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Abstract: Legumes are a source of health-promoting macro- and micronutrients, but also contain
numerous phytochemicals with useful biological activities, an example of which are saponins.
Epidemiological studies suggest that saponins may play a role in protection from cancer and benefit
human health by lowering cholesterol. Therefore, they could represent good candidates for specialised
functional foods. Following the consumption of a soya-rich high-protein weight-loss diet (SOYA
HP WL), the concentrations of Soyasaponin I (SSI) and soyasapogenol B (SSB) were determined
in faecal samples from human volunteers (n = 10) and found to be between 1.4 and 17.5 mg per
100 g fresh faecal sample. SSB was the major metabolite identified in volunteers’ plasma (n = 10)
after consumption of the soya test meal (SOYA MEAL); the postprandial (3 h after meal) plasma
concentration for SSB varied between 48.5 ng/mL to 103.2 ng/mL. The metabolism of SSI by the
gut microbiota (in vitro) was also confirmed. This study shows that the main systemic metabolites
of soyasaponin are absorbed from the gut and that they are bioavailable in plasma predominantly
as conjugates of sapogenol. The metabolism and bioavailability of biologically active molecules
represent key information necessary for the efficient development of functional foods.

Keywords: soybean; saponin; sapogenol; gut metabolism; bioavailability; human study;
functional food

1. Introduction

Diet plays an important role in disease prevention and particularly in cases where disease is
caused by insufficient, excessive or unbalanced nourishment [1,2]. Epidemiological studies have
shown that a plant-based diet can reduce the risk of many chronic diseases [1,3]. Plant foods often
contain compounds, known as anti-nutrients, which can potentially interfere with the absorption
and metabolism of some nutrients. Saponins for instance can affect nutrient absorption by inhibiting
metabolic and digestive enzymes, and by binding with nutrients. On the other hand, studies have
demonstrated that saponins may also have various biological and physiological effects when consumed
on a regular basis and may be beneficial for the prevention of diseases, such as cancer and coronary
diseases [4]. Frequent legume consumption (four or more times weekly compared with less than once
a week) has been associated with a lower risk of coronary heart disease (CHD) and cardiovascular
disease (CVD) by 22% and 11% respectively [5]. Legume seeds contain a diverse range of bioactive
compounds that vary considerably in their biochemistry. These can include protease inhibitors,
a-amylases, lectins, glycosides, tannins, saponins and alkaloids [6].

Foods 2020, 9, 422; doi:10.3390/foods9040422 www.mdpi.com/journal/foods

http://www.mdpi.com/journal/foods
http://www.mdpi.com
https://orcid.org/0000-0003-3582-6040
https://orcid.org/0000-0001-9381-684X
http://www.mdpi.com/2304-8158/9/4/422?type=check_update&version=1
http://dx.doi.org/10.3390/foods9040422
http://www.mdpi.com/journal/foods


Foods 2020, 9, 422 2 of 11

Soya beans appear to be the major source of dietary saponins. The amount of soyasaponins found
in soya is typically between 2.4 g kg−1 and 6.5 g kg−1 [7]. The soyasaponin content depends on the
variety, environment, location, and degree of maturity of the soya bean [8]. Soyasaponins are mainly
classified into group A and group B soyasaponins. Group A soyasaponins are glycosylated at the C-3
and C-22 position of soyasapogenol A, whereas group B soyasaponins, are glycosylated at the C-3
position of soyasapogenol B [9].

Soyasaponins are believed to be beneficial for human health. Several studies have shown that
soyasaponins have anti-carcinogenic, hepatoprotective and antiviral activities, and soyasapogenols
exhibit antigenotoxic, hepatoprotective and cytotoxic activities [10–13]. Our previous work, based on
a human intervention study, has demonstrated a significant effect in lowering plasma cholesterol
levels following a high protein soy diet for 14 days [14]. Therefore, these molecules represent
potential candidates for the development of functional foods and nutraceuticals for the prevention
and maintenance of chronic diseases. Since consumers struggle to meet dietary recommendations and
to eat a balanced and healthy diet, the food industry is continuously looking to the development of
functional foods to make a valuable contribution to people’s diets. Functional foods beneficially affect
one or more target functions of the body, beyond adequate nutritional effects. It is pivotal to elucidate
the metabolism and bioavailability of a molecule in order to understand its bioactivity and to properly
design functional food ingredients.

