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Abstract 

This research starts from the observation that common desmoothing models are likely to 

generate some extreme returns that will distort risk measurement and hence can lead to 

investment decisions that are suboptimal relative to those that would be made if a transaction-

based index were available.  Thus, we propose to improve the desmoothing models by 

incorporating a robust filter into the procedure.  We report that in addition to properly treating 

for smoothing, the method prevents the occurrence of extreme values.  As shown with U.S. 

data, our method leads to desmoothed series whose characteristics are akin to those of 

transaction-based indices. 

 

Keywords: Desmoothing models; Robust filter; Appraisal-based index; Private real estate; 

Unlevered REITs. 
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Introduction 

Smoothing is a well-known issue encountered when relying upon appraisal-based indices that 

are often the only source of information on returns for private investments such as real estate.  

It originates from two main sources.  First, the temporal aggregation bias which appears because 

assets are not appraised at a single point in time but rather over a given window (Geltner 1993a).  

Second, the anchoring bias which relates to the behavior of appraisers who when assessing the 

current value of a property rely heavily on the value they estimated for the previous period, 

while making some adjustment to account for changes in the economic environment (Geltner 

1989, Diaz and Wolverton 1998).  Smoothing leads to return series with high autocorrelation 

levels, which in turn implies that standard deviations are shrunk toward zero, while higher 

moments of the return distribution may also be distorted.  This could potentially have serious 

consequences in various applications such as mixed-asset portfolio optimization with the share 

of real estate being overstated because of its perceived low level of risk.  Thus, correcting 

appraisal-based series is crucial for a meaningful risk assessment. 

Models designed to deal with the smoothing bias have existed for quite some time.  The most 

common desmoothing model explicitly represents the appraiser behavior mentioned above 

(Quan and Quigley 1989, Geltner 1993b, Fisher and Geltner 2000).  Despite the fact that this 

classical type of desmoothing model treats smoothing by correcting the high autocorrelation 

and the dampened volatility estimates, one however often observes extreme values generated 

through the desmoothing process when changes in the underlying appraisal-based return series 

are large.  These extreme outlying values potentially lead to a wrong estimation of real estate 

risk and can alter the return distribution features with respect to what they should be for the 

unobserved true market returns.  More sophisticated specifications of the aforementioned 

desmoothing model, such as the regime-switching model developed by Lizieri, Satchell and 

Wongwachara (2012), are found to be able to limit extreme desmoothed values.  However, 

some outliers still remain even with such models. 
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The critical issue of extreme values generated by desmoothing models is emphasized in the 

example below.  Figure 1 compares the total returns of an uncorrected appraisal-based index 

(NPI), a transaction-based index (TBI), and a desmoothed version of the appraisal-based index1.  

The corresponding summary statistics are reported in Table 1, in addition to the resulting 

optimal allocation to real estate in a mixed-asset portfolio2.  We observe first that the NPI 

underestimates volatility, with its standard deviation of 2.07% being half the 4.32% observed 

for the TBI.  The expected shortfall at 5% (ES 5%) and the maximum drawdown (MaxDD) are 

underestimated as well.  Second, the desmoothed NPI usually displays a pattern close to the 

one of the TBI, but we identify extreme unrealistic returns around the early 1990s and the 2008 

global financial crisis (GFC).  Therefore, risk measured either by volatility, ES 5%, or MaxDD 

is overestimated.  In addition, the desmoothed series cannot correct the low skewness measured 

on the original series and strongly amplifies its kurtosis. 

As the average return of real estate is about the same whatever the series we consider, the 

features mentioned above have an impact on the Sharpe ratio and hence on asset allocation.  

Indeed, the NPI overestimates the Sharpe ratio, while the desmoothed series underestimates it, 

compared with the TBI one. Then, the optimal allocation to real estate is very large (73.2%) 

when relying on the NPI and only 21.2% with the desmoothed series, instead of the 38.2% with 

the transaction-based series.  This simple example demonstrates that treating extreme values 

 
1 This preliminary analysis is performed on U.S. quarterly data from 1984Q2 to 2018Q3.  For real estate, we use 

the appraisal-based NCREIF NPI index, a transaction-based index (TBI), and a desmoothed version of the NPI.  

The TBI series we use is a spliced series of the former hedonic MIT TBI (MTBI) index until 2010Q4 and of the 

current NCREIF TBI (NTBI), which uses a sale price to appraisal ratio method (SPAR). We refer to this spliced 

series as TBI.  Motivations about why we use both the MTBI and the NTBI series are further detailed in the 

Appendix A, where we conclude that the NTBI is comparable to the MTBI since 1997Q2.  The desmoothing 

parameter α we use for this example is equal to 0.8, which is a simple common choice for quarterly data.  Also, 

the NPI index is adjusted in terms of property type mix in order to match the composition of the TBI index. 
2 The Sharpe ratio is reported in annualized terms and is computed taking the returns in excess of the three-month 

T-Bill rate.  For the portfolio allocation results, stocks and bonds are considered along with real estate through the 

U.S. MSCI and the Citigroup U.S. 7-10 years Treasury bonds indexes, respectively.  The optimal allocation is 

defined as the one maximizing the Sharpe ratio. 
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generated through the desmoothing process is at least as important as desmoothing appraisal-

based series per se for a proper assessment of investment risk and any related decision making. 

[Figure 1 here] 

[Table 1 here] 

In this paper, we propose to address the issue of extreme values generated through the 

desmoothing process by applying robust statistical techniques to desmoothed series.  Indeed, 

robust techniques have been devised to correct unlikely extreme observations (Huber 1972).  In 

particular a whole stream of the robust literature has developed filters for time series (Fried, 

Einbeck and Gather 2007), which would allow to treat outliers in desmoothed series in a simple 

and convenient manner.  Hence, we proceed as follows.  First, we desmooth appraisal-based 

series using the classical model and its regime-switching version.  We then apply a robust filter 

to the desmoothed series and we compare these series with the transaction-based series to 

identify which of them better matches the true market return series.  In addition, both 

desmoothing models and their robust versions are compared with the following alternative 

methods:  (1) the Getmansky, Lo and Makarov (2004) model that was originally developed for 

the hedge funds industry and is often applied to private equity return series as well as its robust 

version; (2) a multivariate desmoothing model inspired by the Pedersen, Page and He (2014) 

and Cho, Hwang and Lee (2014) models; and (3) a method relying on indices of unlevered 

REIT returns (Fisher, Geltner and Webb 1994)3. 

The paper contributes to the literature in the following ways.  First, we compare various indices 

that can be used as a proxy for real estate performance measured by transaction-based 

benchmarks.  Second, we suggest relying on robust statistical techniques for improving series 

obtained with desmoothing models.  For this purpose, we design a flexible robust time series 

filter.  Third, in addition to assessing the performance of various methods by comparing the 

 
3 Robust versions of the latter two methods are not needed as they rely on observed rather than appraised data. 
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return characteristics with those of their transaction-based counterparts, we formally analyze 

similarities of and dissimilarities between series by applying a wide range of statistical tests.  

These tests not only focus on the central tendency and dispersion of return distributions, but 

also on higher distribution moments, on linkages with the reference transaction-based series, 

and the propensity to generate extreme desmoothed values. 

We report the following main results.  First, we show that all of the desmoothing methods we 

consider are able to correct at least some of the drawbacks of appraisal-based indices.  However, 

various characteristics of the series we obtain with these methods are not always in line with 

those of transaction-based series.  For instance, the multivariate desmoothing model produces 

returns that still exhibit very high autocorrelation figures.  Also, the Getmansky, Lo 

and Makarov (2004) model tends to provide series that still underestimate the transaction-based 

series volatility, while the usual desmoothing model, and to a lesser extent its regime-switching 

version, leads to overestimated volatility, kurtosis, and skewness negativity due to extreme 

values generated through the desmoothing process.  Second, once the robust filter is applied to 

the desmoothed series, most of the outliers are correctly identified and treated.  Indeed this filter 

proves particularly useful in dealing with unrealistically large returns generated by the 

desmoothing process and yields series whose characteristics are much closer to those of the 

corresponding transaction-based series, allowing for more precise estimation of real estate risk.  

Third, we report that unlevered REIT series have distribution features generally in line with the 

benchmark.  Finally, we identify as the best methods the robust regime-switching model, the 

robust classical model, and to a lesser extent the unlevered REIT method. 

The remainder of the paper is structured as follows. After the literature review in the next 

section, we present the robust filter we design in the methodology section.  The data and results 

sections follow, while a final section contains some concluding remarks. 
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Literature Review 

As discussed by Geltner, MacGregor and Schwann (2003), the smoothing issue has been 

approached using various methods.  In the context of mixed-asset portfolio construction, early 

studies recognizing the issue of real estate volatility being dampened due to smoothing 

proposed simple correction rules.  For example, Firstenberg, Ross and Zisler (1988) take real 

estate volatility to be equal to that of stocks.  Also from a portfolio allocation perspective, 

Blundell and Ward (1987) propose a simple desmoothing model relying on two elements.  First, 

they assume that the private real estate market is efficient and hence that the true unobserved 

return series follows a random walk.  Second, they model the way appraisers rely on both past 

appraised values and current market information in order to estimate the current value of a 

property.  This second element is referred to as the appraisal rule, or transfer function, that is 

presented in detail in Appendix B.  Combining both elements yields the desmoothing parameter 

that must be applied to treat the appraised series for smoothing and get an estimate of the true 

unobserved return series.  Quan and Quigley (1989) also describe how smoothing arises due to 

appraiser’s behavior as suggested by the aforementioned transfer function.  Quan and Quigley 

(1991) simplify the previous model and augment it with a buyers and sellers model.  They 

consider that appraisers extract relevant signals from the whole market as well as from each 

particular property. 

The Geltner (1989, 1991) model relies on the Blundell and Ward (1987) transfer function and 

on assumptions regarding the true real estate volatility.  Among the volatility values assumed 

in the literature, Fisher, Geltner and Webb (1994) propose to take half of the stock market 

volatility, while Hoesli, Lekander and Witkiewicz (2004) suggest it should be equal to the 

average of the volatilities of stocks and bonds.  Alternatively, Geltner, Miller, Clayton and 

Eichholtz (2007), for example, propose to determine the optimal desmoothing parameter 
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according to the time span it should take for the appraised values to converge toward the market 

price4. 

Initial desmoothing models usually rely on a random walk describing the generating process of 

the unobserved returns because they assume that the private real estate market is efficient.  This 

implies that the autocorrelation in the true returns series must be zero.  Nevertheless, as this 

assumption is likely to be unrealistic, Geltner (1993b) as well as Barkham and Geltner (1994) 

relax it, which makes it possible to represent the return generating process differently.  As 

suggested, a possible way is to model it as an autoregressive process of order one, an AR(1) 

process.  This class of models is referred to as reverse engineering.  Fisher and Geltner (2000) 

further develop the model and apply it successfully to the NCREIF Property Index (NPI).  Cho, 

Kawaguchi and Shilling (2003), improving the Fisher, Geltner and Webb (1994) model, also 

relax the random walk assumption and maintain that this helps achieving more realistic results.  

