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Abstract

Populations of animals comprise many individuals, interacting in multiple contexts, and displaying

heterogeneous behaviors. The interactions among individuals can often create population dynam-

ics that are fundamentally deterministic yet display unpredictable dynamics. Animal populations

can, therefore, be thought of as complex systems. Complex systems display properties such as

nonlinearity and uncertainty and show emergent properties that cannot be explained by a simple

sum of the interacting components. Any system where entities compete, cooperate, or interfere

with one another may possess such qualities, making animal populations similar on many levels to

complex systems. Some fields are already embracing elements of complexity to help understand

the dynamics of animal populations, but a wider application of complexity science in ecology and

evolution has not occurred. We review here how approaches from complexity science could be

applied to the study of the interactions and behavior of individuals within animal populations and

highlight how this way of thinking can enhance our understanding of population dynamics in

animals. We focus on 8 key characteristics of complex systems: hierarchy, heterogeneity, self-

organization, openness, adaptation, memory, nonlinearity, and uncertainty. For each topic we dis-

cuss how concepts from complexity theory are applicable in animal populations and emphasize

the unique insights they provide. We finish by outlining outstanding questions or predictions to be

evaluated using behavioral and ecological data. Our goal throughout this article is to familiarize

animal ecologists with the basics of each of these concepts and highlight the new perspectives that

they could bring to variety of subfields.
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Introduction

Animal populations are inherently complex. Animal populations

can change in many ways, exhibiting sudden crashes, startling

growth, or stability (Bjørnstad and Grenfell 2001). Furthermore,

animal populations can be more diverse than would be expected

under directional selection, displaying great diversity in life-history

or behavioral traits. For instance, some individuals may grow faster

or take more risks across different contexts than others, despite

these different individuals experiencing similar environmental condi-

tions (Dall et al. 2004). Some animal populations may further dis-

play “culture” (e.g., Whitehead et al. 2004; Gero et al. 2016) in that

groups of individuals show socially learnt traits that differ from

other groups for reasons separate from environmental differences

and fitness consequences in the different groups (Laland and

Hoppitt 2003). Animal populations therefore regularly show excep-

tionally noisy, even apparently unpredictable, patterns. Apparently

unpredictable systems are however still comprehensible, as such dy-

namics can often be driven by underlying deterministic processes

(e.g., chaos; May 1974; May and Oster 1976). This means that even

“random-appearing” (in the colloquial sense) ecological patterns

may in fact possess a degree of predictability.
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Systems showing difficult to predict patterns underpinned by de-

terministic rules are often described as “complex,” and animal pop-

ulations are not alone in being described in this manner. Complex

systems are a class of system comprising interacting units that are

characterized by nonlinear dynamics (Bradbury and Vehrencamp

2014b). For example, complex systems can possess bifurcation

points, where a simple increase in a single parameter of the system

causes it to shift from one state (e.g., a stable equilibrium) to an-

other, qualitatively different state (e.g., cycles between 2 points;

May and Oster 1976). Complex systems can be comprised of linear

interactions among units that create a nonlinear outcome, nonlinear

interactions among units giving a linear outcome, or nonlinear inter-

actions and a nonlinear outcome (Bradbury and Vehrencamp

2014a). Mathematical, physical, and chemical systems can be

characterized as complex systems. Within biology, interacting neu-

rons, individuals within populations, and species within an ecosys-

tem have all been modeled as complex systems (May 1975; Solé and

Goodwin 2000; Solé and Montoya 2001).

Although complexity theory has been embraced to a small degree

by ecosystem ecologists, the framework may be even more fitting for

application at the level of population biology. When applying com-

plexity science to ecology, the majority of workers (Levin 1998,

2005; Solé and Montoya 2001; Burkett et al. 2005; Proulx 2007;

Filotas et al. 2014; Messier et al. 2015; Dakos and Soler-Toscano

2016) have considered entire ecosystems as complex systems, where

species are involved in a network of trophic interactions. This ap-

proach has provided key insights into ecosystem dynamics and the

stability of communities (Hastings et al. 1993; Levin 1998, 2005;

Solé and Montoya 2001; Burkett et al. 2005; Proulx 2007), such as

how changes in population size can show chaotic dynamics (May

1974, 1975, 1976; May and Oster 1976). Levin (1998) described

complex systems as large networks characterized by sustained diver-

sity of their underlying units as well as some form of autonomous se-

lection acting on these units. Given that selection does not act on

species, this definition seems to more closely match the case where

individual animals represent the most fitting units within a system.

If this is so, then considering populations of interacting individuals

as a focal complex system is likely to be particularly fruitful

(Whitehead 2008; e.g., Pruitt et al. 2018). Despite the expanding in-

fluence of complexity theory within ecology, Bradbury and

Vehrencamp (2014b) observed how many current behavioral ecolo-

gists either were not aware of complex system theory, or never con-

sider incorporating it into their work. Therefore, while many of the

ideas surrounding complex systems may not be entirely new to ecol-

ogy, they may be new to many ecologists. In this review, we hope to

introduce various concepts from complexity theory to animal popu-

lation ecologists and advocate viewing animal populations through

the lens of complexity science (Whitehead 2008; Bradbury and

Vehrencamp 2014b).

This review aims to highlight the insights that can be gained

from viewing animal populations as complex systems, where indi-

vidual animals are the interacting units of interest. We will focus on

the (social) interactions among individuals, in particular, as well as

the differences in behaviors (e.g., in dominance or leadership)

among individuals that characterize animal populations (Frank

2007; Bell et al. 2009), as these properties are essential to the dy-

namics of complex systems. As a framework, we consider the same

8 characteristics of complex systems (hierarchy, heterogeneity, self-

organization, openness, adaptation, memory, uncertainty, and

nonlinearity) adopted by a review on viewing forest ecosystems as

complex systems (Filotas et al. 2014). Focusing on the same

8 characteristics gives a very useful degree of cross-field consistency,

facilitating interactions between forest and animal ecologists. Other

authors give different criteria (e.g., Levin 1998), meaning there is no

one agreed-upon definition of a complex system. We will therefore

not focus on a dichotomy of “can animal populations be viewed as

complex systems or not” or the nuanced difficulty of defining

“complexity” (see also, Poisot and Gravel 2014).

For each of the 8 characteristics, we first outline how it might be

understood in terms of the behaviors of interacting individuals with-

in populations, and second, how insights gained in the study of com-

plex systems could be applied to the ecological and evolutionary

processes occurring in animal populations. A glossary of terms is

provided in Table 1. Third, we close the review by providing a set of

outstanding questions, and in some cases predictions, that can be

tested with ecological data from any number of animal systems.

While the noisiness of ecological systems may sometimes prevent

ecologists from using analytical tools from complexity theory direct-

ly, a rigorous consideration of complexity characteristics promises

to expand our understanding of a variety of ecological processes and

issues. We highlight some of these issues here.

Eight Characteristics

Hierarchy
Hierarchy refers to cases where systems exhibit structural properties

at multiple organizational levels. More specifically, a complex sys-

tem can be arranged in a series of nested groups, where connections

are more frequent within than between neighboring groups, and

that nestedness can extend to multiple levels (Figure 1). Interactions

between the different levels of the hierarchy create a structure that

characterizes the system. Importantly, this property is not necessar-

ily related to the “hierarchies” of dominance familiar to animal ecol-

ogists. For instance, metabolic networks, formed by linking

interacting molecules in cellular processes, are often considered to

be complex systems, and have been shown to possess hierarchical

structure in a range of organisms (Ravasz et al. 2002). Most mole-

cules interact with others in a specific reaction chain, with a few

linking these chains together into larger groups, which are in turn

grouped into larger functional groups (Ravasz et al. 2002). This is

assumed to allow rapid interactions among molecules within the

lowest level of organization, whilst allowing different groups to be

dynamically integrated.