The presence of soyasaponins and their metabolites in systemic circulation and any related
physiological effects may depend on their metabolism by intestinal bacteria. Hu et al. [15] demonstrated
that soyasaponin I is poorly absorbed by human intestinal cells and appeared to be metabolised to
soyasapogenol B by human intestinal microorganisms and excreted in the faeces. Furthermore, in vivo
studies using a rat model suggested that soyasapogenols are much better absorbed than corresponding
soyasaponins [16]. The scientific understanding on their bioavailability and biological effects in
humans is still not fully elucidated. The aims of the present work are to assess the bioavailability of
dietary soyasaponins in humans using a randomised crossover human intervention, and to establish
the concentrations and forms of the main metabolites following the consumption of soya-rich diets.
Findings from this study provide further insights for the use of soya beans as a functional ingredient in
food formulation.

2. Materials and Methods

2.1. Materials

HPLC grade methanol and analytical grade ethanol were purchased from Fisher Scientific
(Leicestershire, UK). LC-MS methanol was purchased from Sigma Aldrich (Dorset, UK) and the
Soyasaponin I and Soyasapogenol B standards from Phytolab GmbH & Co. KG (Vestenbergsgreuth,
Germany).

2.2. Human Dietary Intervention Study

Subjects: The study was approved by the North of Scotland Research Ethics Service (NOSTRES)
and is registered on ClinicalTrials.gov (http://clinicaltrials.gov/show/NCT02080325). The full study
details have been previously described [14]. Briefly, the study protocol was a within-subject crossover
design and lasted 31 days as described in the diagram shown in Figure 1. Ten overweight/obese
males (body mass index (BMI) ≥ 27 kg/m2) were recruited. At days 1–3, the volunteers were asked to
consume a maintenance diet (MTD) which contained normal protein; between days 4–17 and 18–31 the
volunteers were randomised to either a high protein (HP) weight loss (WL) diet where the protein was
comprised predominantly of meat (MEAT HP WL) or a HP, WL diet where the protein was comprised
predominantly of soya (SOYA HP WL). Subjects attended the Human Nutrition Unit (HNU) of the
Rowett Institute for a breakfast test meal at the end of each dietary period, corresponding to study
days 18 and 32. Sample collection: Subjects attended the HNU for a test meal with blood sample
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collection occurring hourly for five hours. Blood samples were collected using a 20-gauge VenflonTM

Intravenous cannula directly into heparinised tubes at the 0, 1, 2, 3, 4 and 5 h time points. The samples
were centrifuged (1500× g, 15 min; 4 ◦C) within 45 min to separate the plasma. The harvested plasma
was aliquoted and stored at −80 ◦C until analysis. Only after the deconjugation of volunteers’ plasma
with sulfatase and glucuronidase the presence of SSI and SSB in these samples was confirmed. Faecal
samples were collected on day 7 of each diet (SOYA and MEAT HP WL) using the commode specimen
collection system (Fisher Scientific, Loughborough, UK). Formulation and preparation of the diets:
MTD (days 1–3) consisted of 15% protein, 30% fat and 55% carbohydrate fed to 1.5×measured resting
metabolic rate (RMR). The SOYA HP WL or MEAT HP WL diet was fed to 100% RMR on a five-day
rotation menu, fed as three meals per day containing 30% protein, 30% fat and 40% carbohydrate.
MEAT HP WL was based on chicken and beef meat and the SOYA HP WL was based on soya protein or
soya-textured vegetable protein. The main soya-containing foods used in the study diet were sourced
from the UK market and were identified and analysed for their soyasaponin content. These were soya
milk (ALPRO™, Alpro, Ghent, Belgium), margarine (PURE™, Kerry Foods, Warrington, UK), sausages
(GRANOSE™, Leeds, UK), powdered isolate (Pulsin Ltd., Gloucester, UK), meat-style slices (Redwood
Wholefood Company®, Corby, UK), and soya flour (Community Foods Ltd., London, UK).
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2.3. Extraction and Analysis of Saponins (Soyasaponin I) from Soya Food Products 

For the extraction of SSI from soya food products, a previously described method [9] was used 
with slight modifications. Dried and milled sample (1 g) was extracted with ethanol (70% v/v; 10 mL) 
and stirred for 3 h at room temperature. The mixture was then centrifuged (3220× g; 10 min; 4 °C) and 
the supernatant concentrated to a volume of 3 mL using a rotary evaporator (Büchi R-114, Marshall 
Scientific, Hampton, NH, USA) at a temperature below 30 °C and pressure 60 mbar. The residue was 
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Figure 1. Detailed diagram of the study protocol. After a maintenance diet (MTD) (days 1–3), the order
of treatment was randomised using a within-subject, crossover design, whereby 50% of the subjects
began with the meat high-protein weight loss (MEAT HP WL) diet (days 4–17) and were then switched
to the vegetarian high-proteins weight loss (SOYA HP WL) diet (days 18–31). The other 50% began
with the vegetarian high-proteins weight loss (SOYA HP WL) diet (days 4–17) and were then switched
to the meat high-protein weight loss (MEAT HP WL) diet (days 18–31). At the end of each WL diet,
corresponding to days 18 and 32, volunteers were provided with a test meal (SOYA MEAL or MEAT
MEAL) and blood samples were collected at specified intervals within a 5 h stay at the HNU. After seven
days on each diet, on day 10 and 24 faecal samples were collected.

