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VIV of flexible structures in 2D uniform flow

Abstract

The paper investigates Vortex-Induced Vibration (VIV) of a horizontal flexible structure with pinned-pinned

ends in uniform flow. The fluid - structure interaction is modelled using the wake oscillator approach to describe

fluctuations of the fluid forces based on the results, previously reported by (Pavlovskaia et al., 2016), (Postnikov

et al., 2016), (Kurushina et al., 2018). New two-dimensional wake oscillator models are developed in this study

employing a number of alternative damping types in the fluid equation. The proposed models are calibrated

with the published experimental data by (Sanaati and Kato, 2012), for VIV of a horizontal flexible structure

for the middle cross-section. The calibration is performed with the focus on the maximum of the observed

displacement amplitude in the cross-flow direction. One of the models having the Van der Pol - Krenk-Nielsen

damping allowed achieving the lowest objective function during the calibration and, hence, was selected for the

detailed analysis in 3 and 5 mode approximations. The dynamics of this model is considered in terms of the

time histories, changes in the standard deviations of the modal coefficients along the reduced velocity range

and frequency response. Also, a comparison with the alternative model versions in terms of the displacements

generated at different locations is provided.

In contrast to the previous findings by (Kurushina et al., 2018) for VIV of rigid structures, for the flexible

structures it was found in this study that both Van der Pol and Rayleigh damping types appear to be applicable

for the VIVs prediction. A detailed consideration of the 3 mode approximation of the Krenk-Nielsen - Van der

Pol model reveals a presence of co-existing solutions in a number of regions of the reduced velocity. They are

present in short ranges of reduced velocity in between the lock-in peaks of the in-line displacement coefficient

of the first mode. Modulations and co-existing solutions in the in-line modal coefficients make the in-line

displacement prediction challenging while the cross-flow displacement amplitudes are described reasonably well

by the proposed models.

Keywords: Vortex-Induced Vibrations, wake oscillator model, flexible structure, uniform flow, model cali-

bration, co-existing solutions

1 Introduction

Application of flexible structures is related to the progress of subsea production industry which is focused on

extraction of oil and gas resources from greater ocean depths. The offshore production systems currently can

operate in depth over 2000 m by using systems of flexible risers, flowlines and umbilicals. As any other slender

body, flexible offshore structures experience interactions with the flow caused by waves at the proximity of the

free water surface and deep water currents. For a structure, an increase of the vibration amplitude, when the

vortex shedding frequency is near one of the natural frequencies of the structure, is defined as a ”resonance”,

where the fluid motion represents the source of external excitation.

The vortex shedding frequency of a fixed structure is dependent on the flow velocity and the Strouhal

number, which is approximately constant for a wide range of Reynolds numbers [1]. When the vortex shedding

frequency approaches the natural frequency of a structure which is considered as a cylinder, it becomes ”locked-

in”, which means it keeps constant the vibration frequency and does not follow the Strouhal relationship for a
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range of the flow velocity [2]. This state is referred in the literature as ”lock-in” or ”synchronisation” between

the vortex shedding process and the structural motion, where large displacement amplitudes (”near-resonance

vibration”) are often observed within the lock-in regime [2].

Ability to learn from the experimental data is critical for improving the fundamental understanding of vortex-

induced vibrations. The difference between low and high mass ratio structures originates from experiments

and is widely discussed (see, for example, [3, 4]), allowed to calibrate semi-empirical models using the mass

ratio as important parameter [5, 6]. In our view, an enhancement to the prediction accuracy of VIV for

flexible structures, should be based on the qualitative patterns identified by analysing experimental data as, for

example, discussed in [7] or in [8]. Two types of structural response during VIVs have been revealed in [8] by

scrutinizing the recorded signals, where one shows periodic or quasi-periodic responses, and another indicates

chaotic vibrations. These response types have been defined in [8] as a mixture of the excited mode shapes

with static nodal points and the mode shapes with nodal points propagating along the structure. A different

proportion of these two types of modes, according to [8], defines whether the resulting structural motion is more

periodic (if the first type dominates) or chaotic (if the second type prevails).

Structures are considered rigid in VIV studies, if only one mode can be excited, and as flexible, if two or

more harmonics can potentially come into the synchronization (lock-in) with drag and lift forces of external

fluid. Experimental studies of vortex-induced vibrations in flexible structures have been attracting attention of

the research community over the last three decades. The work by Alexander [9] was one of the first with the

long wire (a flexible structure), which was investigated both in the laboratory and in the field conditions. The

study reported overall lower cross-flow displacement amplitudes than for low aspect ratio structures based on

the data available at that time.

The author of [7] investigated a horizontal flexible structure in sheared flow and discussed the conditions when

a single-mode lock-in, a multi-mode lock-in or non-lock-in state can be observed. It was highlighted that a multi-

mode response with the static nodal and antinodal points is likely to occur on the low aspect ratio structures.

The study showed that the propagation of the nodal and antinodal points along the structure increases with

the increase of the aspect ratio. A multi-mode lock-in can be characterised with lower displacement amplitudes

than a single-mode lock-in, and the number of the potentially excited modes depends on how many natural

frequencies of multiple modes fall into the interval of the vortex shedding frequency. Infinitely long structures

with multi-mode lock-in were considered in the study [10] and modelled using the structural, hydrodynamic

and wave radiation dampings, varied spatially along their lengths.

A comparison of the observed lock-in behaviour of a flexible structure and a 1DOF rigid structure is presented

in [11]. These results are similar to the previously reported in [7, 9], although, the flexible structure demonstrated

higher displacement amplitudes than the 1DOF rigid structures. The increase in the displacement amplitude for

the reduced velocity exceeding 12.0 was observed in [11] and was named the ”high-speed mode”, as this mode

was present only for the increasing flow velocity. Studies on flexible and rigid structures has also been extended

to VIV mitigation. For example, investigation in [12] was focused on a horizontal flexible structure VIV with

and without helical strakes, and it was shown that the suppression is less effective for a flexible structure than

it is for a rigid structure.

Responses of flexible structures appear more complex than for rigid structures, that manifests also in the

relationship of in-line and cross-flow displacement amplitudes. The vibrations of a long flexible horizontal

structure in uniform flow were investigated in [13], where up to 6 and 12 modes for the cross-flow and in-line

directions, respectively, were observed. The in-line and cross-flow displacement amplitudes were obtained to

be of the same order, that is clearly different from the relationships typical for rigid structures, where in-line
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displacement amplitudes can be 10 times lower than cross-flow amplitudes (see, for example, [14]). Also, the

responses recorded in [13] were asymmetrical relatively the pipe length, and the authors considered them as a

product of different modal amplitudes, modal frequencies and phase differences between modes.

Vertical structures experiencing VIV were considered in [15, 16] for the stepped and in [17–19] for the

uniform flows. The authors of [16] found the amplitudes of the in-line oscillations to be of the same order as

the cross-flow oscillations. The work reported in [17] considered low mode numbers and the hysteresis effect

in terms of each mode, and the even modes were not observed in the in-line direction, under the symmetric

loading. Horizontal structure in oscillatory flow was considered in [20].