Many animal populations exhibit hierarchical structuring. In

some mammal and bird populations, a hierarchical population

structure has been shown to be quite common (Hegner et al. 1982;

Hill et al. 2008; Wiszniewski et al. 2009; de Silva and Wittemyer

2012). Mothers associate with offspring, and are then often grouped

with related females and with 1 or several related males, which can

then be associated into larger bands or clans (Hill et al. 2008). Of

course, eusocial insect societies are also hierarchically structured,

with workers grouped by task, to promote efficiency (Ratnieks and

Anderson 1999; Anderson and Ratnieks 2000; Fewell 2003). The

rise of social network analysis has led to a rapid increase in the in-

vestigation of different species’ social structures (Krause et al.

2014); however, there remains limited information as to whether

reptiles, fish, or non-eusocial insect or other invertebrate groups

possess such hierarchical population structuring. However, we have

reason to believe such taxa should also exhibit hierarchical structur-

ing because such structuring has been detected whenever and wher-

ever it has been examined, suggesting that hierarchical structuring is

inherent property of animal populations.
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Hierarchical patterns of interactions can emerge from simple

interaction rules. For example, Ravasz and Barabasi (2002) noted

that hierarchically structured networks possess features of real-

world networks such as a high degree of clustering, and a scale-free

degree distribution (see also section “Self-organization”). They

went on to show a model for network growth where each step

involved recreating the existing network 4 times, and connecting

the new nodes to the central node of the original network

(Figure 1), which gave a hierarchical structure and other properties

of real-world networks (Ravasz and Barabasi 2002). The result was

a pattern of hierarchical interactions that emerged with a high de-

gree of parallelism across simulations. Whether the development of

animal interaction networks exhibit a similar repeatability is un-

known, but such models emphasize that relatively simple rules can

result in the seemingly complex characteristics of animal social

groups.

If we are to understand why animal populations are hierarchically

structured, we require simple mechanistic models, such as those out-

lined above, to re-create animal social structures. Random networks,

which can be viewed as a kind of null model, have consistently been

shown to be poor fits to any real-world network (Krause et al. 2014).

Ilany and Akçay (2016) built a relatively simple model for the develop-

ment of social networks, where offspring preferentially associated

with their mother’s social associates. Thanks to a small set of tuning

parameters, they demonstrated that this model could accurately re-

create the structure of several mammal social networks (e.g., their de-

gree of modularity; Ilany and Akçay 2016). Determining whether this

model goes on to produce hierarchically structured populations, with

the same number of levels as those found in nature, would be a logical

next step. Furthermore, the Ilany and Akçay (2016) model requires

mother–offspring contact, otherwise it creates random networks, yet

mother–offspring contact is absent in many species. Clauset et al.

(2008) also provide a simple model that generates networks that are

hierarchically structured, and found that it re-created other properties

of metabolic networks, networks of terrorists, and networks among

different grassland species. This result conveys that simply re-creating

a hierarchical structure can capture many aspects of network

properties. However, Clauset et al.’s model is based on probabilities of

nodes being linked, with no mechanism for how this might arise, and

they did not give interactions among-groups, which is an unrealistic

assumption in animal populations. Therefore, the literature requires

additional simple models for the formation of animal social networks,

which can then be compared with data collected by empiricists. Basing

such models on a mixture of cooperation and conflict among individu-

als should be a good start, as these processes are ubiquitous in

Table 1. Glossary of terms from complexity theory used throughout this review

Term Meaning

Adaptation The ability of a system and its components to change behavior in the face of events such as perturbations

Bifurcation point Where a simple increase in a single parameter of a system causes a qualitatively change in behavior

Chaos System dynamics that, despite being based on deterministic laws, are inherently unpredictable, especially in the long-term

Deterministic A process that is completely predictable, without randomness

Emergence Properties of a system that are more than the sum of the individual components, and are often difficult to predict in advance

Fractal A pattern apparent in a system that does not change depending on the scale the system is viewed at

Heterogeneity The units of a system differ in their location, history, behavior, or other properties

Hierarchy The systems possess structural properties at multiple organizational levels, nested within one-another

Hysteresis When a system’s paths between 2 states follow different trajectories depending on its history

Memory A property of a system such that the future states cannot be predicted on the current state alone

Nonlinearity System outputs are disproportionate to system inputs

Openness The system is open to external perturbations, and mass and energy can be transferred in and out of the system

Percolation threshold The point at which the connectedness of a system is so great, any information or change can propagate across the entire system

Scale-free In networks of interactions, when the slope of the relationship between the number of connections per individual and the fre-

quency of that number is a straight line when plotted on log–log axes

Self-organizing Interactions among individual units of the system spontaneously give rise to apparent order and emergent properties at higher

levels of organization, without any top-down or central control

State A property of the system that in some way characterizes it

Stochastic Unpredictable, genuinely random

Uncertainty Aspects of system state or behavior that are difficult to predict

Figure 1. A hierarchically structured network, where each of the nodes is

embedded within a local network of 5 (i.e., the 5 local square-shaped net-

works), as well as a wider network connecting these smaller local networks.

Note how all nodes are linked to the central node, hence this is an example of

a network produced by a model similar to that of Ravasz and Barabási (2003).

Source: Rudolf.rajczi via Wikimedia Commons, accessed 24 April 2019.
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populations and represent the facilitation and interference that are

often key to the dynamics of complex systems (Newman 2009). Once

we have determined how general hierarchical structuring of animal

groups is and what the rules are that could lead to it, we can move on

to considering the functional consequences of this group structure.

Hierarchical group-structuring has the potential to create condi-

tions for multilevel selection. Multilevel selection occurs when indi-

viduals interact more closely with some individuals than others,

forming group or aggregations, and traits of these groups or aggre-

gations influence the fitness of individuals within them (Goodnight

et al. 1992). For example, the brooding behavior of a pair

(Björklund and Gustafsson 2013) or the level of aggression of a

whole social group (Eldakar et al. 2010; Pruitt and Goodnight

2014) can influence an individual’s fitness. Multilevel selection can

have profound impacts on the direction and rate of evolutionary

change (Queller 1992; Goodnight et al. 1992; Bijma et al. 2007;

Bijma and Wade 2008; Fisher and Pruitt 2019). Hierarchical group

structure creates many levels for multilevel selection to act on. Thus,

understanding whether animal groups generally tend to become

hierarchically structured is fundamental to our understanding of

how they are likely to respond to selection (Fisher and McAdam

2017). If multilevel selection influences social interactions in a man-

ner that favors hierarchically structured networks, it may then select

for its own presence; a curious possibility that deserves

investigation.

Heterogeneity
Complex systems can be made up of interacting components which

are heterogeneous, in that they differ in their behavior, location, his-

tory, or other properties. Such heterogeneity, in turn, can have far-

reaching impacts on the functioning of the system. For example, dif-

ferent species within an ecosystem will have been in the ecosystem

for different lengths of time, possess different functional traits, and

occupy different niches. These functional differences can knit to-

gether across the community to create complex dynamics (Levin

1998, 2005; Williams and Martinez 2000; Solé and Montoya 2001;

Proulx 2007; Montoya et al. 2009).

