenter distance of 3km on
the surface.

4) One NE35° trench-type normal fault developed on
the ground surface after the Songyuan M5.7 earth-
quake, accompanied by a widely distributed 0°-~180°
extensional fracture and two groups of tracking ten-
sile fractures (0°-180° and 80°-260°). The direction
of the maximum main compressive stress in the
Songyuan area was 40°-220°, and the direction of
the minimum main tensile stress is 130°~310°. The
Fuyu/Songyuan-Zhaodong Fault is likely to be a
seismogenic fault.

5) Research on the Songyuan earthquake-induced li-
quefaction structures provides three-dimensional
spatial parameters for study on palaeoearthquakes
and liquefaction structures, provides directions for
prediction of modern earthquake and disaster-
prone areas, and provides a foundation for regional
structural research.
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