Although a significant amount of experimental data is available, there are no robust theoretical models of

vortex-induced vibrations, which would allow accurate predictions for all the known cases. Time-consuming

computational fluid dynamics (CFD) is currently one of the ways to determine accurately the values of fluc-

tuating fluid forces and resulting motion of the considered structures. By solving the Navier-Stokes equations,

CFD codes calculate the variables of the boundary layer of the fluid around structure simulating the process of

vortex formation and tracking changes in the pressure, velocity, vorticity fields which affect the lift and drag

forces acting on slender structures. For example, one of the recent works in this area, [21], considered a flexible

three-dimensional riser using ANSYS software and achieved agreement for four velocity profiles (two uniform,

two sheared) with the data [22]. A couple of other works, [23, 24], applied different CFD codes for the cases of

zero damping elastically-supported rigid structures at low Reynolds number. The definite advantage of CFD is

the capability to consider various structural geometry, flows of different angles relatively the structures, time-

dependent flows, different boundary conditions and to vary a number of structures. The difficulty here is that

increasing the complexity of the case, presenting the structure(s) and flow(s) in more details requires more cells

in the mesh as discretisation of the considered space and more time steps or iterations at the solution stage,

especially, for turbulent or sheared flow. Thus, CFD often arrives to solving hundreds of thousands equations

simultaneously, which can be sometimes reduced by adaptive meshing based on the results of the previous step.

Despite of the accuracy advantages and adaptability of CFD for various cases, the complexity of this method

makes the strong argument to develop phenomenological (semi-empirical) models.

In our view, the main reason why the semi-empirical VIV models are not robust enough is a lack of effort

for calibration of the existing models and developing new ones. Calibration can be designed using the expensive

experimental data or the CFD-generated data for a number of cases (see, for example, [25]). Calibrated

phenomenological models can be implemented in the software, as for example, they are in Orcaflex [26], where a

few alternative methods (wake oscillator, vortex tracking, framework for Shear7 [27]) are suggested to the user

for VIV prediction.

One of the phenomenological approaches to model VIV problems utilises nonlinear oscillators with a self-

excited and self-limited cycle as a mean to imitate fluctuations of the lift and drag forces acting on the structure.

From this perspective, observed patterns of vortex formation and changes in the boundary layer do not play a

role in the final predictions of displacements and forces. The ideas of this approach have been conceived around

fifty years ago, and the notable publications include [28, 29]. The strength of wake oscillators is their simplicity,

which is a weakness at the same time: the link to reality has to be constructed carefully through the set of

empirical coefficients.

The mathematical apparatus of wake oscillator methods has evolved during the past 20 years, and at the

present time, it includes number of fluid equations [30]; coupling terms between the structural and the fluid

equation [31] and between two fluid equations [32]; frequency-dependent coefficients [33]; nonlinear terms in

structural equation [34]; various nonlinear damping terms in the fluid equation as proposed and explored in
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[6, 35–39]. Tuning the empirical coefficients was discussed in [5, 34, 39–42]. Majority of these tools have

been applied to model the rigid structures with one or two degrees-of-freedom in uniform flows. The recent

wake oscillator models of flexible structures were suggested in [43, 44]. Viable semi-empirical method, as an

alternative to wake oscillator in the future, is application of neural networks for VIV problem, suggested in [45]

for top-tensioned risers.

The work presented in this paper aims to develop a wake oscillator based model to describe VIVs of a flexible

structure in two dimensions and for different cross-sections. Here, the various nonlinear damping types will be

compared, and the developed suite of mathematical models will be calibrated with the published experimental

data. The case of the uniform flow and the relatively short structures is the focus of this investigation. Math-

ematical formulation is based on the previously proposed models for one-dimensional flexible structure VIV in

[46, 47], and experimental data employed for the model calibration have been obtained by Sanaati and Kato

[48] for the horizontally positioned flexible structure.

The rest of the paper is organised as follows. Section 2 provides details of the new two-dimensional model

of a flexible structure, capable of oscillating in both in-line and cross-flow directions. Section 3 describes the

model calibration procedure and the results for 28 versions of the proposed model. The properties of a selected

models based on Krenk-Nielsen and Van der Pol equations are considered in Section 4. A further comparison

of the calibrated model versions is given in Section 5. Section 6 discusses the results of the conducted research

and opportunities to improve the prediction of vortex-induced vibrations of flexible structures.

2 Mathematical modelling and fluid nonlinearities

Cross-flow and in-line vibrations of flexible structure subjected to the uniform flow are considered in this study.

The structure is positioned in vertical or horizontal configuration as shown in Fig. 1, and the two displacements

x and y (in-line and cross-flow) are calculated whereas axial motion in Z̄ direction is not considered. The

approach employed in [46] for structures moving in cross-flow direction only is developed here for the case of

both in-line and cross-flow vibrations.

To be able to describe a real submerged slender structure in the vertical or near vertical position and

compare with the field measurements, it is essential to work in the effective tension - apparent weight space

[49]. This space accounts for the pressure of the internal and the displaced external fluid and its variation along

the significant structural length. The focus of the current work is on the occurrence and development of the

lock-in state for structures in the air using the structural equation as appears in [46] and the fluid equation

with the calibrated empirical constants. This approach appears to be sufficiently accurate to simulate VIVs as

they develop in the laboratory conditions as in [48]. However, for the future analysis of the real systems the

apparent weight and effective tension will be required to be taken into account.

Euler-Bernoulli beam equation is used to describe the vibration of a flexible structure positioned vertically:

m∗
∂2~r(Z̄, t)

∂t2
+ EI

∂4~r(Z̄, t)

∂Z̄4
− ∂

∂Z̄

(
T
∂~r(Z̄, t)

∂Z̄

)
= ~FF (Z̄, t). (1)

Here, m∗ is mass per unit length including structural mass (and mass of internal fluid if applicable) and fluid

added mass, EI is bending stiffness, T is the tension at the cross-section, ~r is the vector of displacement of

the structure, and ~FF is the vector of fluid forces acting on the structure. The displacement vector and forcing

vector depend on time t and location on the beam Z̄, which constitutes the distance from the bottom end of

the beam up to the considered cross-section. The tension T at the location Z̄ along the beam is defined as

T = Tb + WwZ̄, where Tb is tension at the bottom of the vertical structure or Tb = T0 −WwL with T0 being

the pretension applied to the top end as shown in Fig. 1b, and Ww is the structural weight per unit length. For

4



Figure 1: Two-dimensional flexible structure interacting with the uniform flow of velocity U : (a) in horizontal arrange-

ment; (b) in vertical arrangement. Here, D is structural diameter, m is structural mass per unit length, q and w are

wake coefficients, x and y are displacements of the structure, and T0 is tension applied at the top of vertical structure or

at the one side of the horizontal structure.

the horizontal structure (as shown in Fig. 1a), the influence of the structural weight per unit length is being

neglected, because the weight and the pretension T0 are perpendicular to each other in this case, and therefore,

the total tension is T = Tb = T0.

Displacement vector is defined as ~r = x~i + y~j, where ~i and ~j are unit vectors along the in-line axis X and

cross-flow axis Y , respectively. Therefore Eq.(1) can be re-written as:

m∗ẍ+ EIx′′′′ − (Tb +WwZ̄)x′′ − (Ww)x′ = (~FF )X , (2)

m∗ÿ + EIy′′′′ − (Tb +WwZ̄)y′′ − (Ww)y′ = (~FF )Y , (3)

where dot denotes differentiation with respect to time, and prime represents differentiation with respect to

coordinate Z. (~FF )X and (~FF )Y are projections of the total fluid force on the axes X and Y .

The total fluid force can be represented as a sum of the lift and drag forces ~FL and ~FD:

~FF (Z̄, t) = ~FL + ~FD. (4)

The drag force is defined as:

~FD =
ρFCDD

2
|~Urel|~Urel, (5)

where CD is a drag coefficient, ρF is fluid density, D is cylinder diameter, and ~Urel is relative velocity of the

flow around cylinder:

~Urel =
(
U − ∂x(Z̄, t)

∂t

)
~ι− ∂y(Z̄, t)

∂t
~j, (6)

where U is velocity of the flow in direction X. In this case, the relative velocity of the flow ~Urel determines the

direction of the drag force, which is always opposite the cylinder motion.