When the animal population is the complex system, these inter-

acting components are the individual animals, and so the heterogen-

eity is within- or among individuals. Within-population differences

in reproductive or life history strategies, roles as a leader or a follow-

er, positions in dominance hierarchies, and of course differences in

individual fitness have long been considered more than just “noise”

around a population mean (Beekman and Jordan 2017).

Furthermore, greater interest has been burgeoning recently in inte-

grating this study of within- and among-individual differences across

contexts. Animal “personality” (i.e., consistent differences in

behavior among individuals over time and contexts; Wilson 1998;

Koolhaas et al. 1999; Dall et al. 2004; Sih et al. 2004), is now con-

sidered to be widely distributed (Bell et al. 2009), and related to

various ecological and evolutionary processes (Wolf and Weissing

2012). Understanding and accounting for this heterogeneity is neces-

sary, as the dynamics of populations can change depending on

whether among-individual differences are present or not (Coulson

et al. 2001; Benton et al. 2006; Sih et al. 2012; Gangloff et al. 2018;

Hamel et al. 2018a, 2018b, 2018c; Jouvet et al. 2018; Smallegange

et al. 2018; Vedder and Bouwhuis 2018).

The patterns of heterogeneity we see in nature can often arise

from nonlinear processes such as feedback through interactions

(Bradbury and Vehrencamp 2014a, 2014b). For instance, stable lin-

ear dominance hierarchies are ubiquitous in nature, yet the

probability of a linear structure emerging purely by chance is low

(Chase et al. 2002). Chase et al. (2002) found that in cichlid fish, al-

though pre-existing differences among individuals contributed to

position in a dominance hierarchy, social interactions reinforcing

position and accentuating among-individual differences were funda-

mental to their formation (see also, Lindquist and Chase 2009).

Likewise, the task specialization among individuals demonstrated

by many social arthropod colonies (Ratnieks and Anderson 1999;

Anderson and Ratnieks 2000) may arise from reinforcing feedback

during the learning process, which can improve efficiency at 1 task

while reducing it for another (Chittka and Muller 2009).

Reinforcement of behavior is also thought to contribute to reduce

within-individual variation, which then magnifies among-individual

differences (Roberts and Del Vecchio 2000). At the community

level, the evolution of differentiation among-species is thought to be

increased by closer interaction amongst those species (Agrawal

2001; Martin et al. 2010; Grossenbacher and Whittall 2011;

Laaksonen et al. 2015), and there is some evidence that this applies

to changes among individuals as well (Laskowski and Pruitt 2014;

Laskowski et al. 2016). The heterogeneity shown in animal popula-

tions may, therefore, depend on feedback among interacting units,

which is common to complex systems.

In the particular case of animal personality, there are currently a

multitude of different models for the evolution and maintenance of

among-individual differences in behavior (Dingemanse and Wolf

2010; Sih et al. 2015). Some of these rely on interactions between

individuals (e.g., Bergmüller and Taborsky 2010; Montiglio et al.

2013), whereas others do not. A general assessment of which class

of models better fits existing data on behavioral variation within

populations is vital. What would also be useful is if models for these

processes could make their assumptions and predictions in units that

empiricists typically measure. For instance, if a particular model

leads to among-individual differences in behavior, or requires a cer-

tain degree of among-individual differences in more stable traits

such as life-history strategy, then the expected or required differen-

ces among individuals should be expressed as a repeatability score

(intra-class correlation coefficient; Nakagawa and Schielzeth 2010),

allowing existing data sets to be compared with the model’s

predictions.

In terms of social interactions, heterogeneity in the frequency,

strength, and type of social interaction is common in animal popula-

tions. Animal social networks commonly show a skewed distribu-

tion in the number of unique connections an individual possesses (its

“degree”), such that a few individuals have a great number of con-

nections, whereas most individuals have only a few (Lusseau 2003;

Kasper and Voelkl 2009; Pinter-Wollman 2011). This pattern is

commonly seen in other classes of real-world networks, such as the

Internet, and can stem from a network-growth model, where new

individuals preferentially associate with already-influential individu-

als (Barabási and Albert 1999; see also the model of Ravasz and

Barabási 2003, introduced above). Such a model could appear ap-

propriate for animal populations, with immigrants tending to prefer-

entially associate with the most well-connected and influential

group members when arriving. Ilany et al. (2015) demonstrated that

spotted hyenas Crocuta crocuta preferentially associate with the

most well-connected individuals, and Ilany and Akçay (2016, see

above) demonstrated that a type of preferential attachment model

can create networks that possess structures similar to those observed

in many mammal populations. Unfortunately, temporal analysis of

animal social networks is relatively rare (Pinter-Wollman et al.

2013), and so we lack the data needed to assess whether this model
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of group joining is realistic. There are other types of network growth

models (e.g., Krapivsky and Redner 2005; Fortunato et al. 2006),

which might differ in their resemblance to animal networks.

Assessing whether these models are good fits to the patterns of het-

erogeneous social interaction patterns observed within animal popu-

lations remains a question worth investigating.

Self-organization
Self-organization is a property of many kinds of systems, both living

and non-living, including animal populations. If a system is self-

organized, then interactions between individual units of the system

(at the lowest level of the hierarchy) combine to give emergent prop-

erties at higher levels of organization. Emergence is defined as coher-

ent patterns that are more than the sum of the individual

components. For example, consider a stream of sand particles falling

onto a flat surface. Over time these particles will build up on their

own to create a pile of sand. The pile of sand was self-organized in

that there was no top-down control to build upwards, just individ-

ual sand particles interacting with each other to form a structure

(Bak et al. 1987, 1988; Creutz 2004). Such systems typically contain

fractal patterns, which are patterns that are similar at whatever scale

the data are viewed (Mandelbrot 1967). For instance, after a time

the sand pile may partially collapse. The size of these collapses will

be distributed according to a power-law, where the frequency of the

events is proportional to their size raised to an exponent. When the

frequency of the collapses is plotted against their size on log-log

axes, a single straight line fits the data across its entire range; a pat-

tern consistent at all scales. Fractal patterns occur when the expo-

nent is negative but not necessarily an integer. Fractals are

commonly associated with complex systems (Bradbury and

Vehrencamp 2014b), and are intimately linked to the self-organizing

principles that form them.

Within ecological networks, simple interaction rules are thought

to give rise to complex structure (Williams and Martinez 2000).

Within animal populations, for example, Sumpter (2006) identifies

several aspects of animal collective action that can be explained

through self-organizational phenomena. Migrations of fish, aggrega-

tions of cockroaches, and ant pheromone trails can be described in

terms of individuals following simple rules (Sumpter 2006). Other

aspects of ant and presumably other eusocial insect ecology, such as

the construction of nests, may also be based on simple individual

rules that nevertheless result in patterned and apparently complex

end products (Bonabeau et al. 1997; Buhl et al. 2004; Annagiri et al.

2017).

Given that we are happy to invoke ideas of self-organization

when studying these large, collectively moving and acting groups,

the question becomes whether we can apply these ideas to our

understanding of other kinds of animals. Detecting fractal patterns

in animal populations may go some way to demonstrating that self-

organization is at work, because, as outlined above, fractal patterns

are typically associated with systems driven by self-organizing prin-

ciples. For instance, there is considerable interest in whether social

networks follow a fractal or “scale-free” pattern in the distribution

of the degree of each individual. For this to be true, the slope of the

relationship between the frequency of a given degree and the number

of those connections should be invariant to the scale when plotted

on log–log axes (i.e., it should follow a straight line). Lusseau

(2003) concluded that bottlenose dolphin Tursiops spp. social net-

works possess scale-free properties only at high degree values (�7).