More sophisticated processes than an AR(1) can also be used.  For example, with 

ARFIMA(p ,d ,q) models, Bond and Hwang (2007) document lower levels of smoothing than 

the ones reported in previous studies, while Bond, Hwang and Marcato (2012) report that the 

smoothing level is lower at the property level than at the aggregate level. 

The possibility of having a time-varying desmoothing parameter is recognized by Quan and 

Quigley (1989, 1991).  Matysiak and Wang (1995) also suggest that the magnitude of 

smoothing should depend on market conditions.  Clayton, Geltner and Hamilton (2001) 

conclude that smoothing is the greatest when the market is the most illiquid; however, the range 

in which the time-varying desmoothing parameter value evolves is close to the value of the 

fixed desmoothing parameter.  Chaplin (1997) considers up to six different regimes with a 

specific desmoothing parameter for each.  The parameter value is supposed to be the largest 

 
4 For this purpose, they suggest using the following formula: 𝑇 =  

1

1 − 𝛼
− 1.  Assuming it takes one year for 

appraised values to converge toward market price, α must be equal to 0.5 using yearly data and equal to 0.8 using 

quarterly data. 
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when changes in rents and capitalization rates are the lowest.  However, in the latter study, the 

desmoothing parameter values are not estimated but rather they are set a priori with respect to 

various assumptions.  This limitation is removed in the regime-switching model proposed by 

Lizieri, Satchell and Wongwachara (2012) allowing for optimal parameter estimation. This 

model replaces the autoregressive desmoothing process in the Geltner (1993b) model by a 

threshold autoregressive process (TAR).  By also allowing for a threshold autoregressive return 

generating process these authors achieve the so-called TAR-TAR desmoothing model. 

Treating the smoothing bias is not specific to real estate but is also of importance for any private 

market for which mainly appraisal-based series are available. Various approaches have been 

proposed for other asset classes.  In the hedge fund literature, Getmansky, Lo and Makarov 

(2004) investigate the case of illiquidity and smoothing and consider that the current observed 

smoothed return is a weighted average of previous unobserved true returns with several lags.  

Starting from a similar approach than Geltner (1991), they however make various assumptions 

regarding the true return generating process and the smoothing profile.  Their model is applied 

by Cumming, Hass and Schweizer (2013) to private equity series.  Also in the private equity 

literature, Shepard and Liu (2014) develop a model relying on Bayesian techniques in which a 

single parameter links smoothed and desmoothed returns.  The smoothing parameter is 

estimated at the same time as parameters modeling the structure of desmoothed returns. 

The studies discussed above describe models using mainly information from the series to be 

desmoothed itself.  However, several researchers have proposed relying on additional 

information to explain the smoothing phenomenon and hence treating appraisal-based return 

series (Geltner 1989, Wang 2006).  For example, Ling, Naranjo and Nimalendran (2000) use a 

latent variable model to estimate the desmoothed return series while Fu (2003) uses REIT 

returns as additional information in the Quan and Quigley (1991) model. 
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Cho, Hwang and Lee (2014) apply a conditional desmoothing model relying on fundamentals, 

such as economic and financial series, to estimate the smoothing level in a time-varying way.  

They report that smoothing increased gradually since the mid-1990s while it was inexistent 

before.  Smoothing is positively driven by credit spread and negatively by investor sentiment, 

short-term interest rates, inflation, and the term spread.  It is also higher during periods of 

uncertainty.  Pedersen, Page and He (2014), who rely on the work by Scholes and Williams 

(1977) as well as by Dimson (1979), consider appraisal-based returns as a moving average of 

current and past unobserved true returns depending on exogenous risk factors.  It results that 

the observed smoothed returns are linear combinations of weighted lagged risk factors.  The 

estimated parameters of this model provide the impacts of current realizations of each risk factor 

on the current true returns.  Then, parameter estimates and risk factors are combined in order to 

build the unobserved true return series. 

Finally, rather than attempting to desmooth appraisal-based return series, another stream of the 

literature proposes to use adjusted series of REIT returns.  This line of thought, initiated by 

Fisher, Geltner and Webb (1994), takes advantage of the information transmission channel 

existing between the public and the private real estate markets as reported for example by 

Hoesli, Oikarinen and Serrano (2015) and Ling and Naranjo (2015). 

As discussed above, a variety of desmoothing models and associated methods are available.  In 

this context, Marcato and Key (2007) emphasize that correctly calibrating the desmoothing 

model is even more important than the choice of the desmoothing model itself.  In this research, 

we propose improvements to the desmoothed series based on the observation that commonly 

used models tend to generate extreme and implausible returns when changes in the original 

appraisal-based series are relatively important.  This notably leads to an overestimation of risk 

and misleading values for the higher moments of the return distributions.  In order to overcome 

this issue, we suggest including robust statistical methods in the desmoothing process.  Robust 
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statistics consists of identifying unlikely outlying data and reducing, or even annihilating, their 

influence in the estimation process.  Regarding the case of robust techniques for time series 

several methods exist, such as repeated median (Siegel 1982), least median of squares 

regression (Rousseeuw 1984), deep regression (Rousseeuw and Hubert 1999), as well as 

weighted repeated median and associated methods (Fried 2004, Fried, Einbeck and Gather 

2007). 

Methodology 

Desmoothing Models and Related Methods 

We desmooth the appraisal-based return series with in turn the Geltner (1993b) autoregressive 

model (AR hereafter), the Lizieri, Satchell and Wongwachara (2012) regime-switching model 

(TAR-TAR hereafter), the Getmansky, Lo and Makarov (2004) model (GLM hereafter), and a 

multivariate desmoothing model (MtV hereafter).  Returns of an unlevered REIT index are also 

used for comparison purposes.  The models are presented in Appendix B. 

The Robust Time Series Filter 

The common AR desmoothing procedure often generates extreme values when the underlying 

series displays relatively large changes.  This is sometimes also the case even with the TAR-

TAR model despite the additional flexibility brought by its specification.  Treatment of extreme, 

outlying, observations can be addressed by means of robust statistical techniques.  We propose 

to apply a robust time series filter to desmoothed series in order to fix the issue. 

The filter we propose is inspired by Fried (2004) and Fried, Einbeck and Gather (2007).  It 

relies on time-varying central and dispersion distribution parameters with a specific rule for 

outlier detection and correction5.  We want a rule that gradually shrinks outlying values 

 
5 Rules proposed by Fried (2004) are trimming, downsizing, and winsorization.  Trimming implies that 

observations lying over a given threshold distance from the central value are set to be equal to the central value.  

Downsizing consists of setting to a closer distance to the center observations being over a given threshold usually 

defined as a multiple of the dispersion parameter value.  Finally, winsorization is similar to downsizing but the 

new value of outliers is the detection threshold itself. 
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depending on how far from the center they are.  We decide to rely on a loss function designed 

for robust estimation (Huber 1981) and we select the Tukey biweight (or bisquare) function.  

Such a function lowers weights of observations whose distance from the center of the 

distribution is unlikely.  The more unlikely the observation, the more shrunk toward the central 

value of the distribution it is.  The value is set equal to the central value for very unlikely 

observations that trespass a given threshold, the so-called tuning constant, 𝑐𝑤.  In order to gauge 

if an observation is likely with respect to the whole observed distribution, the function requires 

information on the central parameter of the distribution, 𝜇, and on its dispersion parameter, 𝜎.  

In the usual static framework, the former can be taken as the average or the median, and the 

latter as the standard deviation or median absolute deviation. 

As we work in a dynamic framework, several adjustments must be made to estimate time-

varying Tukey function parameters.  Fried (2004) models the time series to be filtered as a 

succession of regressions on consecutive observation intervals, where the trend, i.e., the central 

parameter, is estimated by Least Median of Squares (LMS) or Repeated Medians (RM), while 

the volatility, i.e., the dispersion parameter, is estimated by the Length of the Shortest Half 

(LSH), the Median Absolute Deviation (MAD) or one of its alternatives, the Rousseeuw and 

Croux’s 𝒬𝑛 and 𝑆𝑛 (Rousseeuw and Croux 1993). 

We adopt a different approach and consider that the trend and the volatility processes can be 

expressed in the manner of an ARMA(1, 1)-GARCH(1, 1) model6.  More precisely, in our case, 

for the volatility model we rely on an Exponentially Weighted Moving Average model 

(EWMAv hereafter) which can be expressed as a specific case of the IGARCH(1, 1) model, as 

reviewed in Bollerslev (2010)7.  Regarding the mean model used to estimate the time-varying 

 
6 Filtered time series must be stationary.  Stationarity is tested by the augmented Dickey-Fuller, Elliot-Rothenberg-

Stock, Phillips-Perron, and Zivot-Andrews unit root tests.  If stationarity is rejected by a majority of tests, series 

differences are taken for computing robust weights.  Then, those weights are applied to the original series.  All 

return series in this study are found to be stationary. 
7 The IGARCH model is written as �̂�𝑡

2 = 𝜔 + 𝛼𝑥𝑡−1
2 + 𝛽�̂�𝑡−1

2  and the EWMAv model imposes 𝜔 = 0, 𝛽 = 𝜆 ∈
[0, 1], and 𝛼 = 1 − 𝛽.  Despite the restrictions it involves, the EWMAv model has the advantage of being 
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central tendency parameter we follow the same reasoning and apply an EWMA for mean 

(EWMAm hereafter) as for example shown in Cox (1961) and Lucas and Saccucci (1990).  This 

way of estimating a series time-varying trend is also related to Holt filters (Holt 2004).  In the 

same way as ARMA(1, 1) and GARCH(1,  1) are combined, both EWMAm and EWMAv are 

employed together (Reynolds and Stoumbos 2006).  EWMAm and EWMAv are defined by 

equations (1) and (2), respectively: 

�̂�𝑡 = 𝜆𝑚�̂�𝑡−1 + (1 − 𝜆𝑚)𝑥𝑡−1 (1) 

�̂�𝑡 = √𝜆𝑣�̂�𝑡−1
2 + (1 − 𝜆𝑣)(𝑥𝑡−1 − �̂�𝑡−1)2 (2) 

where 𝑥𝑡−1 is the realization of a time series at time 𝑡 − 1 and 𝜆𝑚 ∈ [0, 1] and 𝜆𝑣 ∈ [0, 1] are 

the decay factors, representing the weight pertaining to past estimates for the processes of mean 

and volatility, respectively. 