The drag coefficient is assumed to be a sum of the initial mean drag coefficient, CD0 and fluctuating drag

coefficient, CflD :

CD = CD0 + CflD . (7)
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The lift force is calculated as proposed in [25, 46]:

~FL =
ρFD

2
CL|~Urel|2R

(π
2
,~k
)
·
~Urel

|~Urel|
; (8)

where CL is the lift coefficient and R(π2 ,
~k) is the tensor of rotation which turns the relative velocity vector ~Urel

in a counterclockwise direction by 90 degrees so that:

R(
π

2
,~k) · ~Urel =

∂y(Z̄, t)

∂t
~ι+

(
U − ∂x(Z̄, t)

∂t

)
~j. (9)

To approximate the fluid forces, two wake coefficients, w and q are introduced and they are defined in the

following way:

w =
2CD
CD0

, q =
2CL
CL0

, (10)

where CL0 is the initial lift coefficient. As proposed earlier, these wake coefficients are calculated using empirical

wake oscillator equations which are designed in the way they can generate a self-excited and self-limited cycle

oscillations of the fluid variables w and q, which represent the fluctuations of the drag and lift force. Following

the approach taken in [25], the in-line oscillator will have frequency doubling coefficients.

Following [46], the model investigated in this study will be initially derived using two Van der Pol oscillators

for fluctuations of the fluid forces presented by wake coefficients w and q:

ẅ + 2εxΩF (w2 − 1)ẇ + 4Ω2
Fw = Axẍ;

q̈ + εyΩF (q2 − 1)q̇ + Ω2
F q = Ayẍ.

Here, εx and εy are fluid damping (Van der Pol) parameters, Ax and Ay are coupling coefficients, and ΩF is

the frequency of vortex shedding, dependent on the Strouhal number St:

ΩF = 2πSt
U

D
. (11)

Then the fluid force projections on the axes X and Y are calculated as:

(~FF )X = (~FD)X + (~FL)X =
ρFD

4

√(
U − ∂x

∂t

)2
+
(∂y
∂t

)2(
2CD0U − (12)

− 2CD0
∂x(Z̄, t)

∂t
+ w(Z̄, t)CflD0U − w(Z̄, t)CflD0

∂x(Z̄, t)

∂t
+ q(Z̄, t)CL0

∂y(Z̄, t)

∂t

)
;

and

(~FF )Y = (~FD)Y + (~FL)Y =
ρFD

4

√(
U − ∂x

∂t

)2
+
(∂y
∂t

)2(
− 2CD0

∂y(Z̄, t)

∂t
− (13)

− w(Z̄, t)CflD0

∂y(Z̄, t)

∂t
+ q(Z̄, t)CL0U − q(Z̄, t)CL0

∂x(Z̄, t)

∂t

)
.

In order to integrate the model using a multi-mode approximation in the future, the expression |~Urel| =√
(U − ∂x

∂t )2 + (∂y∂t )2 needs to be expanded in a Taylor series. In the previous studies, Postnikov [50] has

compared the responses of wake oscillator models which contain exact and approximate (where the terms of

the third order and higher were neglected) expressions of the relative velocity |~Urel| in the formula for the fluid

forces. He has shown that in the considered range of velocities there were no significant differences between the

models behaviour. Therefore, in the current work only the terms up to the second order will be utilised as:√(
U − ∂x(Z̄, t)

∂t

)2
+
(∂y(Z̄, t)

∂t

)2
= U

[
1− 1

U

∂x(Z̄, t)

∂t
+

1

2U2

(∂y(Z̄, t)

∂t

)2
+ ...

]
. (14)

6



Finally, the complete dimensional system of equations for the two-dimensional structure is written as:

m∗ẍ + EIx′′′′ − Tbx′′ −WwZ̄x
′′ −Wwx

′ =
ρFD

4

(
2CD0U

2 − 4CD0ẋU + (15)

+ wCflD0U
2 − 2wCflD0ẋU + qCL0ẏU + 2CD0ẋ

2 + wCflD0ẋ
2 − qCL0ẋẏ + CD0ẏ

2
)
,

m∗ÿ + EIy′′′′ − Tby′′ −WwZ̄y
′′ −Wwy

′ =
ρFD

4

(
− 2CD0Uẏ − CflD0Uwẏ +

+ CL0U
2q − 2CL0Uqẋ+ 2CD0ẋẏ

)
,

ẅ + 2εxΩF (w2 − 1)ẇ + 4Ω2
Fw = Axẍ,

q̈ + εyΩF (q2 − 1)q̇ + Ω2
F q = Ay ÿ.

The system of the equations (15) was transformed into a non-dimensional form using the following set of

variables and parameters:

τ = ω0t, X =
x

D
, Y =

y

D
, ωni =

ωsti
ω0

, ΩR =
ΩF
ω0

, ζ =
Z̄

L
. (16)

Here, τ , X, Y , ωni, ΩR are dimensionless time, in-line displacement, cross-flow displacement, natural frequency

of the mode number i, and vortex shedding frequency; ωsti is the dimensional frequency of the mode i; ω0 is the

reference frequency; ζ is the non-dimensional coordinate indicating location along the beam; Z̄ is the distance

from the beginning of beam to the considered point; L is length of the beam.

The natural frequency of the horizontal beam of the mode i is:

ωsti =
πi

L

√
EIπ2i2

L2m∗
+
Tb
m∗

. (17)

The full non-dimensional set of equations is as follows:

Ẍ +
EI

m∗ω2
0

X ′′′′ − Tb
m∗ω2

0

X ′′ − WwLζ

m∗ω2
0

X ′′ − Ww

m∗ω2
0

X ′ =
aΩ2

R

2πSt
− (18)

− 2aΩRẊ +
bΩ2

R

4πSt
w − bΩRwẊ +

cΩR
2
qẎ + 2πStaẊẊ + πStaẎ Ẏ ,

Ÿ +
EI

m∗ω2
0

Y ′′′′ − Tb
m∗ω2

0

Y ′′ − WwLζ

m∗ω2
0

Y ′′ − Ww

m∗ω2
0

Y ′ = −aΩRẎ −
b

2
ΩRwẎ +

+
cΩ2

R

4πSt
q − cΩRqẊ + 2πStaẊẎ ,

ẅ + 2εxΩRw
2ẇ − 2εxΩRẇ + 4Ω2

Rw = AxẌ,

q̈ + εyΩRq
2q̇ − εyΩRq̇ + Ω2

Rq = AyŸ ,

where a, b and c are dimensionless coefficients:

a =
CD0ρFD

2

4πm∗St
, b =

CflD0ρFD
2

4πm∗St
, c =

CL0ρFD
2

4πm∗St
. (19)

The approximate solution is obtained using the Galerkin approximation, as in [46, 47], in the following form:

X(ζ, τ) =
N∑
n=1

Xn(τ)X̃n(ζ), Y (ζ, τ) =
N∑
i=1

Yn(τ)Ỹn(ζ), (20)

w(ζ, τ) =
N∑
n=1

wn(τ)w̃n(ζ), q(ζ, τ) =
N∑
i=1

qn(τ)q̃n(ζ).