Manno (2008) found that ground squirrel Spermophilus columbia-

nus networks showed a scale-free distribution over the entire range

of degrees. However, various Macaque networks have been shown

to be more random than fractal/scale-free, with a linear rather than

power-law distribution (Sueur et al. 2011). In general, strong evi-

dence for fractal/scale-free properties in animal social networks will

be problematic, as degrees across many orders of magnitude are

required to determine if a fractal/scale free pattern is present (Avnir

et al. 1998). This is something that is absent from nearly all animal

social networks, as they tend to be limited to a few hundred individ-

uals at most. Both Clauset et al. (2009) and Fox Keller (2005) raised

a number of further issues with the search for scale-free networks,

including that many different network structures can have scale-free

relationships: the tail of power-law distributions tend to fluctuate

greatly, and many different processes can lead to these structures. A

scale-free degree distribution may therefore not be a critical metric

for detecting self-organization.

For animal populations to be self-organized, one would expect

the structure to be consistent whenever it is re-created, assuming

there had been no changes in the environment or in the rules govern-

ing the interactions. For example, Shizuka et al. (2014) found that a

population of golden-crowned sparrows Zonotrichia atricapilla re-

form the same 3 communities every winter in California after sum-

mering in Alaska, despite large turnover of individuals. In addition,

field cricket Gryllus campestris networks have also been shown to

have the same general structures across non-overlapping generations

(Fisher et al. 2016). As individual animals presumably have some

control of their actions, self-organization into the population struc-

ture typical of any given species is probably assumed to be the norm,

rather than social structures emerging because of constraining exter-

nal conditions or central or top-down control.

Many animals do not possess obvious “group” structure, but still

live in aggregations governed by social interactions (e.g., territorial

animals). To what degree to such populations structure themselves

via self-organization? Because territory boundaries are determined

by internal forces such as competition, which may be independent of

or interact with external forces, the structuring of territories would

appear to be a type of self-organization. However, since these forces

are antagonistic rather than cooperative, the rules for the formation

of such aggregations compared to the formation of more coopera-

tive animal groups may well be different. Quantifying how self-

organization and external forces jointly contribute (i.e., the mecha-

nisms and relative importance of each) to the structure of a wide

range of animal populations will allow us to evaluate the import-

ance of self-organization as a general force, and when its importance

varies. The most straightforward test would be to reset populations

multiple times in order to determine the consistency with which

populations converge on similar structures again and again (e.g.,

Formica et al. 2016). This could be accomplished in controlled la-

boratory studies or leveraging “natural experiments” of various

kinds (e.g., seasonal migration; Shizuka et al. 2014).

Additional properties of populations indicate that their struc-

tures are likely to be self-organized. Perry (1995) noted that ecosys-

tems are often 1) organized by positive feedback processes, 2) reside

far from equilibrium, and 3) are thermodynamically open (where

the transfer of matter, as well as energy, between the system and its

surroundings is possible). Such characteristics are typically found in

systems regulated by self-organization, although they are not entire-

ly sufficient to identify a system as self-organizing (Perry 1995).

Positive feedback processes have many influences on animal popula-

tions too, such as aggregations at mating sites and reciprocal helping

behavior, however negative feedback processes are also prominent

(e.g., Sinervo and Lively 1996). Whether or not populations are
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typically at equilibrium or not it is debated, in part, because equili-

bria can exhibit a variety of properties (e.g., stable vs. unstable;

Cuddington 2001). Finally, whether populations can be defined as

thermodynamically open remains to be assessed. Birth and death

processes are deemed here to be internal processes within the popu-

lation, however immigration and emigration of individuals in and

out of the population are deemed to be a kind of “openness” by our

definition, because individuals move in and out of the focal system.

We discuss this further in the next section.

Openness
Energy, information, and disturbances can alter complex systems

from beyond the system boundaries. This in contrast to closed sys-

tems, where there are no external inputs. Ecosystems, networks of

neurones, electrical networks such as the Internet and weather sys-

tems are all influenced by external inputs, for example, climatic vari-

ation, sensory inputs, human entered commands and energy from

the sun respectively. Animal populations too exhibit a high degree

of openness, but their degree of openness may vary situationally or

across species.

Animal populations are clearly influenced by external factors

that emerge from processes occurring beyond the focal system (i.e.,

the population), such as varied environmental conditions, natural

predation from other species, and anthropogenic pressures like hunt-

ing, and there is no shortage of interest in such topics. For instance,

understanding savanna ecosystems requires data on climatic vari-

ation and frequency of fires; they cannot be understood without

these external factors (Bodini and Clerici 2016). Although some

questions exist about how to define the boundary of an animal

population, there appears little doubt that animal populations are

open. Openness may actually be necessary to avoid population col-

lapse, as openness permits the release of energy and the movement

of individuals, helping to stabilize the system (e.g., via rescue effects;

Green and Sadedin 2005). As outlined above, whether animal popu-

lations can be thought of as specifically thermodynamically open

may contribute to our understanding of the process that organize

them. In particular, openness means that in order to understand the

dynamics of a focal system, one must simultaneously consider the

inputs from forces beyond the system’s “boundaries.” While many

ecologists might convey that this is intuitively all obvious, the obser-

vation indicates that the thematic forces governing animal popula-

tions bear much resemblance to the phenomena explored by

scientists ranging from neuroscientists to astrophysicists.

Complexity theory therefore provides a common language for com-

munication between ecology and these fields.

Memory
Information about the past may be retained in a complex system,

which can influence how the complex system behaves in the future.

This is often referred to as system’s “memory.” For example, the

first pioneer species that colonizes an area can modify the habitat

and influence later successional species in forests (Filotas et al. 2014;

Messier et al. 2015). This “ecological memory” can also stem from

seed banks, eggs in diapause, or the presence of unusual species

within a community due to historical quirks (Anand et al. 2010).

The presence of memory in the interacting units of a system can be

fundamental for the formation of observed ecological patterns (e.g.,

spatial clumping of organisms; Hendry and McGlade 1995).

The term “hysteresis” is typically used for systems that show dy-

namics with an aspect of memory and conveys that a system’s ten-

dency to pass between states depends highly on its history.

Hysteresis is of interest to ecologists because it shows that the future

state of the system depends on its past states, rather than solely on

the current state (Figure 2). This commonly means that there exist

(at least) 2 values of a response variable for a given input variable.

An example of this would by the classic lynx–snowshoe hare cycles

in the boreal forests of Canada. For a given number of snowshoe

hares there are theoretically 2 likely numbers of lynx: a small num-

ber if the population has recently crashed and is on the increase, or a

larger number if the population was at a peak and is now declining

(Boutin et al. 1995). Predicting the number of lynx, therefore, is not

possible based solely on the number of hares. Predictability based

solely on the current state is an explicit assumption of Markov chain

models (Brooks et al. 2011). Yet, if hysteresis, and thus system mem-

ory, is common in animal populations, Markov chains approaches

may not be effective. Hysteresis can also be seen if a system is per-

turbed and then the perturbation is removed. Hysteresis is evidenced

if the trajectory of the system from the original state to the perturbed

state follows a different state path to that of the return from the per-

turbed state to the original one (Figure 2; Beisner et al. 2003). This

too indicates that, for the same values of a set of parameters, there

exist multiple possible states where the system may reside.