Let’s assume for the moment that we know the relevant values for both 𝜆 parameters and hence 

can compute �̂�𝑡 and �̂�𝑡 series8.  We iteratively estimate these parameters on successive intervals 

[1: 𝑡 − 1] with  𝑡 = [𝑡𝑖𝑛𝑖𝑡: 𝑇]9.  For each interval, we extrapolate the estimates of the central 

parameter, �̂�𝑡, and the volatility parameter, �̂�𝑡, of the next period.  The Tukey loss function, 𝜓𝑡, 

and the robust weight, 𝑤𝑡, are therefore computed as shown in equations (3) and (4).  In order 

to introduce more flexibility in the filter by allowing for asymmetry, we consider two tuning 

constants 𝑐𝑤,𝑈 and 𝑐𝑤,𝐿 for the upper bound and the lower bound of the filter, respectively. 

 
parsimonious and very simple to implement.  In the context of our desmoothing model, in which we use relatively 

low frequency (quarterly) data, the simple specification of EWMAv appears to be sufficient. 
8  For example, Bollen (2015) suggests 𝜆 parameter values from around 0.70 to 0.90 for daily data. 
9  For the initial periods of observations t = [1:tinit] �̂�𝑡−1 and �̂�𝑡−1 are estimated by the median and the median 

absolute deviation, respectively.  We choose tinit = 12 quarters. 
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𝜓𝑈,𝑡 = 
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2

 

Then, the original 𝑥𝑡value is replaced by its robust estimation computed as: 

𝑥𝑡
𝑟𝑜𝑏 = 𝑤𝑡𝑥𝑡 + (1 − 𝑤𝑡)�̂�𝑡 (5) 

We now discuss further the question of the 𝜆𝑚 and 𝜆𝑣 parameters, because instead of taking 

them as a priori values, we can estimate them.  This is done by optimization of a forecast 

evaluation criterion.  We consider criteria proposed by Andersen, Bollerslev and Lange (1999) 

and tested by Bollen (2015) for EWMA models.  Since volatility clusters are expected, we rely 

on the Heteroscedasticity-adjusted Mean Absolute Error (HMAE) defined as: 

𝐻𝑀𝐴𝐸 =
1

𝑇
∑ |1 −

𝜎𝑡
2

�̂�𝑡
2|

𝑇
𝑡=1  (6) 
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where 𝜎𝑡
2 is the realized volatility and �̂�𝑡

2 is the estimated volatility.  However, as we assume 

the existence of outliers, we propose a few adjustments to make this metric more robust.  Instead 

of relying on the Mean Absolute Error (MAE) we prefer the MAD which is not sensitive to the 

presence of outliers in the data.  Conserving the notion of adjustment for heteroscedasticity, the 

above criterion is then transformed as Heteroscedasticity-adjusted Median Absolute Deviation 

for volatility (HMADv) written as: 

𝐻𝑀𝐴𝐷𝑣 = 𝑀𝑒𝑑𝑖𝑎𝑛 (|1 −
𝜎𝑡=1
2

�̂�𝑡=1
2 | , … , |1 −

𝜎𝑡=𝑇
2

�̂�𝑡=𝑇
2 |) (7) 

and 

𝜎𝑡
2 = (𝑥𝑡 − �̂�𝑡)

2 (8) 

HMADv is a function of 𝜆𝑣 because �̂�𝑡 is expressed as in (2).  Then the optimal 𝜆𝑣 is obtained 

by minimizing HMADv.  Of course, an estimate for �̂�𝑡 is required.  The estimation of the �̂�𝑡 

series itself requires an estimate for 𝜆𝑚 which is obtained in the same manner as demonstrated 

above for 𝜆𝑣.  We need an equivalent criterion to HMADv called HMADm and defined as: 

𝐻𝑀𝐴𝐷𝑚 = 𝑀𝑒𝑑𝑖𝑎𝑛 (|1 −
𝑥𝑡=1

�̂�𝑡=1
| , … , |1 −

𝑥𝑡=𝑇

�̂�𝑡=𝑇
|) (9) 

Substituting �̂�𝑡 by (1) in (9), HMADm now only depends on 𝜆𝑚 and 𝑥𝑡, the observed series to 

be filtered, as the initial value, �̂�𝑡𝑖𝑛𝑖𝑡 , is known.  Then, HMADm is minimized with respect to 

𝜆𝑚.  Once the optimal decay factor value, �̂�𝑚, is obtained we use it in the EWMAm formula (1) 

to get �̂�𝑡.  The next step is to replace �̂�𝑡 in (2) and (8).  Then, (2) in addition to (8) are substituted 

in (7) in order to obtain a HMADv criterion depending only on 𝜆𝑣 and the observed series 𝑥𝑡 

and the known initial value, �̂�𝑡𝑖𝑛𝑖𝑡 .  Finally, HMADv is minimized with respect to 𝜆𝑣.  Following 
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this procedure, we get optimized 𝜆 parameters for EWMAm and EWMAv
10.  These series of 

time-varying parameters �̂�𝑡 and �̂�𝑡 are used in the Tukey function as described above in 

equations (3) to (5). 

The estimation of the tuning constants is detailed in Appendix B and indicates that the optimal 

values should be 𝑐𝑤,𝑈 =  5 and 𝑐𝑤,𝐿 =  − 6.25.  The difference in absolute value between 

parameters is due to the slight negative skewness of real estate return distributions. 

Note also that the robust filter is applied on the desmoothed series obtained with the AR, the 

TAR-TAR, and the GLM models.  This is not the case for the series obtained with the MtV 

model, because as they result from a linear combination of factor loadings and observed factors 

series we believe that they do not suffer from artificially generated outliers11. The unlevered 

REITs series are not filtered either as they are based on observed market returns.  

Data 

Regarding the choice of the transaction-based reference series, a number of conditions must be 

fulfilled. First, the availability period must be satisfactory with enough observations and has to 

correspond with the availability period of the appraisal-based index.  Second, the method used 

to estimate the index must be reliable.  Third, there must be adequacy in terms of inclusion 

criteria and property type mix between the appraisal-based index and the transaction-based 

index taken as benchmark.  Hence, the NCREIF database appeared to be a natural candidate.  

Indeed, NCREIF transaction-based (NTBI) real estate series are available since 1984Q2 at the 

 
10  Because EWMA processes, as all kinds of moving average processes, tend to lag the original series, we estimate 

the series of �̂�𝑡 and �̂�𝑡 on the original return series and also on the reverse of the return series before taking the 

average value for each parameter at each point in time to obtain the �̂�𝑡 and �̂�𝑡 series we actually use. 
11 In order to handle the effect of possible outliers affecting exogenous variables, factor loadings are estimated 

using robust regression.  Comparison of results with those obtained when relying on classical regression estimation 

indicates that there is no significant change. 
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national level, while the appraisal-based (NPI) one is even older and both are produced at the 

quarterly frequency. 

The method applied for building the NPI correspond to the standards of the industry.  Regarding 

the estimation of the NTBI, as reviewed by Geltner (2011), it is currently done relying on a Sale 

Price Appraisal Ratio (SPAR) model, while until 2010Q4 the index was estimated with a 

hedonic model and produced by the MIT (MTBI hereafter).  Geltner (2015) maintains that the 

hedonic approach does not suffer from the main biases affecting common alternative methods 

such as, for example, the repeat sales approach.  Thus, we believe that a hedonic model would 

be the best method for building a relevant transaction-based index.  However, some studies 

(Ling and Naranjo 2015) report that the current NTBI, restated for periods before 2011Q1, 

reproduces well the returns observed on the former MTBI.  Comparing both the NTBI and the 

MTBI in Figure 2 we conclude to the similarity between these indices since 1997Q2.  However, 

we recognize that prior to that period the NTBI seems to be more volatile, producing 

exaggerated returns compared with the MTBI, and hence is not reliable before 1997Q2.  Further 

analyses reported in the Appendix A lead to the same conclusion. 

As transactions belong to properties included in the NPI, the inclusion criteria are by 

construction the same.  However, the NPI includes hotels, while the MTBI does not.  Hence, 

the version of the NPI we use in this research does not consider hotels.  In addition, the match 

of the property type mix is insured by building an appraisal-based series with the same 

proportions for each sector as the ones observed in the MTBI index.  Moreover, as described 

by Fisher, Geltner and Pollakowski (2007), the hedonic model of the MTBI corrects for the 

possible selection bias of sold properties and filters the noise that may appear with quarterly 

frequency data12. 

 
12 This is not the case with the SPAR NTBI and can explain the higher volatility of this series compared to that of 

the MTBI before the late 1990s. 
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According to the aforementioned discussion, we decide to focus our main analysis on the period 

1984Q2-2018Q3, using for the transaction-based benchmark a series made of the hedonic 

MTBI until 2010Q4 spliced with the current SPAR NTBI.  For robustness checks purposes, the 

analyses are also conducted on the MTBI only on the period 1984Q2-2010Q4. 

[Figure 2 here] 

As mentioned in Appendix B, the regimes of the TAR-TAR model are defined according to the 

U.S. MSCI total returns in excess of the 3-month T-Bill rate.  For the multivariate desmoothing 

model we employ as exogenous factors the U.S. industrial production growth, core inflation, 

the term spread calculated as the 10-year Treasury rate minus the 3-month T-Bill rate, sourced 

from Thomson Reuters Datastream, as well as the credit spread computed as the AAA minus 

BAA corporate bond yields from Moody’s, and the SMB, HML, WML and PS factors sourced 

from the WRDS database.  Regarding the unlevered REIT series, we use total returns sourced 

from Thomson Reuters Datastream and debt balance sheet items required for the computation 

of unlevered return series are obtained from Compustat.  Table 2 reports summary statistics for 

the aforementioned variables except direct real estate return series and unlevered REIT series 

as these are discussed in the section below.  In particular, we observe high autocorrelation and 

low volatility for industrial production growth, core inflation, and the spreads, while this is the 

reverse for stock market returns and asset pricing factors. 

[Table 2 here] 
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Results 

For the period 1984Q2-2018Q3, the results pertaining to the AR model indicates for the 

smoothing equation an alphaAR parameter13 of 0.85*** (0.02) and a sum of squared errors of 

206.01, while the return generating process equation is: 

𝑅𝑡  =
0.29
(0.25)

− 
   0.18∗∗∗

(0.06)
𝑅𝑡−1 (10) 

Regarding the TAR-TAR model, for the smoothing equation, the alpha parameters are: 

𝑎𝑙𝑝ℎ𝑎𝐿 = 
0.45∗∗∗

(0.13)
   ;   𝑤ℎ𝑒𝑛 𝑍𝑠,𝑡  <    

−13.72∗∗∗

(6.10)

𝑎𝑙𝑝ℎ𝑎𝐻 = 
0.87∗∗∗

(0.04)
   ;   𝑤ℎ𝑒𝑛 𝑍𝑠,𝑡  ≥  

 −13.72∗∗∗

(6.10)

 (11) 

The return generating process equation in the TAR-TAR model is: 

𝑅𝑡 = { 

2.41
(2.54)

 +
     3.38∗∗∗

(1.78)
𝑅𝑡−1   ;   𝑤ℎ𝑒𝑛 𝑍𝑟,𝑡  <   

−10.44
(8.27)

 
0.60
(0.48)

 − 
0.23
(0.30)

    𝑅𝑡−1  ;   𝑤ℎ𝑒𝑛 𝑍𝑟,𝑡  ≥   
 −10.44
   (8.27)

  (12) 

The sum of squared errors of the TAR-TAR is 173.42, which is lower compared to the AR 

model suggesting that the regime-switching specification allows a better fitting of the data.  The 

alpha parameter in the AR model is in-between the alphaH and alphaL parameters in the TAR-

TAR model, which are 0.87 and 0.45, respectively.  AlphaH and alphaL values are significantly 

different from one another at the 1% confidence level.   