Here, sinusoidal functions are chosen as the mode shapes as X̃n(ζ) = Ỹn(ζ) = w̃n(ζ) = q̃n(ζ) = sin(nπζ). To

derive the final set of the model equations, approximations Eqs.(20) are substituted into Eq.(18). Then both

parts of the obtained equations are multiplied by sin(iπζ) and integrated with respect to the coordinate ζ over
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the length of the structure. Finally, the resulting equations are multiplied by 2 so that the following system of

ordinary differential equations is obtained:

Ẍi + 2aΩRẊi + ω2
niXi =

Ww

Lm∗ω2
0

N∑
n=1

XnΦni +
aΩ2

R

iπ2St
(1− cos(iπ)) + (21)

+
bΩ2

R

4πSt
wi − bΩR

N∑
n=1

N∑
m=1

wnẊmΠnmi +
cΩR

2

N∑
n=1

N∑
m=1

qnẎmΠnmi +

+ 2πSta
N∑
n=1

N∑
m=1

ẊnẊmΠnmi + πSta
N∑
n=1

N∑
m=1

ẎnẎmΠnmi,

Ÿi + aΩRẎi + ω2
niYi =

Ww

Lm∗ω2
0

N∑
n=1

YnΦni −
b

2
ΩR

N∑
n=1

N∑
m=1

wnẎmΠnmi +

+
c

4πSt
Ω2
Rqi − cΩR

N∑
n=1

N∑
m=1

qnẊmΠnmi + 2πSta
N∑
n=1

N∑
m=1

ẊnẎmΠnmi,

ẅi + 2εxΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnwmwlΨnmli

)
− 2εxΩRẇi + 4Ω2

Rwi = AxẌi,

q̈i + εyΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nqmqlΨnmli

)
− εyΩRq̇i + Ω2

Rqi = AyŸi,

where Φni, Πnmi and Ψnmli are dimensionless coefficients obtained during the discretization procedure due to

the mode interaction:

Φni = 2
[ ∫ 1

0

(
nπ cos(nπζ) sin(iπζ)

)
dζ −

∫ 1

0

(
ζn2π2 sin(nπζ) sin(iπζ)

)
dζ
]
, (22)

Πnmi = 2

∫ 1

0

(
sin(nπζ) sin(mπζ) sin(iπζ)

)
dζ, (23)

Ψnmli = 2

∫ 1

0

(
sin(nπζ) sin(mπζ) sin(lπζ) sin(iπζ)

)
dζ. (24)

Thus, the system of equations (21) can be solved taking into account N modes containing 4N equations.

It should be noted that the coefficients Φni and Ψnmli remain the same as derived in the model of flexible

structure describing cross-flow vibrations only [46]. The term containing the coefficients Πnmi is new and it

accounts for mode interactions due to the in-line motion.

In order to explore different description of the fluid forces, the flexible model Eqs.(18) was modified where

various nonlinear wake oscillators were used instead of the two original Van der Pol equations. These fluid

oscillators are listed in Tables 1 and 2, and the nonlinear damping terms here have the following distinctions:

(i) the same (εx, εy) or different (εx1, εx2, εy1, εy2) fluid damping coefficients, (ii) number of damping terms (2 or

3 per oscillator), and (iii) contribution of the wake coefficient and its rate of change within the 3rd or 5th order

terms. Combinations of oscillators allow managing the accuracy of prediction of the proposed model, and they

are given in Table 3. Overall, 28 combinations of alternative oscillators are considered similar to the procedure

in [5].

In Tables 1 and 2, the dimensionless coefficient Υnmlksi for the Landl equation is calculated using the

following integral:

Υnmlksi = 2

∫ 1

0

(sin(nπζ) sin(mπζ) sin(lπζ) sin(kπζ) sin(sπζ) sin(iπζ))dζ. (25)

Table 1: Different discretized in-line wake oscillators for two-dimensional flexible structure.

Oscillator Equation of motion
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Van der Pol ẅi − 2εxΩRẇi + 2εxΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnwmwlΨnmli

)
+ 4Ω2

Rwi = AxẌi;

Modified

Van der Pol
ẅi − 2εx1ΩRẇi + 2εx2ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnwmwlΨnmli

)
+ 4Ω2

Rwi = AxẌi;

Rayleigh ẅi − 2εxΩRẇi + 2
εx
ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnẇmẇlΨnmli

)
+ 4Ω2

Rwi = AxẌi;

Modified

Rayleigh
ẅi − 2εx1ΩRẇi + 2

εx2
ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnẇmẇlΨnmli

)
+ 4Ω2

Rwi = AxẌi;

Landl

ẅi + 2εx1ΩRẇi − 2εxΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnwmwlΨnmli

)
+

+2εx3ΩR

N∑
n=1

N∑
m=1

N∑
l=1

N∑
k=1

N∑
s=1

(
ẇnwmwlwkwsΥnmlksi

)
+ 4Ω2

Rwi = AxẌi;

Krenk-

Nielsen

ẅi − 2εx1ΩRẇi + 2εx2ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnwmwlΨnmli

)
+

+2
εx3
ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
ẇnẇmẇlΨnmli

)
+ 4Ω2

Rwi = AxẌi;

Table 2: Different discretized cross-flow wake oscillators for two-dimensional flexible structure.

Oscillator Equation

Van der Pol q̈i − εyΩRq̇i + εyΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nqmqlΨnmli

)
+ Ω2

Rqi = AyŸi;

Modified

Van der Pol
q̈i − εy1ΩRq̇i + εy2ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nqmqlΨnmli

)
+ Ω2

Rqi = AyŸi;

Rayleigh q̈i − εyΩRq̇i +
εy
ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nq̇mq̇lΨnmli

)
+ Ω2

Rqi = AyŸi;

Modified

Rayleigh
q̈i − εy1ΩRq̇i +

εy2
ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nq̇mq̇lΨnmli

)
+ Ω2

Rqi = AyŸi;
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Landl

q̈i + εy1ΩRq̇i − εy2ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nqmqlΨnmli

)
+

+εy3ΩR

N∑
n=1

N∑
m=1

N∑
l=1

N∑
k=1

N∑
s=1

(
q̇nqmqlqkqsΥnmlksi

)
+ Ω2

Rqi = AyŸi;

Krenk-

Nielsen

q̈i − εy1ΩRq̇i + εy2ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nqmqlΨnmli

)
+

+
εy3
ΩR

N∑
n=1

N∑
m=1

N∑
l=1

(
q̇nq̇mq̇lΨnmli

)
+ Ω2

Rqi = AyŸi;

Table 3: Investigated combinations of oscillators (”X” denotes the combinations covered in this research, and ”-” means

the combination is not covered).

XXXXXXXXXXXXXX
In-line

Cross-flow
Van der Pol

Modified

Van der

Pol

Rayleigh
Modified

Rayleigh
Landl Krenk-Nielsen

Van der Pol X - X - X X

Modified Van der Pol - X - X X X

Rayleigh X - X - X X

Modified Rayleigh - X - X X X

Landl X X X X X X

Krenk-Nielsen X X X X X X

The next section provides the summary of the calibration procedure, description of experimental data selected

for calibration, the short-list of the calibrated models with appropriate sets of coefficients and the comparison

of the presented options.

3 Calibration results

As all wake oscillator models are inherently empirical, they require careful selection/calibration of the empirical

parameters based on the experimental data. In the current work, displacement amplitudes of a flexible structure

in uniform flow are chosen for model calibration and the experimental results by Sanaati and Kato [48] are used.

In [48] a flexible beam is positioned horizontally, and different cases of axial stiffness are considered. The first

case implies no axial vibrations, while the structure oscillates in both in-line and cross-flow directions.