The presence of hysteresis can limit a system’s ability to return to

past, stable states (Beisner et al. 2003; Folke et al. 2004), which

raises concerns for conservation and remediation efforts. Blonder

et al. (2017) developed a multi-species model for community dy-

namics that possessed hysteresis for certain parameter values. They

used this to model the matching of species niches to available envir-

onmental niches. They demonstrated that unstable communities

may not return to past states at all, even when modeled environmen-

tal variables return to previous values (Blonder et al. 2017).

Hysteresis can also occur at the level of individuals in the case of

phenotypic plasticity. If organisms possess plastic traits, then we

might expect them to alter their traits to best match the current en-

vironment. However, it is plausible that hysteresis may be present in

these trait-environment relationships, so that how animals change

their behavior along an increasing environmental gradient may not

mirror how the behavior changes along a symmetrical but decreas-

ing environmental gradient. For instance, it could be expected that

Figure 2. A system showing memory or hysteresis. For a range of x-values,

2 possible y-values exist, which value the system takes depends on the previ-

ous values; for example, the direction the system has approached the current

point. Therefore, knowledge of the current state alone is not sufficient to pre-

dict the future state. Source: http://www.enterpriseintegrationpatterns.com/

ramblings/06_hysteresis.html, accessed 24 April 2019.
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cooperative breeding would be more common in harsher or more

variable environmental conditions (Covas et al. 2004; Jetz et al.

2011). However, hysteresis would mean that the observed preva-

lence of the strategies depends on whether conditions are harsh and

are becoming more benign (in which case cooperative breeding strat-

egies might maintain dominance) or were benign and have become

harsh (in which case individual-breeding strategies might be more

common). Couzin et al. (2002)’s model for group-movement indeed

demonstrated something of this sort, where changes in movement

types along a gradient of changing model parameters are not sym-

metrical. Whether hysteresis exists in trait–environment relation-

ships is completely unexplored in animal populations, but should

prove an interesting avenue for future research. Pruitt et al. (2018)

recently argued that hysteresis may well be present in many animal

social groups, and provide a detailed example of hysteresis in group

infighting in response to heating and cooling cycles in social spiders

(Doering et al. 2018). Much more work is needed, however, to de-

termine how common hysteresis truly is within animal populations

and the population structures and species traits that reduce or mag-

nify these system characteristics.

Phylogenetic inertia and parental effects are other forces through

which past states can influence future system behavior. In phylogen-

etic inertia, traits that a species possess may principally depend on

the fact that their ancestors possessed them, rather than contempor-

ary selection pressures (Blomberg and Garland 2002). For example,

the pharyngeal slits and post-anal tail in primate fetuses are not

related to contemporary function but exist as they are present in all

chordates. Therefore, considering a species’ evolutionary history is

often important for understanding why contemporary traits appear

as they are. Knowledge of the evolutionary history of a species can

furthermore be important when predicting the response of popula-

tions to selection, as demonstrated in experimental cultures of bac-

teria (Travisano et al. 1995; Blount et al. 2008). This could be of

particular importance as global climates change. Sih et al. (2011)

noted that aspects of animals’ evolutionary histories, such as the

variability of their ancestral environments, will likely influence a

population’s response to environmental change.

Parental effects bring about memory effects because they alter

populations’ expected response to selection depending on the mean

trait value and selection strength on the current and previous gener-

ation (Kirkpatrick and Lande 1989). Parental effects are defined as

influences that a parent (typically the mother) has on the traits of

the offspring, beyond direct genetic inheritance. These parental

effects exist in many forms: for instance, the rate at which a mother

feeds her offspring may influence their growth rate. Such effects are

expected to be common when any kind of parental care occurs

(Mousseau and Fox 1998), and indeed have been shown in a range

of wild and captive animal populations (McAdam and Boutin 2004;

McAdam et al. 2014). Therefore, animal populations regularly

show a response to selection that depends on traits and selection

pressures in the previous generation, which is a form of memory.

Fisher et al. (2019) showed that a red squirrel’s (Tamiasciurus hud-

sonicus) food cache, date of spring breeding, and even life time re-

productive success are influenced by the sex and lifespan of the

previous territory occupants, relatives or otherwise. This conveys

that extended phenotypes can facilitate indirect effects between

individuals. If such changes to the environment are at least semi-

permanent, then they too can produce memory effects with the

potential to alter population dynamics. For instance, robust caches

created by prior generations may buffer current generations from

short-term fluctuations in resource availability. Furthermore, red

squirrel caches influence the abundance of other species (Posthumus

et al. 2015). Therefore, memory effects in a system can have import-

ant within- and across-species impacts.

Nonlinearity
A key aspect of complex systems is that changes often show nonlin-

ear trends, so that outputs from the system are disproportionate to

inputs (see also, “non-monotonicity,” reviewed in: Zhang et al.

2015). For example, if trees in a regular grid catch fire if their

neighbor is burning, then the total number of trees burnt across dif-

ferent starting densities of trees shows a clear departure from linear-

ity (Bak et al. 1990; Chen et al. 1990; Drossel and Schwabl 1992;

Clar et al. 1996). At low densities, increasing density does not result

in many more trees burnt. However, there is a critical window

where increasing the density causes the fraction of burnt trees to in-

crease rapidly, before reaching a plateau for high densities, where

most trees tend to be burnt regardless of the starting density. This is

an example of a percolation threshold, a point above which a

change can propagate throughout the entire group, and below which

it cannot. Such critical thresholds are a hallmark of complex sys-

tems. Critical thresholds in complex systems can also exist as bifur-

cation points, where smooth changes in the parameters of a system

(e.g., intrinsic growth rate) can lead to sudden, qualitative shifts in

the system behavior (e.g., shifts from stable to unstable cycles; May

and Oster 1976; Dennis et al. 1997). Therefore, nonlinearities can

result from changes in internal parameters as well as environmental

parameters (Pruitt et al. 2018).

Population biologists have long studied nonlinear dynamics in

animals. Growth curves of populations, captured by the differential

equations of Verhulst (1838, 1845), are a classic example. As each

individual in the population contributes to population growth

through reproduction, the larger the population becomes the faster

the growth rate it exhibits, which begets exponential growth.

Assuming that, as the population nears its carrying capacity growth

rate is reduced, and that either reproduction is synchronized or

counts are taken once a generation, different intrinsic growth rates

produce different population dynamics. Populations can show stable

equilibria, stable cycles around 2 or 4 point attractors, or chaotic dy-

namics restricted within the limits of the system (see Figure 1.2, p. 7

of Solé and Goodwin 2000). Such bifurcation points have been dem-

onstrated in laboratory cultures of flour beetles (Tribolium sp.), by

experimentally altering adult mortality rates (Dennis et al. 1997).

Doing this caused shifts between equilibrium, periodic cycles and

aperiodic cycles (Dennis et al. 1997); qualitative changes in system

behavior. Therefore, not only is the growth itself nonlinear, but

changing a single parameter in the system gives qualitatively differ-

ent population dynamics, that is, its effect is nonlinear.