Figure 3 depicts the appraisal-based NPI, the AR desmoothed, and the TAR-TAR desmoothed 

series, as well as the low regime phases of the desmoothing process for the TAR-TAR model.  

We observe that both desmoothed series treat smoothing which increases volatility and the 

TAR-TAR does not suffer the extreme drawdown reported by the AR in 2008Q4.  This is due 

 
13 The significance level of parameter estimates is indicated by the stars, with *, **, and *** corresponding to a p-

value of 10%, 5% and 1%, respectively.  Standard errors are indicated in brackets. 



20 

 

to the alphaL = 0.45 coefficient that is applied at that time being much smaller than 

alphaH = 0.87.  The fact that alphaH is larger than alphaAR explains why the TAR-TAR is 

slightly more volatile during high regime phases. The TAR-TAR does not differ that much from 

the AR during the high volatility episode of the early 1990s.  As can be seen in Figure 4 both 

desmoothed series overestimate the TBI volatility during these years. 

[ Figure 3 here ] 

[ Figure 4 here ] 

In order to treat extreme values generated by the desmoothing process we now apply the robust 

filter on the AR and TAR-TAR series.  For the TAR-TAR, the parameters of the EWMAm and 

the EWMAv processes are 𝜆𝑚 = 0.85 and 𝜆𝑣 = 0.71, respectively.  For the AR, these 

parameters are 𝜆𝑚 = 0.83 and 𝜆𝑣 = 0.67.  Figure 5 presents the desmoothed and the filtered 

series obtained from the TAR-TAR model, as well as key parameter series used by the robust 

filter.  The grey curve is the EWMAv series measuring the time-varying volatility of the TAR-

TAR series.  Volatility tends to decrease since the GFC.  The grey bars are the robust weights 

applied to each observation.  Weights are usually close to one and decrease when returns are 

relatively large in magnitude, especially during the early 1990s.  The filtered series does not 

display the extreme returns observed for the unfiltered series, in particular during the early 

1990s, when the TAR-TAR is the most erratic.  The filter also mitigates the large rebound after 

the GFC. 

[ Figure 5 here ] 

In Figure 6, we compare the AR and TAR-TAR desmoothed series with their robust 

counterparts and the TBI.  We observe that the robust filter treats the very large drawdown of 

2008Q4 in the AR series.  Actually, this strongly outlying observation receives a robust weight 

of about zero implying that for the robust AR series the corresponding value is near the time-

varying average.  Regarding the early 1990s higher volatility cluster, the largest changes are 
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shrunk toward TBI values.  In general, it appears that the robust filter helps to correct both the 

AR and the TAR-TAR desmoothed series. 

[ Figure 6 here ] 

Regarding the GLM desmoothing model, the moving average order is two and the estimated 

parameters are 𝜃0 =  0.41∗∗∗, 𝜃1 =  0.35∗∗∗, and 𝜃2 =  0.25∗∗∗.  As for the AR and the TAR-

TAR desmoothing model, it is possible that extreme values are generated through the 

desmoothing process.  Thus, we also apply the robust filter14.  The resulting series are reported 

in Figure 7 with the TBI.  The GLM model produces series that are most of the time less volatile 

than those resulting from the AR and TAR-TAR models and that tend to underestimate 

transaction-based index volatility.  Another observation is that the GLM does not produce 

striking outlying values.  A consequence of the latter two observations is the only slight changes 

implied by the robust filter.  Indeed, only three observations (1991Q4, 1992Q1, and 2008Q4) 

are substantially down-weighted. 

[ Figure 7 here ] 

Then, we turn to the MtV model whose estimated coefficients are reported in Table 3. Only the 

core inflation, the term spread, and the liquidity factor have significant effects, with negative 

coefficients for the former two and a positive coefficient for the latter one.  The resulting series 

are reported in Figure 8 with the series of unlevered REITs and the TBI.  The MtV series is 

different from the other two series during the early part of the period and has high 

autocorrelation.  Unlevered REIT volatility appears usually comparable to that of the TBI. 

[ Table 3 here ] 

[ Figure 8 here ] 

 
14 For the GLM, the robust filter parameters are 𝜆𝑚 = 0.87 and 𝜆𝑣 = 0.88 
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In order to emphasize differences of return distribution for each series with the transaction-

based one, Figures 9 and 10 represent their kernel density estimations15.  From Figure 9, we 

observe that the AR and the TAR-TAR distributions are in general close to that of the TBI and 

once the filter is applied the match is clearly better in the tails.  In Figure 10, the deviation of 

the MtV distribution from the benchmark is marked.  Regarding the GLM, it is not that close 

to the benchmark and its robust version produces a rather similar distribution, except maybe in 

the lower tail.  The unlevered REIT distribution is not that different from the transaction-based 

one. 

[ Figure 9 here ] 

[ Figure 10 here ] 

Summary statistics of quarterly total returns for the various methods are reported in Table 4.  

The differences between each series and the benchmark are more formally assessed through 

various statistical tests, whose results are reported in Table 5.  The average and median returns 

are generally very close for all series (around two percent), with figures for REITs being slightly 

higher.  Both the Welch T-test and the Kurskal-Wallis test conclude that in every case the 

hypothesis of equality in average return with the transaction-based series is not rejected16.  This 

confirms, first, that the average returns measured on original appraisal-based series correspond 

to the ones measured on transaction-based series and, second, that the desmoothing process 

does not alter the average returns measured from the original series. 

The standard deviations of desmoothed series are as expected larger than for the appraisal-based 

index and the autocorrelation is about zero, indicating that smoothing is actually treated.  

However, volatility figures for AR and TAR-TAR series over 8.0%, and of the MtV (5.44%), 

overstate the volatility of the transaction-based index (4.32%), while the GLM and robust GLM 

 
15 This estimation is done using the Epanechnikov kernel. 
16 We retain a critical confidence level of 95% and hence consider that the hypothesis made by each of the tests 

we apply is rejected if the p-value is below 5%. 
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series tend to understate volatility with values of 3.26% and 2.34%, respectively.  Once the 

robust filter is applied to the AR and TAR-TAR series, the standard deviations are closer to that 

of the TBI, with values of 5.09% and 4.52%, respectively.  The unlevered REIT series is also 

close to the TBI in terms of volatility.  Actually, Bartlett and Fligner-Killeen tests both reject 

equality of variance with the reference series for the appraisal-based, the GLM, and the robust 

GLM series underestimating the variance, as well as the AR, the TAR-TAR, and the MtV series 

overestimating the variance.  Conversely, the equality of variance is not rejected for the 

unlevered REITs series, as well as the robust AR and TAR-TAR series.  For the latter two 

series, this improvement is achieved by correcting the extreme values with the robust filter. 

Regarding the quantiles of the distributions, the AR and TAR-TAR match very well the 

benchmark once the robust filter is applied.  This is especially true in the highest and the lowest 

quantiles; the part of the distribution that is precisely the segment where the robust filter is 

expected to enhance desmoothed series.  Quantiles for unlevered REITs are also quite close to 

those of the benchmark in general.  In contrast, the MtV, the GLM, and the robust GLM do not 

perform that well with respect to the quantiles matching.  These aspects of the return 

distributions are tested by the Anderson-Darling test17, which rejects the equality with the 

transaction-based benchmark for the NPI, the GLM, the robust GLM, and the MtV.  The 

unlevered REITs pass the test, like the robust AR and TAR-TAR series.  For the latter two 

series, the p-values from the Anderson-Darling test are notably improved compared to the 

values returned for the non-filtered series18. 

Skewness figures are close to the figure for the TBI, except for the AR and the GLM.  In 

addition, all series but the MtV are leptokurtic, suggesting that dispersion of observations is 

larger than with a normal distribution.  Before the robust filter has been applied, the AR, TAR-

 
17 The Anderson-Darling test works on cumulative distributions, like the Kolmogorov-Smirnov test, but it is more 

sensitive to differences in the tail quantiles. 
18 The equality is rejected only at the 90% confidence level for the unfiltered TAR-TAR series. 
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TAR, and GLM series have kurtosis values overestimating the value displayed by the TBI.  We 

would like to test differences in skewness and kurtosis in particular, but no satisfactory specific 

test exists.  Hence, we propose simulating the confidence intervals of these statistics from the 

transaction-based benchmark and deriving the p-values for the figures measured on each series 

we investigate.  Doing so, we conclude that the AR and the GLM series are different from the 

benchmark with respect to both skewness and kurtosis, as is the NPI.  The TAR-TAR and the 

MtV differ only with respect to kurtosis.  The unlevered REITs is not found to be different to 

the TBI.  For the TAR-TAR, applying the robust filter adjusts the kurtosis, while it corrects 

both the skewness and kurtosis figures of the AR and GLM series. 

[ Table 4 here ] 

The autocorrelation is basically zero for most of the series except for the MtV, the robust GLM, 

the TAR-TAR, and obviously for the NPI.  This high value for MtV can be explained by the 

fact that the series is mainly a linear combination of highly autocorrelated exogenous factor 

series.  Furthermore, the correlation with the TBI is between 0.3 and 0.4 for the MtV, the AR, 

TAR-TAR, and GLM, as well as their robust versions, while it is only 0.19 for unlevered REITs 

and as much as 0.5 for the NPI.  

We also report the maximum drawdown and the expected shortfall at 5% as alternative risk 

measures.  The maximum drawdown appears particularly overestimated by the TAR-TAR, the 

AR, and the MtV series, with values between -46.79% and -78.64% compared to the - 34.04% 

figure reported for the TBI.  The TAR-TAR and the AR seem to overestimate the ES 5% too, 

with figures of -17.59% and -21.54%, respectively, while we measure -8.03% for the 

benchmark.  The difference in ES 5% is also investigated with a simulated test.  It returns that 

only the AR and the TAR-TAR series provide an ES 5% that is significantly different to that of 

the TBI.  However, the robust filter corrects this discrepancy. 

[ Table 5 here ] 
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As we are working with time series, investigating if they evolve closely together with the 

transaction-based series is important to understand whether series are able to reproduce 

accurately market dynamics and turning points.  For this purpose, we measure the Mahalanobis 

distance between each series and the benchmark and test its significance19.  We report a non-

significant difference with the benchmark for the GLM and robust GLM series, as well as for 

the NPI. This indicates that these series actually capture well the evolution of the average, or 

short-term trend.  In contrast, for the unlevered REIT, MtV, AR, and TAR-TAR series the 

difference with the benchmark is significant.  Applying the robust filter leads to robust AR and 

TAR-TAR series having insignificant Mahalanobis distances.  This result suggests that the 

robust filter is also able to improve the dynamics of the desmoothed series. 