The data presented in [48] contains only the cross-flow displacement, but nevertheless the structure had

the capacity to move in both cross-flow and in-line directions. The data set consists of 25 data points in the

range of reduced velocity from 1.8 to 15.0, corresponding to a velocity of the flow from 0.10 to 0.82 m/s and

the Reynolds number from 1780 to 14800 approximately. The maximum non-dimensional displacement is 0.48

recorded at the reduced velocity of 5.7. The mass ratio reported in [48] is 1.17 which corresponds to mass-

damping ratios µξ = 0.0281 and (µ+ CA)ξ = 0.0521 (if CA = 1). The considered flexible beam has the length

of 2.92 m, diameter of 0.018 m, applied tension of 147 N and bending stiffness of 9.0 Nm2. The displacement
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measurements in [48] were performed at the cross-section of ζ = 0.5 (middle of the beam), therefore, all versions

of the model are calibrated for this cross-section. The reduced velocity from the experimental data available in

the literature is used in all calculations performed in this paper, which is defined by using the experimentally

determined frequency of the first mode ωst1 as UR = U
ωst1D

.

Calibration is performed by using the schemes which are very similar to the ones utilised in the case of

the 2DOF rigid structure in [5]. Experimental data by Sanaati and Kato [48] are obtained using the standard

deviation of the recorded displacement signal, and therefore only the algorithms with the standard deviation are

applied for calibration. Calibration scheme ”Cross-flow 1” computes the objective function using the weighted

sum of the absolute squared differences, and the scheme ”Cross-flow 2” - using the weighted sum of the relative

errors in each of the control points. All 28 versions of the new flexible model are the subject to calibration, as

performed for the rigid structure model in [5]. In these versions, the wake oscillator equations given in Tables 1

and 2 are applied in pairs. Calibration is performed for only a 1 mode approximation of the model of a flexible

structure.

The most accurate models obtained during the calibration procedure are listed in Table 4 from the best

option at the top to the least accurate option in the bottom. The quality of the fit provided by the identified

options is illustrated in Fig. 2, where a comparison of the experimental results and the model predictions in

terms of amplitudes of the in-line and cross-flow displacements is shown for different reduced velocities. Table

4 presents the accuracy rating for considered models only in terms of the cross-flow displacement.

Table 4: The most accurate models calibrated using data by Sanaati and Kato [48].

Option Fluid nonlinearities Scheme Set of coefficients

1 Krenk-Nielsen - Van der

Pol

Cross-flow 2 CL0 = 0.33, CD0 = 1.37, Cfl
D0 = 1.06, εx1 = 0.8990, εx2 =

1.6158, εx3 = 2.5295, εy = 0.0895, Ax = 10.88, Ay =

6.51, CA = 1.00,K = 0.57

2 Van der Pol - Van der Pol Cross-flow 2 CL0 = 0.74, CD0 = 1.59, Cfl
D0 = 0.01, εx = 0.8154, εy =

1.0116, Ax = 11.96, Ay = 3.94, CA = 2.77,K = 1.35

3 Rayleigh - Rayleigh Cross-flow 1 CL0 = 0.72, CD0 = 2.60, Cfl
D0 = 1.55, εx = 0.7041, εy =

0.0825, Ax = 12.37, Ay = 8.43, CA = 2.15,K = 0.88

4 Modified Rayleigh - Krenk-

Nielsen

Cross-flow 2 CL0 = 0.49, CD0 = 2.36, Cfl
D0 = 1.61, εx1 = 0.8687, εx2 =

0.4177, εy1 = 0.6427, εy2 = 0.0900, εy3 = 0.0312, Ax =

12.06, Ay = 11.07, CA = 3.23,K = 1.67

5 Modified Rayleigh - Modi-

fied Van der Pol

Cross-flow 2 CL0 = 0.29, CD0 = 1.74, Cfl
D0 = 0.19, εx1 = 0.3028, εx2 =

0.3498, εy1 = 0.0645, εy2 = 0.0478, Ax = 11.98, Ay =

11.90, CA = 1.17,K = 0.47

6 Landl - Krenk-Nielsen Cross-flow 2 CL0 = 0.44, CD0 = 1.68, Cfl
D0 = 0.21, εx1 = 0.3050, εx2 =

0.3131, εx3 = 0.3092, εy1 = 0.0614, εy2 = 0.0604, εy3 =

0.0538, Ax = 12.00, Ay = 12.00, CA = 1.48,K = 0.25

It should be noted that the applicability boundaries for the identified sets of coefficients have to be carefully

checked in the future. Our results indicate that these coefficients vary significantly depending on the structural

configuration, mass ratio, damping ratio and Reynolds number range. The quality of the fit for the target

experimental data varies as follows:

• Option 1 of Table 4 (Krenk-Nielsen - Van der Pol system), shown in dark blue in Fig. 2, provides an

almost exact fit of the transition from the initial branch to the super-upper branch for the cross-flow
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displacement. An overestimation is visible for the region of reduced velocity from approximately 6 to

8, and underestimation in the region of reduced velocity from 8 to 12. This Option also predicts two

resonance peaks of the in-line displacement amplitude with the first peak greater than the second one.

• Option 2 of Table 4 (Van der Pol - Van der Pol system), shown in red in Fig. 2, demonstrates the

growing branch of the cross-flow resonance peak very similar to Option 1. The cross-flow lower branch is

not properly described by this model as it demonstrates significant underestimation of the displacement

amplitude for this region (UR ∈ (8.0, 12.0)). In the in-line direction, Option 2 shows one resonance peak

at the reduced velocity of 5, which is significantly lower than the other models predict.

• Option 3 of Table 4 (Rayleigh - Rayleigh system), shown in yellow in Fig. 2, gives the peak predictions for

both directions qualitatively very similar to Option 1. In the cross-flow direction, Option 3 demonstrates

higher error with the experimental data. In the in-line direction, the first resonance is higher than the

second resonance, and the displacement amplitudes are higher than predicted by Option 1.

• Option 4 of Table 4 (Modified Rayleigh - Krenk-Nielsen system), shown in violet in Fig. 2, shows the

best agreement with the experimental data of the cross-flow displacement until the reduced velocity

of 7.0. Prediction of the initial branch up to the reduced velocity of 5.1 is quite consistent with the

prediction by Options 1 and 2. Option 6 predicts an earlier and higher cross-flow peak value in the interval

(UR ∈ (5.1, 5.7)) in between the available experimental data points, and the interval of the reduced velocity

from 5.7 to 6.8 is estimated significantly better than by the other models with the lowest errors. For the

reduced velocity higher than 7.0, the cross-flow lower branch is significantly underestimated. In the in-line

direction, Option 4 predicts the highest first resonance peak among the models, but relatively average

second resonance peak.

• Option 5 of Table 4 (Modified Rayleigh - Modified Van der Pol system), shown in green in Fig. 2, agrees

well with the prediction given in Option 3 in terms of the cross-flow displacement. In the in-line direction,

Option 5 has a much better agreement with Option 6 which implies a very small first synchronisation

peak and a big second peak.

• Option 6 of Table 4 (Landl - Krenk-Nielsen system), shown in blue in Fig. 2, demonstrates a wider version

of the cross-flow resonance peak: overestimated initial branch and the region (UR ∈ (6.0, 8.0)). The in-line

lock-in develops with the second peak only.

Thus, the main differences among the considered options are focused around the width of the initial and

super-upper branches in terms of the reduced velocity range and the balance between the in-line lock-in peaks.

For in-line direction, three out of six considered models predict the amplitudes during the first synchronisation

to be greater than the second synchronisation; two options predict the first peak to be much lower than the

second peak and the last option shows that the first peak is not present or negligible.