Nonlinearities such as percolation thresholds have been observed

in animal populations too (termed “social tipping points” by Pruitt

et al. 2018). Manipulations to networks via simulation or targeted

removals are one means of testing for nonlinear responses in global

network properties (e.g., information transfer). This question has

been directly investigated in both mammals and social insects.

Williams and Lusseau (2006), Manno (2008), Naug (2009), and

Chaverri (2010) have all simulated the random removal of a small

number of individuals from their real-word animal networks and

found that this did not influence the connectedness of the entire net-

work, which is analogous to the forest fire model, where at high

densities changing the starting density still leads to all trees catching

fire. Both Williams and Lusseau (2006) and Manno (2008) went on

to show that targeting well-connected individuals much more
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quickly led to fragmentation of the network into small clusters. In a

real population, Flack et al. (2006) demonstrated that the actual re-

moval of keystone pigtailed macaques Macaca nemestrina

destabilizes the entire group, leading to more isolated clusters of

individuals. Indeed, when considering networks, and “small-world”

networks (networks defined by a higher degree of clustering and

short path lengths compared with random networks) in particular,

selective removal of well-connected or pivotal individuals within a

network generally has significant impacts on its global structure

(Albert et al. 2000; Albert and Barabási 2002). Therefore, any func-

tion linked to the cohesiveness of a group of interacting individuals

may show some form of percolation threshold during the loss or

gain of individuals (see: Pruitt et al. 2018 for a review) particularly

if those individuals assume keystone roles (Modlmeier et al. 2014).

Thresholds are also apparent in the behavior of individual ani-

mals. Animals can show nonlinear responses to various factors such

as in habitat use when responding to human-induced disturbances

(Frair et al. 2008; Beyer et al. 2013), whereas predators can show

nonlinear responses to prey availability when making foraging deci-

sions (Hines et al. 1997). Thresholds can also be observed in mating

behavior, for instance when females sometimes accept a male when

his “quality” is above a certain level (Thornhill 1976; Moore and

Moore 1988), indicating that a male’s phenotype has a nonlinear ef-

fect on his mating success. Finally, and as suggested by the above re-

search on social networks, collective decision-making, can also

show “quorum” responses, whereby all individuals rapidly “agree”

on a decision once a large enough number of other individuals have

made it (Seeley and Visscher 2003, 2004; Ame et al. 2004; reviewed

in: Sumpter and Pratt 2009). In some fields, there is therefore a

strong appreciation of nonlinear processes in animals. However,

these fields are often biased toward studies of highly social organ-

isms and thus the generality of such properties remains largely

unknown.

For further integration of this aspect of complexity into the study

of animal populations, we advocate that researchers in disciplines

where relationships are typically assumed to be linear consider non-

linear relationships. For instance, when estimating selection coeffi-

cients, a linear model is typically used to estimate the additive

contribution of different traits to proxies for an individual’s fitness

(e.g., lifetime reproductive success; Lande and Arnold 1983). This

may not be reasonable in all situations. For example, it may be that

a trait linked to some aspect of “quality” (e.g., body condition) is

assumed to positively influence fitness, whereas lifespan is also posi-

tively associated with fitness (e.g., Hoogland and Brown 2016).

Therefore, a simple additive combination of these 2 traits may be in-

sufficient to predict fitness, as presumably the quality-linked trait

counts for every breeding season, or every day of adulthood (de-

pending on the species) that the organism is alive. This therefore

suggests a multiplicative effect of lifespan and quality-linked traits

on fitness (fitness ¼ trait � lifespan), rather than an additive effect

(fitness ¼ trait þ lifespan). Yet, the latter is what is represented in a

linear model unless an interaction between the trait and lifespan is

explicitly fitted. Fitness in wild organisms is nearly always highly

skewed, in both group-living and solitary species (Keller and Reeve

1994; Clutton-Brock et al. 1997; Engh 2002; Frentiu and

Chenoweth 2008; Ryder et al. 2009; Rodrı́guez-Mu~noz et al. 2010;

Thompson et al. 2011). This suggests a nonlinear function leading

to fitness, hence associated models of selection should consider non-

linear relationships (see also “aster” models; Shaw et al. 2008; Shaw

and Shaw 2014).

Adaptation
Adaptation refers to changes in the behavior of a complex system in

response to changes in outside influence. Beisner et al. (2003) discuss

how ecosystems can be moved to alternate stable states (e.g., sta-

tionary vs. cycling population sizes) through either changes in the in-

ternal variables of the system (e.g., the reproductive rate of

individuals; May 1975), or to changes in the external parameters

(e.g., the nutrient level of a lake; Scheffer et al. 1993). The latter

case gives us the possibility to see adaptation, if the changes in exter-

nal parameters cause a shift in system state that nevertheless does

not drive the system to extinction. This is related to but a separate

concept from a system’s resilience, which is its ability to stay in the

same state despite perturbations (Beisner et al. 2003), which could

be enhanced by the system’s ability to adapt in the complexity sense.

In animal populations, many authors have considered how per-

turbations, both human induced or otherwise, lead to the changes in

animal population structure. Note that evolutionary change in ani-

mal populations (what is often thought of when the word

“adaptation” is used) to not be a form of adaptation in the sense of

a complex system, as it involves the replacement of individual units

in a system. Adaptation in this context instead considers cases where

the population exhibits change in labile traits in response to altera-

tions to the environmental conditions in which it operates.

Factors external to an animal population that can be subject to

change include environmental conditions and the composition of the

ecosystem community in which that species resides. In the case of

environmental conditions, human-induced climate change is pro-

jected to lead to widespread extinctions in marine fish and inverte-

brates (Cheung et al. 2009), mammals (McDonald and Brown 1992;

Cardillo et al. 2005), and birds (Jetz et al. 2007) and is already

linked to dramatic extinctions in amphibians (Stuart et al. 2004;

Pounds et al. 2006). This environmental change is also expected to

be accompanied by change in species distributions (Easterling et al.

2000; Hughes 2000; McCarty 2001; Parmesan and Yohe 2003;

Robinet and Roques 2010; Schloss et al. 2012), which will result in

changes to community composition, species interactions, and bio-

diversity (Vitousek 1994; Vitousek et al. 1997). Such intense selec-

tion pressure is expected to lead to behavioral change in animals

(Tuomainen and Candolin 2010; Sih et al. 2011), which would be

an “adaptation” in the sense that the system is acting differently as a

result of external changes. However, extinctions imply that animal

populations sometimes fail to adapt to external changes. Pushing

any living system far outside of its usual operating window risks en-

danger it. However, even if the population does not go extinct, they

may enter alternative states from which they resist return (they have

entered alternate “basins of attraction,” e.g., Folke et al. 2004).

Ultimately, the evidence for extinctions in the face of external

change is myriad, but examples of animal populations adapting their

structure or function to external change are required to demonstrate

adaptation.

Behavior is well known to be plastic, and hence we will not dis-

cuss evidence for that here. Instead, we focus more narrowly on how

animal social structures respond to change in external conditions.