Then, we investigate how the different models are subject to generated outliers and how the 

robust filter helps dealing with them.  The proportion of outliers with respect to the transaction-

based benchmark is then computed20.  We observe that the AR, TAR-TAR, as well as to a lesser 

extent the MtV series, and the unlevered REITs, generate values that are considered as outliers 

when compared with the benchmark.  The proportion of outliers is 7.97% for the TAR-TAR, 

6.52% for the AR, and only 0.72% for the MtV and 1.45% for the unlevered REITs.  The robust 

filter allows correcting all outliers, which highlights its ability in identifying and treating such 

deviating realizations. 

Finally, we report the optimal allocation to real estate obtained while maximizing the Sharpe 

ratio of a portfolio containing stocks, bonds, and real estate for each desmoothed return series 

and the unlevered REIT return series.  These figures can be compared with the value of 32.5% 

 
19 The Mahalanobis distance is akin to the tracking error, but additionally takes into account the variances and the 

correlation structure between series.  P-values for this test are obtained by bootstrapping. 
20 We define outliers as observations being among the 1% most extreme possible realizations for each point in 

time of an ARMA(1, 1)-GARCH(1, 1) model with skewed-Student distribution estimated from the transaction-

based benchmark series.  We also performed the same test with threshold values of 0.5%, 2.5%, and 5%.  As 

expected, the lower the threshold value, the lower the number of identified outliers.  However, the general 

conclusion concerning the usefulness of the robust filter does not change. 
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reported in Table 1 for the allocation to real estate obtained while relying on the TBI.  Mainly 

because they overestimate the volatility, the allocation obtained when the TAR-TAR, the AR, 

and the MtV series are used is substantially lower (17.9%, 16.9% and 10.1%, respectively).  

However, once we apply the robust filter to the former two series the allocation (29.1% and 

31.3%, respectively) is very close to the one reported with the TBI.  The allocation reported for 

the GLM (46.5%) is clearly overstated, as several of this series’ parameters do not match those 

of the TBI, in particular the volatility.  Applying the filter on the GLM series amplifies the 

allocation (61.7%).  Interestingly, the allocation reported with unlevered REIT returns is not 

that far from the one obtained with the TBI. 

In sum, the analyses of characteristics of the various series, compared with those of the 

transaction-based series suggest the following.  First, the original appraisal-based series 

deviates from the transaction-based benchmark mainly in terms of volatility, skewness, and 

kurtosis.  It is however comparable to the benchmark with respect to mean returns as well as its 

dynamics and the measured expected shortfall at 5%.  Second, the AR model tends to generate 

outliers, which leads to series overestimating the volatility, the negativity of the skewness, and 

the magnitude of the kurtosis, as well as of the expected shortfall.  The dynamics of such series 

is also not in line with that of the benchmark.  Series obtained with the TAR-TAR model suffer 

from similar drawbacks as the latter, except that the skewness figure is in line with the 

benchmark.  Third, once we combine the robust filter with the latter two models, the outliers 

are identified and treated and the resulting series are fully in line with the transaction-based 

benchmark.  Fourth, the GLM model generates series underestimating the volatility, while 

overestimating the kurtosis and the negativity of the skewness.  Fifth, applying the robust filter 

to the latter series does not help with the volatility, but allows improving the skewness and 

kurtosis figures.  Sixth, the MtV series is found to generate a few outliers and to overestimate 

the volatility and the kurtosis, and its dynamics deviate from that of the benchmark, while the 

unlevered REITs series does pretty well, except maybe with respect to the dynamics.  Finally, 
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when applied on the TAR-TAR and the AR desmoothed series the robust filter enables reaching 

an allocation to real estate which is in line with the one obtained with the transaction-based 

series.  The unlevered REITs series also provides good results in terms of portfolio allocation. 

The analysis is repeated for robustness check purposes on the hedonic MTBI only from 1984Q2 

until 2010Q421.  The general conclusions are the same as the ones reported for the main 

analysis22.  In particular, the robust filter identifies and treats most of the outliers, which corrects 

the returns series and their distribution with respect to the characteristics we consider.  The filter 

is especially helpful when combined with the AR and TAR-TAR desmoothing models.  The 

robust filter also improves the distribution of returns obtained with the GLM model, despite the 

fact that it cannot correct the underestimated volatility. 

Concluding Remarks 

This research starts from the consideration that the classical desmoothing model presented by 

Geltner (1993b) and also its regime switching extension suggested by Lizieri, Satchell and 

Wongwachara (2012) are subject to generating unlikely extreme values when changes in the 

underlying original series are marked.  These outlying values are problematic because they 

distort real estate return distribution features, which in turn leads to an erroneous assessment of 

real estate investment risk.  This has important implications for portfolio management as the 

bias leads to overstated diversification benefits resulting from including real estate in mixed-

asset portfolios. 

We propose to enhance the quality of desmoothed series by applying robust statistical 

techniques.  We design a robust time series filter that is able to identify and correct the outlying 

values so that their influence on the return distribution characteristics is suppressed.  Results 

 
21 Corresponding tables and figures can be provided on request. 
22 Note that for the TAR-TAR model the main coefficients are αH = 0.86, αL = 0.24 and the threshold between 

regimes is -14.33%, while for the AR model α = 0.85.  Regarding the GLM model, coefficients are θ0 = 0.39, θ1 = 

0.36 and θ2 = 0.25. 
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obtained with the classical desmoothing model, and its regime-switching version, are compared 

with those reached with the Getmansky, Lo and Makarov (2004) desmoothing model, a 

multivariate desmoothing model, as well as an alternative method relying on unlevered REIT 

returns. 

Regarding the high autocorrelation found in appraisal-based series, all but one method (the 

multivariate model) are able to correct this issue and produce autocorrelation figures in line 

with the benchmark.  About the dampened volatility figures displayed by appraisal-based series, 

every method we apply generates series with higher volatility.  The unlevered REIT series 

volatility is generally in line with that of the benchmark, while the desmoothed series obtained 

with the AR and the TAR-TAR models, as well as the multivariate model tend to be too volatile.  

The GLM model underestimates the volatility.  Overestimated volatility in the AR desmoothed 

series is due to the extreme values often generated during the desmoothing process.  The outlier 

issue is to a lesser extent also encountered in series obtained with the regime-switching TAR-

TAR model, although the greater flexibility allowed by its more sophisticated specification is 

helpful.  We report that applying the robust filter proves useful in improving the general quality 

of desmoothed series by neutralizing the influence of most outlying values that inflate the 

volatility.  Such filtered series notably display return distributions with volatility, skewness, 

and kurtosis figures that are more in line with the transaction-based ones and they evolve more 

closely to the benchmark over time.  The filter also improves other risk measures such as the 

expected shortfall. 

The unlevered REITs series, as well as the robust autoregressive desmoothing model and its 

robust regime-switching version in general produce the best results.  The Getmansky, Lo and 

Makarov (2004) model underestimates volatility and despite the fact that the filter cannot 

improve this aspect of the distribution, it is able to enhance the skewness and kurtosis figures.  
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Series generated by the multivariate desmoothing model in general deviate from the benchmark 

whatever the criterion we consider. 

The combination of the robust filter with the autoregressive model or the regime-switching 

model is appealing because it does not require relying on a lot of information.  Indeed, the 

robust autoregressive model just requires the series to be desmoothed and the robust filter, while 

for the regime-switching model only an exogenous series for identification of the regimes is 

additionally necessary.  In comparison, for the unlevered REIT index method that also performs 

well, information from the company balance sheets such as debt, interest expenses, dividends, 

and preferred shares are required and such information is not always readily available.  
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Appendix A: Comparison between the MTBI and NTBI indices 

Appendix A compares the hedonic MTBI with the SPAR NTBI on various periods, in order to 

assess how comparable they are and particularly if the NTBI is similar enough to the MTBI for 

using it as a relevant benchmark after 2010Q4, the last date of availability of the MTBI.  Details 

of these analyses are reported in Table A1, where we produce statistics for total return 

distributions of these series, and in Table A2, where we display p-values of several tests aiming 

to compare the moments and other key characteristics of both series distributions.  Further 

details on the tests we employ are provided in the results section of this article. 

From these analyses, we report that for the 1984Q2-2010Q4 period the MTBI and the NTBI 

differ.  Indeed, according to the Bartlett and Fligner-Killeen tests, equality of variance is 

rejected at a 95% confidence level basis.  Hence, the volatility of the NTBI of 6.38% is 

significantly larger than the 4.5% reported for the MTBI.  In addition, tests indicates that both 

series display significantly different 5% expected shortfall and that 6.54% of NTBI returns 

could be considered as outliers with respect to the MTBI distribution.  Actually, differences 

between both series are the strongest for the 1984Q2-1997Q1 period, where the MTBI and 

NTBI series are significantly different from almost all points of view, except regarding the 

average total returns and to a lesser extent the skewness.  The difference in terms of volatility 

is particularly pronounced, with 3.49% for the MTBI and a more than twice larger volatility for 

the NTBI (7.21%).  Conversely, for the 1997Q2-2010Q4 period, no test rejects the equality 

between the two series.  More interestingly, comparing the NTBI from 1997Q2 until 2018Q3 

with the MTBI on a period of same length from 1989Q3 to 2010Q4, we conclude with respect 

to all tests that both series are not statistically different.  The most striking feature is the same 

volatility figure of 4.8% reported for both series. 

From these analyses, we conclude that for the early period 1984Q2-1997Q1, the MTBI and the 

NTBI cannot be considered as comparable, while since 1997Q2 they can be considered as 
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comparable, because statistical tests do not reject equality between both series from the 

perspectives of the different main moments and characteristics of these return distributions.  

Thus, we are confident in using in our main analysis a spliced series made of the returns of the 

MTBI from 1984Q2 until 2010Q4 and of those of the NTBI from 2011Q1 to 2018Q3. 