If only the accuracy of predicting the cross-flow displacement is taken into account, the models collected in

Table 4 show that both Rayleigh and Van der Pol damping terms are applicable for VIV prediction for this

combination of case parameters. Option 1 of Table 4 (Krenk-Nielsen - Van der Pol system calibrated with

the scheme Cross-flow 2) gives the most accurate prediction of the cross-flow displacement observed in the

experiments by Sanaati and Kato [48] in accordance with the previously formulated objective function. The

properties of this model are analysed in the next Section.
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Figure 2: Displacement amplitudes during synchronisation state over the range of reduced velocity of the flow UR

predicted by the models from Table 4 calibrated in respect to the experimental data [48]: (a) prediction of in-line

amplitudes of displacement; (b) calibrated cross-flow amplitudes of displacement. Mass ratio is µ = 1.17, damping ratio

is ξ = 0.024, Reynolds number range from 1780 to 14800.

4 Krenk-Nielsen - Van der Pol model

The dynamic responses of a horizontal beam have been analysed using calibrated Krenk-Nielsen - Van der

Pol model for a range of vortex shedding frequency or related reduced velocity. The reduced velocity was

calculated based on the first natural frequency of the beam. As this work is primarily focused on the in-

line and cross-flow displacements X(τ, ζ) and Y (τ, ζ), the behaviour of the wake coefficients w and q and

corresponding fluid forces will not be shown in this paper. Three and five mode approximations were calculated

(i.e. X(ζ, τ) =
∑N
n=1Xn(τ)X̃n(ζ) and Y (ζ, τ) =

∑N
i=1 Yn(τ)Ỹn(ζ) for N = 3 and 5), and this section provides

details of the obtained solutions for Xn(τ) and Yn(τ). The following analysis of the model dynamics is given

only for the option with Krenk-Nielsen - Van der Pol damping which appears to be the most accurate calibration

result, but it is possible to extend it to further options in the future.

4.1 Five mode approximation

The calibrated model with Krenk-Nielsen - Van der Pol damping can account for different numbers of modes.

Displacement amplitudes at different positions along the beam predicted by a 5 mode approximation of the

model are given in Fig. 3 for the cross-flow and in-line directions. They were calculated for a range of reduced

velocity and are presented here as function of vortex shedding frequency, ΩR. The values in these figures are

the standard deviations of the displacement signals obtained using Eq. (18).

The results displayed in Figs 3a, 3b, 3e and 3f are qualitatively consistent with the ones shown in [46]

for a one-dimensional system, where the structure oscillates in the cross-flow direction only. The cross-flow

displacement amplitudes at the cross-section ζ = 0.10 in Fig. 3a show the growth in amplitude from the first

lock-in peak to the fifth lock-in peak. The cross-section ζ = 0.50 in Fig. 3b corresponds to a practical absence

of the second and forth resonance peaks, because of the nodal point of the second and the forth modes. The

location ζ = 0.35 is in proximity of the node of the third mode, which results in the absence of the third

resonance peak in Fig. 3e. Finally, the location ζ = 0.75 is the node of the forth mode, where the lock-in peak

does not develop, as shown in Fig. 3f. The location ζ = 0.75 is also an antinode for the second mode, which

results in the highest second peak in the mentioned records.

The peak record taken for the in-line displacement shows much more consistency throughout the different
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Figure 3: Displacement amplitudes at different locations along the horizontally positioned structure: (a) cross-slow

amplitudes at ζ = 0.10; (b) cross-slow amplitudes at ζ = 0.50; (c) in-line amplitudes at ζ = 0.10; (d) in-line amplitudes

at ζ = 0.50; (e) cross-slow amplitudes at ζ = 0.35; (f) cross-slow amplitudes at ζ = 0.75; (g) in-line amplitudes at

ζ = 0.35; (h) in-line amplitudes at ζ = 0.75. The model is approximated for 5 modes.
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locations in Figs 3c, 3d, 3g and 3h. The third resonance peak practically appears to be the highest for all

considered locations, even near the nodal point of the third mode at ζ = 0.35, as in Fig. 3g. Also, the peaks

around the first and second resonance frequencies emerge not as two single peaks, but a combination of 2-4

peaks with unclear borders. The pattern of growth of peak heights at ζ = 0.10, as in Fig. 3a, is present in Fig.

3c from the first couple of peaks to the third peak.

The location of the in-line nodal points can be the result of applying sinusoidal functions in modes approxima-

tion and, also, the frequency doubling coefficients in the wake equation. Hence, the question about introducing

frequency doubling coefficients when considering multiple modes should be more thoroughly addressed in the

future research, based on the experimental evidence on the development of in-line modes.

Fig. 4 shows the trajectories of the in-line and cross-flow displacements at the reduced velocities of 6.0,

10.0, 20.0, 28.0 and 45.0, which correspond to the peaks of cross-flow displacement amplitudes in Figs 3a, 3b,

3e and 3f in different cross-sections. It is possible to observe the variations of the ”moon” shape throughout all

the cross-sections at the UR = 10.0 and UR = 45.0. At the other reduced velocities, the transitions from the

”figure-of-eight” to the ”moon” shape are observed. The reversed ”moon” shape is observed at UR = 20.0 at the

cross-sections ζ = 0.10 and ζ = 0.50 and at UR = 28.0 and UR = 45.0 at the cross-sections ζ = 0.25 and ζ = 0.35.

The amplitude of oscillations reduces in the cross-flow direction when the cross-section is corresponding to the

nodal points of separate modes or located near them. Thus, the cross-flow amplitudes of the second mode

reduce at the cross-section ζ = 0.50, cross-flow amplitudes of the third mode - at the cross-section ζ = 0.35,

and the forth mode cross-flow displacement decays at the cross-sections ζ = 0.25 and ζ = 0.50.

The dominating frequencies obtained by the 5 mode approximation of the model are presented in Fig. 5.

4.2 Co-existing solutions

Our analysis of the system dynamics reveals that co-existing solutions are observed at some reduced velocity

ranges. To explore these phenomena, 3 mode approximation is considered and the results are presented in this

section. To demonstrate these solutions, amplitudes of modal coefficients X1(τ), Y1(τ), X2(τ), Y2(τ), X3(τ)

and Y3(τ) are displayed in Fig. 6 for the considered reduced velocity range. As can be seen from this figure,

co-existing responses are observed around reduced velocities 7.8 to 8.8 and 14.1 to 15.3. In these both regions,

three solutions are obtained depending on the initial conditions applied for integration.

It should be noted that in both cases the co-existing solutions are observed away from the resonance peaks

near the locations of frequency lock-ins switches shown in Fig. 7 where the frequencies of in-line and cross-flow

displacements at locations ζ = 0.25, 0.35, 0.50 are presented. While at the top of the resonance peak solutions

are mostly harmonic, these responses at the lock-in boundaries are complex, and the standard deviation although

being computationally convenient, does not provide adequate information about them.

The time histories of the modal coefficients corresponding to different solutions at the reduced velocity

UR = 8.2 are shown in Figs 8, 9 and 10 by blue, green and violet colours corresponding to the solutions

presented in Fig. 6. A set of figures showing co-existing solutions at the reduced velocity 14.6 (Figs 13 and 14)

is included in Appendix A and the time histories in orange, violet and red in these figures correspond to the

solutions in respective colours in Fig. 6.

The first feature that appears to be common for Figs 8, 9, 10 and 13 is that time histories are highly

modulated, especially, for the in-line coefficients X1, X2, X3. The highest amplitudes belong to the modal

coefficients Y1 and X3 in Fig. 8, Y1 and X2 in Fig. 9, Y2 and X3 in Fig. 10, Y3 and X3 in Fig. 13, and they

appear indeed to be less modulated than others.