Spotted hyena C. crocuta social networks, for instance, respond to

reduced rainfall by being denser (more of the total possible connec-

tions are present), presumably as their prey are more tightly clus-

tered, but return to normal density when rainfall increases (Ilany

et al. 2015). Forked fungus beetle Bolitotherus cornutus possess so-

cial networks that gradually change over time, unless they are dis-

turbed by placing all individuals in temporary isolation (Formica

et al. 2016). This perturbation appears to move the system back to

8 Current Zoology, 2020, Vol. 66, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/article-abstract/66/1/1/5477426 by U

niversity of Aberdeen user on 18 M
arch 2020

Deleted Text: destabilises
Deleted Text: to
Deleted Text: behaviour
Deleted Text: -
Deleted Text: while
Deleted Text: -
Deleted Text: behaviour
Deleted Text: -
Deleted Text: -
Deleted Text: s
Deleted Text: -
Deleted Text: while
Deleted Text: two 
Deleted Text: x
Deleted Text: -
Deleted Text: -
Deleted Text: behaviour
Deleted Text: behavioural
Deleted Text: ,
Deleted Text: Behaviour
Deleted Text: thus, 


its original state, thus “resetting” the social process, after which the

beetles re-start the dynamic process they were previously engaged in

(Formica et al. 2016). Leu et al. (2016) observed that sleepy lizard

Tiliqua rugosa social networks were more stable and denser when

barriers were inserted into their environment, although other pat-

terns (e.g., the skewed interaction strengths) were unaffected. In

fish, conflicting results exist, with no influence of habitat complexity

on network structure found in some cases (Edenbrow et al. 2011),

but less open environments leading to denser networks in others

(Webster et al. 2013). Sloman et al. (2001, 2002) found that steady

water flow facilitates the emergence of stable, linear dominance

hierarchies in brown trout Salmo trutta that benefit the most domin-

ant individuals. However, if drought or spate conditions are re-

created, the stable hierarchies break down, and previously dominant

fish no longer gain the same benefits (Sloman et al. 2001, 2002).

This finding suggests that the population structure in terms of the

dominance hierarchy does not exhibit compensatory adaptation that

enables the persistence (resilience) in the face of changing condi-

tions. These results demonstrate that, whereas it is certainly possible

that animal social structures adapt to external changes, whether or

not they will and the direction of any changes may be hard to pre-

dict. Furthermore, some of the above studies have demonstrated

that populations can return to equivalent states (e.g., the perturba-

tions appeared to have transitory effects in the forked fungus beetles

and the hyenas), but not all. A complex system may not necessarily

return to exactly its state before the perturbation, see the section on

“hysteresis” above. Given the frequency of environmental changes,

understanding whether animal populations can continue to function

in the face of these varying perturbations is important. Thus, more

studies are sorely needed to determine the kinds of system traits and

external forces that cause adaptation versus collapse in animal

populations.

Note that we have not discussed some kinds of human-induced

perturbations, such as hunting, that involve directly removing indi-

viduals from the population. Although there are many such exam-

ples (e.g., Coltman et al. 2003; Donnelly et al. 2006; Smith et al.

2013; Elliser and Herzing 2014; Kubitza et al. 2015), these also con-

flate external perturbations with internal changes to the compos-

ition of the system, and so the influence of the “external” force is

hard to separate.

Uncertainty
Complex systems are often characterized by low predictability. This

low predictability can be caused by systems’ sensitivity to initial

conditions or through the difficulty of predicting emergent phenom-

ena. An example of sensitivity to initial conditions are the Lorenz

equations, which comprise a set of 3 differential equations that pro-

duce a chaotic, non-periodic, but highly deterministic system mov-

ing through 3-dimensional state-space (Figure 3). The result is that,

although the rules governing the state trajectories of the system are

entirely deterministic, even very small measurement error in the sys-

tem’s initial conditions (which, in the real world, always occurs),

cause predicting the long-term behavior of the system to be impos-

sible (Lorenz 1963).

If uncertainty were not present in animal populations, ecology

would not need to persist long as a discipline. Given that the science

of ecology is alive and well, there exists much uncertainty about the

dynamics of myriad ecological systems (Boyce 1992), including

population responses to stress (Schindler and Hilborn 2015).

Having discussed emergent phenomena in terms of percolation

thresholds and bifurcation point above, we will examine ideas sur-

rounding sensitivity to initial conditions in this section.

Animal populations are often governed by multiplicative proc-

esses, so that small variations in input variables can have a large in-

fluence on subsequent system trajectories and end points (Boyce

1992). This sensitivity to initial conditions is a hallmark of chaotic

dynamics. Considering fluctuations in population size, Lotka–

Volterra models with only 1 species are unlikely to be chaotic

(Hassell et al. 1976), but models with 3 or more species often show

chaotic dynamics (Hastings et al. 1993). The Lotka–Volterra model

has been considered to be unrealistic because small changes in start-

ing values lead to large changes in dynamics (Odenbaugh 2005), yet

this may actually be a realistic property. To determine whether a

system is sensitive to initial conditions, one can calculate Lyapunov

exponents. Lyapunov exponents are measures of how quickly 2

nearby initial conditions diverge (Hastings et al. 1993). A positive

Lyapunov exponent indicates that dynamics are chaotic (i.e., hard

to predict in the long-term), whereas a negative Lyapunov exponent

indicates the system will converge to an equilibrium. Benincà et al.

(2008) showed chaotic dynamics, via positive Lyapunov exponents,

in mesocosms of plankton. This led the authors to suggest that long

term predictions of species abundance may therefore be impossible.

If this were a common trend, then predictive ecology would appear

to be a tautology. Medvinsky et al. (2015) reviewed efforts by ecolo-

gists to find chaotic population dynamics, and concluded that posi-

tive Lyapunov exponents were typically rarely observed. In most

systems the dominant Lyapunov exponent is around zero, although

this can change over time, giving periods of chaos (Medvinsky et al.

2015). For example, Becks and Arndt (2008) found transitions to

chaos and back again through the manipulation of only 1 experi-

mental parameter (concentration of a chemical) in a multi-species

food web of 2 bacteria and a bacterivorous ciliate. This shift hap-

pens quickly, so it may be missed in field studies over short time

periods or with intermittent sampling (Becks and Arndt 2008).

As a general rule, this form of unpredictability is distinct from

stochasticity and measurement error. Stochasticity and measurement

error may also cause us to be uncertain about any of our predictions,

even in a system lacking chaotic dynamics. In a system governed by

stochasticity, accurate predictions of any kind, either short- or long-

range, are impossible, whereas in a chaotic but deterministic system

short-term predictions are possible. Okamoto et al. (2016) fitted

both stochastic and deterministic processes to a reef fish population,

allowing them to separate said processes and then demonstrate how

both contribute to population fluctuations. This approach could

profitably be extended to aspects of behavioral ecology, such as

Figure 3. A Lorenz attractor in 3 dimensions. Note how 2 initially adjacent tra-

jectories can rapidly diverge. Source: http://www.mizuno.org/c/la/img/lorenz_

web.jpg, accessed 24 April 2019.
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whether a time-series of individual or group behaviors shows 1 of or

both stochastic and deterministic properties (Fisher et al. 2018;

Honegger and de Bivort 2018). A caveat to this is that chaos and

stochasticity are not necessarily independent. For instance,

Ottermanns et al. (2014) found increased stochastic disturbance

lead to a reduction in the chaotic dynamics of Daphnia magna

populations.