Table A1 Summary Statistics of Total Return Series for MTBI and NTBI by period 

  

MTBI 

1984Q2-

2010Q4 

NTBI 

1984Q2-

2010Q4 

MTBI 

1984Q2-

1997Q1 

NTBI 

1984Q2-

1997Q1 

MTBI 

1997Q2-

2010Q4 

NTBI 

1997Q2-

2010Q4 

MTBI 

1989Q3-

2010Q4 

NTBI 

1997Q2-

2018Q3 

Max 19.05 18.14 8.02 15.24 19.05 18.14 19.05 18.14 

q99 12.74 15.21 7.54 14.96 15.76 15.51 13.88 14.00 

q95 7.84 11.68 5.89 12.35 8.52 10.36 7.99 9.76 

q90 6.94 9.48 4.83 9.54 7.68 9.17 7.43 7.52 

q75 4.55 5.87 3.75 6.39 5.51 5.24 4.59 5.19 

Median 2.26 2.29 1.93 2.22 2.73 2.47 2.12 2.56 

Average 1.97 2.10 1.42 1.59 2.48 2.58 2.08 2.65 

q25 -0.29 -0.24 -0.05 -2.57 -0.31 0.14 -0.41 0.11 

q10 -3.71 -5.20 -4.26 -9.29 -3.24 -2.44 -3.71 -1.58 

q05 -5.04 -11.55 -5.02 -12.36 -4.78 -5.03 -5.04 -3.24 

q01 -9.65 -15.95 -7.30 -15.28 -12.94 -13.94 -10.79 -12.69 

Min -16.69 -16.12 -8.06 -16.03 -16.69 -16.12 -16.69 -16.12 

St.dev. 4.57 6.38 3.49 7.21 5.38 5.50 4.80 4.80 

Skewness -0.37 -0.57 -0.78 -0.54 -0.43 -0.44 -0.32 -0.38 

Kurtosis 3.49 1.09 0.39 0.13 3.34 2.86 3.45 3.55 

Autocor. 0.04 -0.14 -0.12 -0.19 0.08 -0.06 0.08 -0.13 

MaxDD -34.04 -27.00 -9.90 -16.03 -34.04 -27.00 -34.04 -27.00 

ES 5% -8.54 -13.92 -6.57 -14.35 -10.51 -11.14 -8.63 -8.35 

 

Note: Total returns are expressed in percent.  The reported kurtosis is actually the excess kurtosis. 
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Table A2 Tests of Similarity Between MTBI and NTBI by period 

  

MTBI vs. NTBI 

1984Q2-2010Q4 

MTBI vs. NTBI 

1984Q2-1997Q1 

MTBI vs. NTBI 

1997Q2-2010Q4 

MTBI  

1989Q3-2010Q4 

vs. NTBI 

1997Q2-2018Q3 

T-test 0.74 0.82 0.77 0.43 

Kruskal-Wallis 0.63 0.50 0.96 0.54 

Bartlett 0.00 0.00 0.87 1.00 

Fligner-Killeen 0.01 0.00 0.96 0.90 

Anderson-Darling 0.17 0.04 0.98 0.73 

Simulated Skewness 0.46 0.13 0.92 0.90 

Simulated Kurtosis 0.51 0.01 0.98 0.58 

Simulated ES 5% 0.01 0.00 0.58 0.96 

Mahalanobis Distance 0.75 0.00 0.96 - 

Outliers Proportion (%) 6.54 13.46 0.00 - 

 

Note: Table A2 reports the p-values of various tests used to compare the hedonic MTBI with the SPAR NTBI.  It also 

reports the proportion of outliers found in the NTBI compared to what would be expected with the MTBI.  The Welch T-

test and Kruskal-Wallis test investigate if realizations of compared groups could be considered as coming from the same 

distribution on average.  The Bartlett and the Fligner-Killeen tests assess if both groups have the same variance.  The 

Anderson-Darling tests check if the cumulative distribution of compared groups is the same.  The latter test is similar to 

the Kolmogorov-Smirnov but it is more sensitive to differences in tail quantiles.  No satisfactory statistical test exists for 

comparing the skewness and kurtosis of two distributions.  Hence, we propose estimating confidence intervals through a 

simulation process and derive the corresponding p-values.  We apply the jackknife method for resampling the benchmark 

series, with resampled series length being 90% of the benchmark series length and the number of samples being 10,000. 

The moments of interest are then computed on each resampled series and the 10,000 measures allow defining the 

confidence intervals.  In addition to skewness and kurtosis, we also simulated the confidence intervals for the expected 

shortfall at 5%.  As we use time series we also perform one test taking into account the temporal dimension of the data, 

by measuring the Mahalanobis distance between each series and the benchmark.  The latter is similar to the well-known 

tracking error, but it additionally takes into account the variances and correlation structure of the compared series.  The 

significance is estimated relying on bootstrapped critical values.  Finally, the outlier proportion is the number of 

observations relative to the series length being over given upper and lower thresholds defined as a specific quantile of the 

time-varying MTBI series distribution.  Time-varying parameters of the latter distribution are obtained by fitting an 

ARMA(1, 1)-GARCH(1, 1) model with skewed-Student distribution on the transaction-based series.  The threshold 

quantiles are defined such that observations are taken as outliers if they belong to the 1% most extreme realizations of the 

estimated model at a given point in time.  Note also that, as the periods differ in the last comparison case, it is not relevant 

to run the Mahalanobis distance test, as well as the count of outliers with respect to the MTBI. 
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Appendix B: Details on Desmoothing Models 

Appendix B presents the computational details of the various desmoothing models we apply 

and of the unlevered REITs index, as well as computational details of the estimation of tuning 

constants of the Tukey function used in the robust filter. 

The AR Desmoothing Model 

The Geltner (1993b) desmoothing model considers that the current observed appraised value 

depends partly on the past appraised values and on the current public information available.  

This feature comes from the fact that appraisers tend to rely largely on the values they produced 

during the previous periods, adjusting them with respect to the current market environment.  

This leads to the appraisal rule or transfer function we mentioned above that defines the current 

appraised value as: 

𝑉𝑡
𝑎 =  𝛼𝑉𝑡−1

𝑎 + (1 − 𝛼)𝑃𝑡 (B1) 

where 𝑉𝑡
𝑎 is the current appraised value, 𝑉𝑡−1

𝑎  the previous appraised value, 𝑃𝑡 the unobserved 

current market equilibrium price, and 𝛼 the proportion of the current appraised value that relies 

on the previous appraised value (the so-called (de)smoothing parameter).  One obtains the 

smoothing equation by rewriting equation (B1) in terms of returns as: 

𝑟𝑡
𝑎 =  𝛼𝑟𝑡−1

𝑎 + (1 − 𝛼)𝑟𝑡 (B2) 

with 𝑟𝑡
𝑎 the appraised return observed at time t, 𝑟𝑡−1

𝑎  the appraised return for the previous period 

and, 𝑟𝑡, the true return that should prevail with respect to the variation of the unobserved market 

price.  This equation is rearranged in order to express the true return: 

𝑟𝑡 = 
(𝑟𝑡
𝑎−𝛼𝑟𝑡−1

𝑎 )

(1−𝛼)
 (B3) 

According to this equation, the only unknown that must be estimated is 𝛼.  Estimating 𝛼 

requires making some assumptions that particularly pertain to the way the actual unobserved 
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market return 𝑟𝑡 is generated.  As mentioned, it can be assumed to follow an AR(1) process23, 

such as: 

𝑟𝑡 = 𝛾 +  𝜑𝑟𝑡−1 + 𝜀𝑡 (B4) 

with 𝜑 the autoregressive coefficient of the model, 𝛾 the constant term, and 𝜀𝑡 the iid error term 

at period t.  By substituting equation (B3) in equation (B4) one obtains an AR(2) representation 

of the appraised return process: 

𝑟𝑡
𝑎 =  𝛾(1 − 𝛼) + (𝛼 + 𝜑)𝑟𝑡−1

𝑎 + 𝛼𝜑𝑟𝑡−2
𝑎 + 𝜔𝑡 (B5) 

with 𝜔𝑡 = (1 − 𝛼)𝜀𝑡.  Given any values of 𝛾 and 𝜑 one can estimate �̂� as: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝜔𝑡
2(𝛼; 𝛾, 𝜑) 𝑇

𝑡=1  (B6) 

Once the estimate is obtained, one computes the 𝑟𝑡 series using �̂� in equation (B3).  Then, with 

this 𝑟𝑡 series and relying on equation (B4) we estimate new values for 𝛾 and �̂� as: 

(𝛾, �̂�) = 𝑎𝑟𝑔𝑚𝑖𝑛∑ 𝜀𝑡
2(𝛾, 𝜑; �̂�) 𝑇

𝑡=1  (B7) 

These last two estimates feed into equation (B5) and the procedure is repeated until 

convergence.  Note that for the AR models, as well as for the TAR-TAR and the Getmansky, 

Lo and Makarov (2004) models presented below, we transform the price return series and not 

directly the total return series as we assume smoothing impacts the price series only, not the 

income series.  Once the desmoothed price return series is obtained, we add the income returns 

to get the desmoothed total return series.  Decomposing returns in that way is not necessary 

when considering the multivariate model which deals with total returns directly. 

 
23 Of course, a more sophisticated return generating process could be chosen among the ARIMA(p, d, q) family. 
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The TAR-TAR Desmoothing Model 

As proposed by Lizieri, Satchell and Wongwachara (2012) more sophistication can be brought 

into the AR model by allowing for regime switching features in the smoothing equation (TAR-

AR) or in the return process (AR-TAR) or in both equations (TAR-TAR)24.  Regime switching 

in the smoothing equation reflects the fact that appraisers work differently according to the 

economic context, while the regime switching in the return process reflects how it is altered 

across market situations. 

In the case of the regime switching smoothing equation, (B2) becomes: 

𝑟𝑡
𝑎 = (𝛼𝐻1𝑧𝑠>𝑐𝑠 + 𝛼𝐿1𝑧𝑠≤𝑐𝑠)𝑟𝑡−1

𝑎 + (1 − (𝛼𝐻1𝑧𝑠>𝑐𝑠 + 𝛼𝐿1𝑧𝑠≤𝑐𝑠))𝑟𝑡 (B8) 

where 𝛼𝐻 and 𝛼𝐿 are the desmoothing parameters prevailing in high and low regimes, 

respectively, and 1𝑧𝑠>𝑐𝑠 and 1𝑧𝑠≤𝑐𝑠, indicate if the process is in the high or the low regime 

according to 𝑧𝑠, the exogenous variable for determining smoothing regimes, and 𝑐𝑠, the 

threshold separating smoothing regimes. 

In the same way, the return generating process (B4) becomes: 

𝑟𝑡 = (𝛾𝐻1𝑧𝑟>𝑐𝑟 + 𝛾𝐿1𝑧𝑟≤𝑐𝑟) + (𝜑𝐻1𝑧𝑟>𝑐𝑟 + 𝜑𝐿1𝑧𝑟≤𝑐𝑟)𝑟𝑡−1 + 𝜀𝑡 (B9) 

where (𝛾𝐻, 𝜑𝐻) and (𝛾𝐿 , 𝜑𝐿) are the return equation parameters prevailing in high and low 

regimes, respectively, and 1𝑧𝑟>𝑐𝑟  and 1𝑧𝑟≤𝑐𝑟, indicate if the process is in its high or low regime 

according to 𝑧𝑟, the exogenous variable used to determine return process regimes, and, 𝑐𝑟, the 

threshold separating return process regimes.  The exogenous variable used for determining 

regime thresholds can be the same for the smoothing equation and the return generating process.  

We choose the excess stock market returns as the exogenous variable for both processes25. 