There is also a similarity in displacement amplitudes observed in the green solution detailed in Fig. 9
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Figure 4: Displacement orbits generated by the 5 mode approximation at the locations ζ = 0.10, 0.25, 0.35 and 0.50 for

the following reduced velocities: (a) UR = 6.0 corresponding to ΩR = 1.2; (b) UR = 10.0 corresponding to ΩR = 2.0; (c)

UR = 20.0 corresponding to ΩR = 4.0; (d) UR = 28.0 to ΩR = 5.6 and (e) UR = 45.0 corresponding to ΩR = 9.0.

and in the solution marked in violet and shown in Fig. 10, where both are highly modulated in the in-line

modal coefficients and provide similar values of the standard deviation. However, they have definitely different

frequencies as can be seen from Fig. 7. Also, the solution marked in violet calculated for the reduced velocity

of 8.20 is more computationally demanding.

Fig. 11 in this section and Fig. 15 in Appendix B show the co-existing solution orbits on the phase planes

at the cross-sections ζ = 0.10, 0.25, 0.35 and 0.50 calculated for the reduced velocities of 8.2 and 14.6. The
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(a) (b)

Figure 5: Dominating frequencies generated by the 5 mode approximation of the model for the cross-section ζ = 0.35:

(a) in-line displacement frequencies; (d) cross-flow displacement frequencies.

modulations observed above for the 3 modes approximation of the considered model result in drifting shapes from

”figure-of-eight” to ”moon” shape and back for all three solutions at the reduced velocity of 8.2, as displayed in

Fig. 11. Orbits in Figs 15a and 15b are much more clear, even balancing between ”figure-of-eight” and ”moon”

shapes, and relatively close to each other in terms of amplitudes at cross-sections ζ = 0.1 and ζ = 0.25. The

orbits at peaks of the modal coefficient X1 (shown in Fig. 6a) are displayed in Fig. 16 in Appendix B for

UR = 3.6, 6.0, 13.0 and 21.0.

In summary, the analysis conducted in this subsection confirms that modulation of the generated signals

reduces with the amplitude growth. The most modulated signals belong to the in-line direction, and the

first mode appears to be the best indicator of the solution switch. These results are obtained using simple

modifications of initial conditions and can be improved if other techniques of search for coexisting solutions will

be applied.

The next section discusses the differences of how the various combinations of oscillators perform in terms of

the modal coefficients and final displacements over the range of the reduced velocity of the flow.

5 Comparison of models

This section compares the first three models from Table 4 containing Krenk-Nielsen - Van der Pol damping,

Van der Pol - Van der Pol damping and Rayleigh - Rayleigh damping. The differences are demonstrated using

3 mode approximations in terms of the modal coefficients X1, X2, X3, Y1, Y2, Y3 and the final displacements X

and Y over the range of the reduced velocity UR = U
Dωst1

, computed using the experimental frequency of the

first mode ωst1 [48].

The modal coefficients X1 and X3 of the aforementioned models demonstrate an occurrence of multiple

co-existing solutions as was discussed in the previous section of this paper. The modal coefficient X1 contains

at least four lock-in peaks of a variative height generated by all the considered models. Options 1 and 3

generate the first resonance peak in the modal coefficient X1 as the highest, which can potentially come from

the presence of the Rayleigh damping term in equation of the drag force fluctuations. The majority of the

co-existing solutions are observed in the small intervals of reduced velocity that are located approximately from

UR = 8.0 to UR = 16.0 for all the in-line coefficients X1, X2, X3. The generated time histories are complex in

this region, and the standard deviations are a very simplified representation of the generated dynamics. Model

3 generates the highest modal coefficients X1, X2, X3 and the highest in-line displacement peaks as shown in
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Figure 6: Amplitudes of the modal coefficients over the reduced velocity range generated by the 3 modes approximation

of the model with Krenk-Nielsen - Van der Pol damping: (a) modal coefficient X1; (b) modal coefficient Y1; (c) modal

coefficient X2; (d) modal coefficient Y2; (e) modal coefficient X3; (f) modal coefficient Y3. Blue, green, violet, orange

and red lines denote five coexisting solutions.

Figs 12a, 12c, 12e and 12g. This model also indicates the presence of a relatively high in-line peak around the

reduced velocity UR = 25.

The contribution of the modal coefficients in the final displacement of the structure in the cross-flow directon

varies with the cross-section considered, which leads to a different distribution of the peak heights in both

directions. In Fig. 12b, the third lock-in peak around UR = 20 is the highest, due to a significant contribution
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Figure 7: Frequencies of displacement signals at different locations generated by 3 modes approximation model: (a)

frequencies of in-line displacement amplitudes at ζ = 0.25; (b) frequencies of cross-flow displacement amplitudes at

ζ = 0.25; (c) frequencies of in-line displacement amplitudes at ζ = 0.35; (d) frequencies of cross-flow displacement

amplitudes at ζ = 0.35; (e) frequencies of in-line displacement amplitudes at ζ = 0.50; (f) frequencies of cross-flow

displacement amplitudes at ζ = 0.50.

of the third mode at ζ = 0.10. The cross-section ζ = 0.25 corresponds to the antinode of the second mode and

results in the second highest peak around UR = 10 in Fig. 12d. At the cross-sections ζ = 0.35 and ζ = 0.50,

the displacement amplitudes demonstrate the highest first peak for almost all the considered models in Figs 12f

and 12h. The cross-section ζ = 0.35 is in the proximity of the nodal point of the third mode, this is why, the
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Figure 8: Time histories of amplitudes of the modal coefficients generated by the 3 modes approximation of the model

with Krenk-Nielsen - Van der Pol damping at reduced velocity UR = 8.2 corresponding to the blue solution in Fig. 6:

(a) modal coefficient X1; (b) modal coefficient Y1; (c) modal coefficient X3; (d) modal coefficient Y3. Red line denotes

the value of standard deviation of the signal. The modal coefficients X2 and Y2 have comparatively small values and are

not presented in this figure.

third peak is practically absent in Fig. 12f. Respectively, the cross-section ζ = 0.50 corresponds to the nodal

point of the second mode, hence, Fig. 12h shows absence of the second resonance peak.

The in-line displacement in the range below UR = 15.0 shows the similar peak patterns as in the cross-flow

direction. In particular, responses of Models 1 and 3, depicted in Fig. 12a, show four peaks in this velocity

interval with the fourth peak highest, and in Fig. 12c the second peak is the highest, although they occur earlier

than in the cross-flow direction in terms of the reduced velocity range. In the cross-section ζ = 0.35 in Fig.

12e, the first and the second peaks generated by these options are approximately of the same height. And in

the cross-section ζ = 0.50 in Fig. 12g, the first peak is the highest.

The in-line displacement in Fig. 12 in the range from approximately UR = 15.0 to UR = 30.0 shows a

significant wide peak which is defined by the contribution of the modal coefficients X1 and X3. The peak shape

is influenced mainly by the third harmonics in the cross-sections ζ = 0.10 and ζ = 0.25 (see Figs 12a and 12c),

by the first harmonics only - in the cross-section ζ = 0.35 (see Fig. 12e), and by both the first and the third

harmonics - in the anti-nodal cross-section ζ = 0.50 (see Fig. 12g). The in-line displacement suggested by

Model 2 shows a less visible presence of co-existing solutions, less peaks and lower amplitudes, with the second

peak highest in the cross-sections ζ = 0.10 and ζ = 0.25 and with the first peak highest in the cross-sections

ζ = 0.35 and ζ = 0.50.
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Figure 9: Time histories of amplitudes of the modal coefficients generated by the 3 modes approximation of the model

with Krenk-Nielsen - Van der Pol damping at reduced velocity UR = 8.2 corresponding to the green solution in Fig. 6:

(a) modal coefficient X1; (b) modal coefficient Y1; (c) modal coefficient X2; (d) modal coefficient Y2; (e) modal coefficient

X3; (f) modal coefficient Y3. Red line denotes the value of standard deviation of the signal.