Most of the published examples separating chaos and stochastic-

ity are limited to changes in population sizes over time. However,

we do not see an obvious reason to limit the separation of chaos and

stochasticity there, or to not apply it to longitudinal life history or

behavioral data of individuals (Cole 1994). Researchers can often

assume erratic data stems from stochastic noise or measurement

error, but a third possibility is that it results from chaotic dynamics

(May and Oster 1976). For example, studies are increasingly quanti-

fying behavior variation over the life time of individuals (Biro and

Stamps 2015). Fisher et al. (2015) found that individual crickets

diverged in behavior over time, a pattern consistent with (although

not sufficient to indicate) sensitivity to starting values. As Cole

(1994) notes, chaotic dynamics of behavior due to sensitivity to ini-

tial conditions can give the impression of essentially random

behavior. This implies no repeatability of individual behavior, and

no genetic basis to behavior. As Fisher et al. (2018) describe, a

period of chaotic behavioral change during development, followed

by deterministic change, for example, due to age, can give among-

individual variation in behavior, even in otherwise identical organ-

isms (as observed by Polverino et al. 2016; Bierbach et al. 2017; see

also, Honegger and de Bivort 2018). Such a mechanism remains to

be tested however.

A key outstanding empirical question is, to what degree is

behavioral variation deterministic (and possibly chaotic), and to

what degree is it stochastic? There are theoretical reasons (stochastic

unpredictability makes a prey animal harder to catch) and empirical

lines of evidence for why animal behavior may be adaptively sto-

chastic (Maye et al. 2007; Brembs 2011; Honegger and de Bivort

2018), but fitting both stochastic and deterministic process to

behavioral data is required to assess their relative contributions to

variation. We hypothesize that it is likely easier for selection to pro-

duce genetic, physiological, and behavioral outputs that are unpre-

dictable but deterministic (i.e., chaotic) than to produce outputs that

are truly stochastic.

Conclusions

We have argued that animal populations and the social interactions

that structure them can be useful understood using insights from

within complexity theory. Yet, there are also numerous avenues that

need to be explored before a wider embracing of concepts from

complex systems science can occur in population biology. We close

here by outlining just some of the conceptual questions raised by

considering animal populations through the lens of complexity

theory.

Does heterogeneity interact with self-organization?
Models for self-organization typically assuming homogeneity among

individuals. Yet given the heterogeneous within natural populations,

such assumptions may be unrealistic. Do models for self-

organization give more or less accurate predictions when the system

components are heterogeneous? As mentioned above, reinforcement

among individual workers during the self-organization process can

lead to greater heterogeneity in task performance in social systems

(Chittka and Muller 2009). Furthermore, the establishment of stable

dominance hierarchies may be facilitated by pre-existing among-in-

dividual differences (Chase et al. 2002). Further work is required to

determine whether heterogeneity contributes to other self-organizing

processes, such as the formation of stable territorial boundaries.

Does uncertainty conflict with self-organization?
If complex systems possess chaotic dynamics, then the final state of

the system predicted to be uncertain as it is expected to depend on

initial conditions. Yet if the complex system is highly self-organized,

then one would expect the same state to be reached from a range of

starting conditions. This is also relevant for adaptation, for if initial

conditions matter, then the dynamics following the perturbation of

a developed system should be different to the dynamics of a new,

growing system (i.e., hysteresis). This conflict is perhaps rescued by

the fact that long term dynamics in chaotic systems do show conver-

gence to attractors, if not stable equilibria (e.g., the saddle points of

the Lorenz attractor, or the boundaries the population fluctuates

within). So, while one cannot predict the route that a system will

take, one might be able to predict the general form it will take.

Taken together, animal populations, and chaotic systems in general,

are predicted to show short-term predictability (change is determin-

istic) mid-term unpredictability (sensitivity to initial conditions) and

long-term predictability (due to attractors keeping the system within

certain bounds).

Are mathematical models for complex systems broadly

applicable to animal populations?
To further cement the analogy between animal populations and

complex systems, we need to evaluate whether mathematical equiva-

lencies can be drawn between fields. For instance, do simulation

models that give complex, hierarchically structured networks match

the data for animal social networks collected in the wild? Creating

such models will require accounting for key features of complexity,

such as considering nonlinear interactions rather than defaulting to

linear ones. Ecological systems may contain more uncertainty than

mathematical (or physical and chemical) systems, suggesting that

the transfer of some models might be inappropriate (Petrovskii and

Petrovskaya 2012). However, even when not entirely appropriate,

models that are overly simple can still be useful, as they can help us

to explore the possible behaviors of ecosystems and the manner in

which more complicated systems differ from simple models

(Odenbaugh 2005). This therefore renders their application

valuable.

Is animal behavior stochastic or chaotic?
Finally, a better understanding of the importance of stochasticity

and chaos is required. Genuinely stochastic systems can appear regu-

lar, whereas deterministic systems can appear random due to chaotic

dynamics (Lenormand et al. 2009). Appreciating “messy” data can

arise from stochastic noise, measurement error, or chaotic dynamics

(May and Oster 1976) should increase the range of questions that

we ask with existing datasets. Animal behavior may well be inher-

ently stochastic (Maye et al. 2007). In which case, models for this

behavior and the consequences for population dynamics should re-

flect this. Generally, complexity and generalizability within a model

are thought to trade off (but see: Evans et al. 2013). But, if animal

behavior is inherently stochastic, then a model would become more

generalizable to other species if stochasticity were added. Exploring
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this in a range of disciplines beyond where it is typically imple-

mented would be greatly beneficial.
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Solé RV, Montoya JM, 2001. Complexity and fragility in ecological networks.

Proc Biol Sci 268:2039–2045.

Stuart SN, Chanson JS, Cox NA et al., 2004. Status and trends of amphibian

declines and extinctions worldwide. Science 80:306.

Sueur C, Petit O, De Marco A et al., 2011. A comparative network analysis of

social style in macaques. Anim Behav 82:845–852.

Sumpter DJ, Pratt SC, 2009. Quorum responses and consensus decision mak-

ing. Philos Trans R Soc London B Biol Sci 364:743–753.

Sumpter DJT, 2006. The principles of collective animal behaviour. Philos

Trans R Soc Lond B Biol Sci 361:5–22.

Thompson DJ, Hassall C, Lowe CD, Watts PC, 2011. Field estimates of repro-

ductive success in a model insect: behavioural surrogates are poor predictors

of fitness. Ecol Lett 14:905–913.

Thornhill R, 1976. Sexual selection and nuptial feeding behavior in Bittacus

apicalis (Insecta: mecoptera). Am Nat 110:529–548.

Travisano M, Mongold J, Bennett A, Lenski R, 1995. Experimental tests of

the roles of adaptation, chance, and history in evolution. Science 267:

87–90.

Tuomainen U, Candolin U, 2010. Behavioural responses to human-induced

environmental change. Biol Rev 86:640–657.

Vedder O, Bouwhuis S, 2018. Heterogeneity in individual quality in birds:

overall patterns and insights from a study on common terns. Oikos 127:

719–727.

Verhulst P-F, 1838. Notice sur la loi que la population poursuit dans son

accroissement. Corresp Mathématique Phys 10:113–121.
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Wiszniewski J, Allen SJ, Möller LM, 2009. Social cohesion in a hierarchically

structured embayment population of Indo-Pacific bottlenose dolphins.

Anim Behav 77:1449–1457.

Wolf M, Weissing FJ, 2012. Animal personalities: consequences for ecology

and evolution. Trends Ecol Evol 27:452–461.

Zhang Z, Yan C, Krebs CJ, Stenseth NC, 2015. Ecological non-monotonicity

and its effects on complexity and stability of populations, communities and

ecosystems. Ecol Modell 312:374–384.

14 Current Zoology, 2020, Vol. 66, No. 1

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/article-abstract/66/1/1/5477426 by U

niversity of Aberdeen user on 18 M
arch 2020