 
24 As the classical desmoothing model relies on AR processes in both the smoothing equation (B2) and return 

process (B4), we could refer to it as the AR-AR model. 
25 We also tested with economic activity and interest rates as exogenous variables and results indicated that stock 

market returns were the best choice, according to the optimization outcomes and the proximity reached with the 
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The Getmansky, Lo and Makarov (2004) Model 

The GLM model is actually close to the classic AR model.  However, instead of working on an 

autoregressive representation of the smoothing process it relies on a moving average 

representation.  In order to estimate parameters and practically compute the unsmoothed values 

a moving average process of order k (MA(k))26 is fitted on the observed return series under the 

constraints 𝜃𝑗 ∈ [0, 1] ∀ 𝑗 = 0: 𝑘 and ∑𝜃𝑗 = 1.  Then, the unobserved market returns are 

estimated through the following formula: 

𝑟𝑡 =
𝑟𝑡
𝑎−∑ 𝜃𝑗𝑟𝑡−𝑗

𝑘
𝑗=1

𝜃0
 (B10) 

Note also that from the 𝜃𝑗  parameters one can compute the so-called smoothing index that 

indicates the intensity of smoothing the series suffers.  It is defined as: 

 𝜉 =  ∑ 𝜃𝑎𝑑𝑗.,𝑗
2𝑘

𝑗=0  (B11) 

The closer 𝜉 to 0 the more smoothed the series and conversely. 

The Multivariate Desmoothing Model 

This model, based on multivariate regressions, is particularly inspired by the one presented by 

Pedersen, Page and He (2014) and the time invariant one of Cho, Hwang and Lee (2014).  As 

in the classical desmoothing model, the multivariate model (MtV hereafter) recognizes the fact 

that the current appraisal-based return depends partly on the past appraised return and partly on 

the current unobserved true return.  The true returns are also assumed to depend on exogenous 

 
corresponding transaction-based series.  Note also that unlike Lizieri, Satchell and Wongwachara (2012), using 

British data, we do not lag by one period the exogenous variable but we take its contemporaneous value as our 

tests indicate better results this way.  Another difference is that we prefer to take the excess stock market return 

with respect to the three-month interest rate, taken as the risk-free rate which has changed significantly during the 

relatively long time period that we cover, to insure that threshold values are consistent over the whole period, while 

Lizieri and his colleagues use the raw stock market returns. 
26 Regarding the optimal number of lags, k, Getmansky, Lo and Makarov (2004) suggest k = 2.  However, our 

results indicate that such desmoothed series clearly underestimate the volatility with respect to the benchmark 

transaction-based index.  Hence, we also apply the GLM model with k selected such s all non-zero 𝜃𝑗 parameters 

are present in the model.  This implies k = 8. 
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market and macroeconomic factors.  This is represented by equation (B12) below which is an 

adaptation of equation (B2): 

𝑟𝑡
𝑎  = (1 − 𝜔)𝑟𝑡−1

𝑎 +  𝜔𝑟𝑡 + 𝜀𝑡 = (1 − 𝜔)𝑟𝑡−1
𝑎 +  𝜔∑ 𝛽𝑗

𝐽
𝑗=1 𝑓𝑗;𝑡 + 𝜀𝑡 (B12) 

where 𝜔 is the weight of current unobserved true returns in the current appraisal-based return, 

𝑓𝑗;𝑡 is the jth factor entering the equation explaining the current true return and 𝛽𝑗 is the 

corresponding factor loading27.  Actually, most of the factors proposed by Cho, Hwang and Lee 

(2014) and Pedersen, Page and He (2014) are themselves highly autocorrelated.  Hence, having 

together in the equation the realizations of the set of factors f at time t and 𝑟𝑡−1
𝑎 , which  are by 

construction assumed to depend on all past realizations of these factors, may lead to severe 

multicolinearity and estimation issues.  Thus, we propose to focus on the second part of 

equation (B12), which is also more parsimonious.  Equation (B12) is simply rewritten as: 

𝑟𝑡
𝑎  = 𝜔∑ 𝛽𝑗

𝐽
𝑗=1 𝑓𝑗;𝑡 + 𝜀𝑡 (B13) 

Following Pedersen, Page and He (2014), we use the autoregressive coefficient of order one, 

𝜑, of the appraisal-based return series process in order to estimate 𝜔 as 1 − 𝜑.  We now slightly 

modify equation (B13) as we transform the set of factors f as g = 𝜔𝑓: 

𝑟𝑡
𝑎  = ∑ 𝛿𝑗

𝐽
𝑗=1 𝑔𝑗;𝑡 + 𝜀𝑡 (B14) 

with 𝛿𝑗 the response to the jth transformed factor.  Finally, the estimated coefficients 𝛿𝑗 are 

applied to the original set of factors f in order to get an estimate of the true unobserved returns.  

Combining some results of Cho, Hwang and Lee (2014) and Pedersen, Page and He (2014) we 

select as exogenous factors industrial production, the core inflation, the stock market returns, 

the term spread, the credit spread, the Fama and French (1992, 1993) size factor (SMB), the 

 
27 Unlike Cho, Hwang and Lee (2014) our goal is not to estimate equation (B12) in order to define the desmoothing 

parameter of a classical desmoothing model as (1 − 𝜔), which is simply the autoregressive coefficient of the 

appraisal-based series filtered by a given set of exogenous factors. 
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value/growth factor (HML), the Carhart (1997) momentum factor (WML), and the Pastor and 

Stambaugh (2003) liquidity factor (PS)28. 

REIT-based Indices 

For each direct real estate index that we investigate, we build a corresponding index of REIT 

returns.  As is the case in Fisher, Geltner and Webb (1994), Ling and Naranjo (2015) as well as 

in Hoesli, Oikarinen, and Serrano (2015), the effect of leverage is removed from REIT returns 

because direct investment performance is measured without debt.  For computing the unlevered 

REIT returns we need to retrieve the returns generated by total assets.  To do so, we apply the 

simple weighted average cost of capital (WACC) model as reported in Ling and Naranjo (2015): 

𝑟𝑖,𝑡
𝑇𝐴 = (𝑟𝑖,𝑡

𝐸 𝜗𝑖,𝑡
𝐸 ) + (𝑟𝑖,𝑡

𝐷𝜗𝑖,𝑡
𝐷 ) + (𝑟𝑖,𝑡

𝑃𝜗𝑖,𝑡
𝑃 ) (B15) 

where 𝑟𝑖,𝑡
𝑇𝐴 is the unlevered return on total asset, 𝑟𝑖,𝑡

𝐸 , the levered return on equity observed on 

the stock market, 𝑟𝑖,𝑡
𝐷 , the interest rate paid to the firm’s debt lenders computed as the interest 

expense over the book value of debt at the previous period (𝑖𝑖,𝑡
𝐷 𝑏𝑣𝑎𝑙𝑖,𝑡−1

𝐷⁄ ), and 𝑟𝑖,𝑡
𝑃 , the dividend 

rate paid to preferred equity holders computed as the total preferred dividends over the 

estimated liquidation value of outstanding preferred shares at the previous period 

(𝑝𝑑𝑖𝑣𝑖,𝑡
𝑃 𝑙𝑣𝑎𝑙𝑖,𝑡−1

𝑃⁄ ).  Defining the market capitalization of a firm during the previous period as 

𝑚𝑐𝑎𝑝𝑖,𝑡−1
𝐸 , the total asset value at that time is 𝑇𝐴𝑖,𝑡−1 = 𝑚𝑐𝑎𝑝𝑖,𝑡−1

𝐸 + 𝑏𝑣𝑎𝑙𝑖,𝑡−1
𝐷 + 𝑙𝑣𝑎𝑙𝑖,𝑡−1

𝑃  

and the weights are 𝜗𝑖,𝑡
𝐸 = 𝑚𝑐𝑎𝑝𝑖,𝑡−1

𝐸 𝑇𝐴𝑖,𝑡−1⁄ , 𝜗𝑖,𝑡
𝐷 = 𝑏𝑣𝑎𝑙𝑖,𝑡−1

𝐷 𝑇𝐴𝑖,𝑡−1⁄ , and 𝜗𝑖,𝑡
𝑃 =

 𝑝𝑑𝑖𝑣𝑖,𝑡−1
𝑃 𝑇𝐴𝑖,𝑡−1⁄ .  Once returns have been unlevered at the REIT level, indices are built in 

order to match with the corresponding direct index in terms of property type mix.  This insures 

that the proportion of each sector (apartment, industrial, office, and retail) is the same in both 

indices.  Another adjustment is related to the fact that direct real estate performance is reported 

 
28 The stock market returns are the U.S. MSCI total returns, the term spread is the 10-year Treasury rate minus the 

3-month T-Bill rate, the credit spread is the AAA – BAA corporate bond yields from Moody’s and the SMB, 

HML, WML, and PS factors are sourced from the WRDS database. 
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without accounting for management fees while they are accounted for in reported REIT returns.  

We hence add management fees to REIT returns to make them more comparable with direct 

market returns.  As Ling and Naranjo (2015) and Hoesli, Oikarinen and Serrano (2015), we 

follow Riddiough, Moriarty and Yeatman (2005) and apply 20 basis points management fees 

to quarterly returns.  Finally, as several studies (Ling and Naranjo 2015, Hoesli, Oikarinen and 

Serrano 2015) suggest that the REIT market commonly leads the direct market, we decide to 

lag our REIT indices by one quarter29. 

Robust Filter Optimal Tuning Constants Estimation 

We estimate the optimal tuning constants 𝑐𝑤,𝑈 and 𝑐𝑤,𝐿 entering the robust filter that are relevant 

in our time series context.  We estimate them by simulation which consists first in fitting the 

MTBI index with an ARMA(1, 1)-GARCH(1, 1) process having a skewed-Student residual 

distribution in order to allow for time-varying parameters of the mean and standard deviation 

as well as an asymmetric and leptokurtic distribution.  Then, series of 10,000 observations are 

generated using the parameters estimated during the previous step.  Because these series are 

assumed to be outlier free, we add a given proportion of outliers by replacing randomly chosen 

observations in the simulated series by unlikely values.  Outliers are defined as being equal to 

the 1st or the 99th percentile of the distribution at the point in the series where it replaces the 

previously simulated value.  For each generated series, we apply the robust filter and a given 

observation is recognized as an outlier if its robust weight is less than 0.5.  Ideally, the filter 

should be able to detect all imposed outliers and should not indicate an originally simulated 

observation to be an outlier.  In order to evaluate the ability of the filter to detect the true outliers 

and not wrongly indicate a correct simulated value, with respect to the 𝑐𝑤,𝑈 and 𝑐𝑤,𝐿 parameters, 

we consider minimizing the Anderson-Darling test statistic.  This test, similarly to the 

Kolmogorov-Smirnov test, aims at measuring the difference between two distributions in terms 

 
29 We also perform the analysis without lagging unlevered REIT series by one quarter and with lagging them by 

two quarters, respectively, and find that the best match is obtained with a one-quarter lag. 
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of quantiles repartition.  However, the former test is more sensitive to differences in distribution 

tails than the latter one, what is precisely the part we want to focus on.  The simulation is 

repeated with proportions of outliers being 0, 1, 2.5, 5, and 10 percent, respectively.  The 

simulation results indicate that the optimal values should be 𝑐𝑤,𝑈 =  5 and 𝑐𝑤,𝐿 =  − 6.25.  