6 Conclusions

Modelling a flexible structure capable of moving in two directions and interacting with the uniform flow was

undertaken in this study. The main effort has been focused on the case of horizontally positioned structure. The

proposed new models include wake oscillator equations containing various damping terms and used to simulate

the fluid forces, similar to the ones successfully applied for the 2DOF rigid structure [5]. The calibration of the

models has been performed using the techniques suggested and tested in [5] using the data [48] for the cross-flow

displacements recorded at the middle of the structure. The properties of the calibrated model variations have

been studied for three selected options, namely those containing Krenk-Nielsen - Van der Pol damping, Van der

Pol - Van der Pol damping and Rayleigh - Rayleigh damping.
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Figure 10: Time histories of amplitudes of the modal coefficients generated by the 3 modes approximation of the model

with Krenk-Nielsen - Van der Pol damping at reduced velocity UR = 8.2 corresponding to the violet solution in Fig. 6:

(a) modal coefficient X1; (b) modal coefficient Y1; (c) modal coefficient X2; (d) modal coefficient Y2; (e) modal coefficient

X3; (f) modal coefficient Y3. Red line denotes the value of standard deviation of the signal.

The detailed analysis of the model dynamics has been performed for the version of Krenk-Nielsen - Van der

Pol dampings using 5 mode approximation and 3 mode approximation. The former has shown that a number

of synchronization regions in the reduced velocity range coincides with the number of considered modes for the

cross-flow displacement, whereas there are more synchronization regions for the in-line displacement amplitudes

than the modes taken into account. The in-line displacement frequencies also demonstrated the presence of the

dominating low frequencies in a few short ranges of the reduced velocity over the general trend of the growing

frequencies.

A detailed consideration of the 3 mode approximation of the Krenk-Nielsen - Van der Pol model reveals a

presence of co-existing solutions in a number of regions of the reduced velocity. They are observed clearly for

the in-line displacement amplitudes and, respectively, for the in-line modal coefficients. The found solutions
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Figure 11: Cross-flow vs. in-line displacement amplitudes generated by the 3 modes approximation of the model

with Krenk-Nielsen - Van der Pol damping at the beam cross-sections ζ = 0.10, 0.25, 0.35, 0.50 at the reduced velocity

UR = 8.2: (a) trajectories corresponding to the blue solution in Fig. 6; (b) trajectories corresponding to the green

solution in Fig. 6; (c) trajectories corresponding to the violet solution in Fig. 6.

demonstrate significant differences in the generated displacement amplitudes for the in-line direction and minor

differences for the cross-flow direction. Some of these co-existing solution regions are located in between the

peaks of the modal coefficient X1. Our analysis also shows that using a standard deviation of the time histories of

the modal coefficients generated by the model to represent the system response might not be always sufficient due

to multiple frequencies present in the time histories. The dominating frequencies of the generated displacements

at the cross-sections ζ = 0.25, 0.35 and 0.50 demonstrate that some of the co-existing solutions have the

frequencies significantly lower than the general trend in the intervals of the observed co-existence, but outside

of those regions, some higher frequencies can be observed. It should be noted that co-existing responses of the

rigid structure exhibiting flow-induced vibrations have been previously observed experimentally in [51] for the

velocity ranges between VIV lock-in and galloping in the air. However further experimental investigations are

required to verify a presence of the co-existing solutions in flexible structures.

The study revealed, that unlike the results for 2DOF rigid structures, both Van der Pol and Rayleigh

damping terms appear to be applicable for predicting the behaviour of flexible structures experiencing VIV

at this combination of the mass ratio of 1.17, the damping ratio of 0.024 and the Reynolds number range

from 1780 to 14800. The results of the calibration procedure can be improved in the future, if any confirmed

classification of experimental cases of vortex-induced vibrations of flexible structures or more results about the
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in-line vibrations would be available.

The prospective future work should focus on the validation of the suggested and calibrated model for the

cases of horizontally and vertically positioned structures. Also, the model should be expanded to include profiles

of the flow velocity, and hence, become a tool to describe sheared flow cases.
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Figure 12: Displacement amplitudes over the reduced velocity range generated by the 3 mode approximations of the

first three models from Table 4 in cross-sections: (a) in-line displacement in the cross-section ζ = 0.10; (b) cross-flow

displacement in the cross-section ζ = 0.10; (c) in-line displacement in the cross-section ζ = 0.25; (d) cross-flow displace-

ment in the cross-section ζ = 0.25; (e) in-line displacement in the cross-section ζ = 0.35; (f) cross-flow displacement

in the cross-section ζ = 0.35; (g) in-line displacement in the cross-section ζ = 0.50; (h) cross-flow displacement in the

cross-section ζ = 0.50.
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Appendix A

All time histories presented in this Appendix are computed for the experimental reduced velocity UR = 14.6 by

the model version with Krenk-Nielsen - Van der Pol damping terms, Option 1 in Table 4.

Figure 13: Time histories of amplitudes of the modal coefficients generated by the 3 modes approximation of the model

with Krenk-Nielsen - Van der Pol damping at reduced velocity UR = 14.6 corresponding to the red solution in Fig. 6:

(a) modal coefficient X1; (b) modal coefficient Y1; (c) modal coefficient X3; (d) modal coefficient Y3. Blue line denotes

the value of standard deviation of the signal. The modal coefficients X2 and Y2 have comparatively small values and are

not presented in this figure.
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Figure 14: Time histories of amplitudes of the modal coefficients generated by the 3 modes approximation of the

model with Krenk-Nielsen - Van der Pol damping at reduced velocity UR = 14.6 corresponding to the solutions in Fig.

6: (a) modal coefficient X1 corresponding to the orange solution; (b) modal coefficient X1 corresponding to the violet

solution; (c) modal coefficient Y2 corresponding to the orange solution; (d) modal coefficient Y2 corresponding to the

violet solution; (e) modal coefficient X3 corresponding to the orange solution; (f) modal coefficient Y3 corresponding to

the violet solution. Red line denotes the value of standard deviation of the signal. The modal coefficients Y1, X2 and Y3

have comparatively small values in both solutions and are not presented in this figure.
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Appendix B

Orbits presented in this Appendix are computed by the 3 modes approximation of the model with Krenk-Nielsen

- Van der Pol damping for a number of reduced velocities and cross-sections.

Figure 15: Cross-flow vs. in-line displacement amplitudes generated by the 3 modes approximation of the model

with Krenk-Nielsen - Van der Pol damping at the beam cross-sections ζ = 0.10, 0.25, 0.35, 0.50 at the reduced velocity

UR = 14.6: (a) trajectories corresponding to the orange solution in Fig. 6; (b) trajectories corresponding to the violet

solution in Fig. 6; (c) trajectories corresponding to the red solution in Fig. 6.
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Figure 16: Trajectories of the in-line and cross-flow displacements generated by the model with Krenk-Nielsen - Van

der Pol damping terms at the reduced velocities corresponding to the peaks of the modal coefficient X1 in Fig. 6a: (a)

UR = 3.6; (b) UR = 6.0; (c) UR = 13.0; (d) UR = 21.0.
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