The absolute value of these parameters is larger than the 4.685 value usually retained in the 

literature.  This can be explained by the fact that the distributions we consider are leptokurtic 

while the usual value pertains to the normal distribution case.  The difference in absolute value 

between both parameters we estimate is due to the slight negative skewness of real estate return 

distributions. 
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Tables and Figures 

Table 1 Appraisal- and Transaction-Based Indices Comparison – 1984Q2-2018Q3 

  

NPI TBI Desmoothed 

NPI alpha = 

0.8 

Maximum 5.42 19.05 20.80 

Median 2.36 2.32 2.17 

Average 1.99 2.15 1.96 

Minimum -8.24 -16.69 -40.79 

Std Deviation 2.07 4.32 6.22 

Skewness -2.36 -0.35 -2.78 

Kurtosis 8.07 3.61 18.41 

ES 5% -4.91 -8.03 -15.35 

MaxDD -23.79 -34.04 -49.22 

Sharpe Ratio 1.12 0.61 0.36 

Real estate allocation 68.0 32.5 22.6 

Note: Table 1 reports summary statistics of total returns, as well as the optimal allocation to real estate achieved 

by maximizing the Sharpe ratio of a portfolio made of real estate, stocks, and bonds.  These figures are in percent, 

except for skewness, kurtosis, and the Sharpe ratio.  Note also that the kurtosis is actually the excess kurtosis. 
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 Table 2 Summary Statistics of Macroeconomic and Financial Series, 1984Q2-2018Q3 

  

Industrial 

Production 

growth 

Core 

Inflation 
MSCI 

Total 

Returns 

MSCI 

excess 

Total 

Returns 

Term 

Spread 
Credit 

Spread 
SMB HML WML PS 

Max 2.51 1.52 21.90 19.71 3.92 3.00 13.86 7.37 16.60 9.36 

q75 1.13 0.84 7.65 5.43 2.80 1.17 2.14 1.40 3.45 2.28 

Median 0.63 0.59 3.53 1.64 1.94 0.91 0.51 0.25 1.47 0.21 

Average 0.51 0.67 2.93 0.66 1.89 1.00 0.54 0.23 1.70 0.03 

q25 0.21 0.49 -1.17 -3.45 1.01 0.75 -0.90 -1.24 -0.22 -1.86 

Min -11.24 0.07 -28.80 -30.03 -0.37 0.57 -16.88 -9.86 -11.54 -10.78 

St.Dev. 1.27 0.33 8.43 8.41 1.19 0.40 2.94 2.62 3.82 3.54 

Autocor. 0.72 0.65 0.07 0.07 0.88 0.89 -0.34 -0.09 -0.00 0.19 
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Table 3 MtV Model Estimated Parameters, 1984Q2-2018Q3 

  Coefficients T-value 

Constant 4.83*** 8.92 

Industrial Production 0.01*** 1.40 

CPI core -0.12*** -7.75 

MSCI 0.00*** 0.38 

Term Spread -0.03*** -6.79 

Credit Spread -0.02*** 0.08 

SMB 0.00*** 0.21 

HML -0.00*** 0.72 

WML -0.00*** 0.29 

PS 0.01*** 2.03 

      

Adj. R squared 0.41 
 

Note: *, ** and *** denote statistical 

significance at the 10%, 5% and 1% level, 

respectively. 
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Table 4 Summary Statistics of Total Return Series, 1984Q2-2018Q3 

  

NPI TAR-TAR TAR-TAR 

robust 

AR AR robust GLM GLM 

robust 

REITs 

unlevered 

MtV TBI 

Max 5.42 35.85 13.70 31.20 11.48 10.60 6.76 18.16 12.66 19.05 

q99 5.09 22.94 12.41 20.18 11.02 8.59 5.89 13.90 11.61 12.46 

q95 4.48 13.21 10.39 12.06 9.38 5.68 5.40 9.52 9.89 7.75 

q90 3.79 10.90 8.10 9.72 7.45 4.66 4.39 8.28 8.75 6.91 

q75 3.09 5.80 5.28 5.44 4.42 3.54 3.32 5.38 5.92 4.56 

Median 2.36 2.24 2.14 2.27 2.22 2.39 2.40 2.61 2.44 2.32 

Average 1.99 2.34 1.98 1.95 1.89 1.98 1.98 2.68 1.92 2.15 

q25 1.64 -0.62 -0.48 -0.36 -0.22 1.21 1.20 0.27 -1.91 0.03 

q10 -0.05 -5.61 -4.26 -4.78 -3.39 -0.68 -1.20 -2.15 -5.83 -2.98 

q05 -1.58 -8.94 -7.34 -7.85 -6.01 -2.75 -2.77 -5.26 -7.57 -4.76 

q01 -6.61 -18.97 -12.42 -28.30 -11.80 -9.29 -5.59 -12.97 -11.00 -9.13 

Min -8.24 -39.07 -13.84 -55.76 -12.46 -19.88 -6.23 -17.48 -11.73 -16.69 

St.dev. 2.07 8.08 5.09 8.61 4.52 3.26 2.34 4.91 5.44 4.32 

Skewness -2.36 -0.47 -0.44 -2.43 -0.53 -2.73 -1.15 -0.69 -0.38 -0.35 

Kurtosis 8.07 6.76 0.71 16.88 0.85 15.80 2.03 3.01 -0.45 3.61 

Autocor. 0.80 -0.33 -0.09 -0.17 -0.12 0.03 0.40 0.06 0.72 -0.02 

Correl. with TBI 0.50 0.33 0.35 0.37 0.34 0.38 0.40 0.19 0.30 1.00 

MaxDD -23.79 -46.79 -35.38 -64.38 -36.06 -27.49 -19.84 -30.97 -78.64 -34.04 

ES 5% -4.91 -17.59 -10.18 -21.54 -9.03 -7.79 -4.56 -10.37 -9.59 -8.03 

 

Note: Total returns are in percent.  The reported kurtosis is actually the excess kurtosis. 
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Table 5 Tests of Similarity Between All Series and National Transaction-Based Series, 1984Q2-2018Q3 

  

NPI TAR-TAR TAR-TAR 

robust 

AR AR robust GLM GLM 

robust 

REITs 

unlevered 

MtV 

T-test 0.62 0.78 0.71 0.77 0.55 0.64 0.62 0.29 0.65 

Kruskal-Wallis 0.64 0.85 0.84 0.91 0.73 0.83 0.63 0.20 0.89 

Bartlett 0.00 0.00 0.06 0.00 0.59 0.00 0.00 0.13 0.01 

Fligner-Killeen 0.00 0.00 0.09 0.01 0.43 0.00 0.00 0.35 0.00 

Anderson-Darling 0.00 0.06 0.43 0.17 0.82 0.01 0.00 0.26 0.04 

Skewness simu. 0.00 0.79 0.83 0.00 0.72 0.00 0.21 0.57 0.91 

Kurtosis simu. 0.01 0.02 0.24 0.00 0.28 0.00 0.51 0.93 0.01 

ES 5% simu. 0.08 0.00 0.20 0.00 0.43 0.80 0.07 0.18 0.31 

Mahalanobis Distance 0.99 0.00 0.07 0.00 0.15 0.85 0.96 0.02 0.02 

Outliers Proportion (%) 0.00 7.97 0.00 6.52 0.00 0.00 0.00 1.45 0.72 

Real estate allocation (%) 68.0 17.9 29.1 16.9 31.3 46.5 61.7 36.8 10.1 

 

Note: Table 5 reports the p-values of various tests used to compare each desmoothed series and unlevered REIT series with the reference transaction-based series.  It also reports the 

proportion of outliers found in the series.  The Welch T-test and Kruskal-Wallis test investigate if realizations of compared groups could be considered as coming from the same 

distribution on average.  The Bartlett and the Fligner-Killeen tests assess if both groups have the same variance.  The Anderson-Darling tests check if the cumulative distribution of 

compared groups is the same.  The latter test is similar to the Kolmogorov-Smirnov but it is more sensitive to differences in tail quantiles.  No satisfactory statistical test exists for 

comparing skewness and kurtosis of two distributions.  Hence, we propose estimating confidence intervals through a simulation process and derive the corresponding p-values.  We 

apply the jackknife method for resampling the benchmark series, with resampled series length being 90% on the benchmark series length and the number of sample being 10,000. The 

moments of interest are then computed on each resampled series and the 10,000 measures allow defining the confidence intervals.  In addition to skewness and kurtosis, we also 

simulated the confidence intervals for the expected shortfall at 5%.  As we use time series, we also perform one test taking into account the temporal dimension of the data, by measuring 

the Mahalanobis distance between each series and the benchmark.  The latter is similar to the well-known tracking error, but it additionally takes into account the variances and 

correlation structure of the compared series.  The significance is estimated relying on bootstrapped critical values.  Finally, the outlier proportion is the number of observations relative 

to the series length being over given upper and lower thresholds defined as a specific quantile of the time-varying transaction-based series distribution.  Time-varying parameters of 

the latter distribution are obtained by fitting an ARMA(1, 1)-GARCH(1, 1) model with skewed-Student distribution on the transaction-based series.  The threshold quantiles are defined 

such that observations are taken as outliers if they belong to the 1% most extreme realizations of the estimated model at a given point in time.  Finally, the optimal allocation to real 

estate achieved by maximizing the Sharpe ratio of a portfolio made of real estate, stocks and bonds is reported for each investigated series in order to compare with the 32.5% allocation 

achieved with the TBI as reported in Table 1. 
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Figure 1 NPI, TBI, and desmoothed NPI Total Returns, 1984Q2 – 2018Q3 
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Figure 2 Hedonic MTBI and SPAR NTBI, 1984Q2 – 2018Q3 
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Figure 3 NPI, TAR-TAR, and AR Returns with Regimes, 1984Q2 – 2018Q3 
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Figure 4 TBI, TAR-TAR, and AR Returns with Regimes, 1984Q2 – 2018Q3 
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Figure 5 TAR-TAR, and Robust TAR-TAR Returns with Regimes and Robust Weights 
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Figure 6 TBI, TAR-TAR, and AR Total Returns with Robust Series and Regimes, 1984Q2 – 

2018Q3 
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Figure 7 TBI, GLM, and Robust GLM Returns, 1984Q2 – 2018Q3 
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Figure 8 TBI, MtV, and Unlevered REIT Returns, 1984Q2 – 2018Q3 
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Figure 9 Kernel Density Estimation of Total Return Distributions, 1984Q2 – 2018Q3 
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Figure 10 Kernel Density Estimation of Total Return Distributions cont’d, 1984Q2 – 2018Q3 
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