2.3. Extraction and Analysis of Saponins (Soyasaponin I) from Soya Food Products

For the extraction of SSI from soya food products, a previously described method [9] was used
with slight modifications. Dried and milled sample (1 g) was extracted with ethanol (70% v/v; 10 mL)
and stirred for 3 h at room temperature. The mixture was then centrifuged (3220× g; 10 min; 4 ◦C) and
the supernatant concentrated to a volume of 3 mL using a rotary evaporator (Büchi R-114, Marshall
Scientific, Hampton, NH, USA) at a temperature below 30 ◦C and pressure 60 mbar. The residue
was purified on a Strata C18-E cartridge (6 mL; 1 g from Phenomenex, Torrance USA). This cartridge
was activated twice with analytical grade methanol (2 mL) and conditioned twice with water (2 mL
× 2). The residue was applied at a very slow flow rate and the polar impurities eluted with water
(2 mL × 2). Finally, the product was eluted with methanol (150 mL) and the solvent was removed
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with the rotary evaporator. The product was dissolved in HPLC methanol (1 mL) and centrifuged
(3220× g; 10 min; 4 ◦C). The supernatant was directly injected onto the HPLC. HPLC separation was
performed on an Agilent 1290 HPLC system (Agilent Technologies, Wokingham, UK) with a UV
detector using a Kinetex C18 column (4.60 × 250 mm, 5 µm particle size; Phenomenex, Torrance USA).
The mobile phases used were acetic acid (0.25% v/v) in water (solvent A) and acetic acid (0.25% v/v) in
methanol (solvent B). Gradient elution was performed as follows: 70%–90 % B for 40 min and 90%–60%
B for 5 min and then followed by return to the initial conditions (70% B) within 3 min (45–48 min).
The injection volume was 20 µL and the flow rate was 1 mL/min. The HPLC chromatograms were
recorded at 206 nm.

2.4. Extraction and Analysis of Saponins and Sapogenols from Human Biological Samples

2.4.1. Extraction of Soyasaponin I and Soyasapogenol B from Human Faeces

The extraction of SSI and SSB from faecal samples was done according to a published method [15]
with slight modifications. The faecal samples were freeze dried and approximately 375 mg of sample
was extracted with ethanol (70% v/v; 12.5) and stirred for 2 h at room temperature. The extract was
centrifuged (3220× g; 10 min; 4 ◦C) and the solvent was removed using a rotary evaporator (Büchi
R-114) at a temperature below 30 ◦C and pressure 60 mbar. The residue was suspended in methanol
(20% v/v; 5 mL) and purified on a Strata C18-E cartridge (6 mL; 1 g). The cartridge was activated
with analytical methanol (5 mL), conditioned methanol (20% v/v; 5 mL) and the residue from the
evaporation was loaded onto the cartridge at a slow flow rate. The cartridge was washed with water
(5 mL), followed by methanol (5% v/v; 5 mL) and finally the soyasaponins were eluted with LC-MS
methanol (3 mL), and analysed by LC-MS/MS.

2.4.2. Extraction of Soyasaponin I and Soyasapogenol B from Human Plasma

Plasma samples were thawed to 4 ◦C and transferred (150 µL) to an Eppendorf tube. Sulphatase
from Helix Pomatia (S9626-5KU; 0.5 units in citrate phosphate buffer 0.3 mol L; pH 6; 120 µL),
and glucuronidase from Helix Pomatia (G7017 136,000 units/mL; 30 µL) from Sigma Aldrich (Dorset,
UK), were added. The samples were incubated for 18 h at 37 ◦C. Methanol (700 µL) containing
hydrochloric acid (0.4 mol/L) was added and then the samples were mixed, centrifuged (12,500× g;
5 min; 4 ◦C) and analysed by LC-MS/MS.

2.4.3. In vitro Microbial Transformation of Soyasaponin I by Mixed Human Faecal Microbiota.

SSI (66 µg) in analytical grade methanol was added to sterile amber vials and the solvent was
removed under nitrogen. Sterile basal general purpose M2 growth medium (0.5 mL) containing glucose
(0.05%; pH 6.5) was then added under a stream of CO2, as described by Miyazaki et al. [17]. The vials
were inoculated with microbial faecal slurries (10%; 50 µL) provided by four different healthy human
donors consuming a western style diet. Inoculation was conducted in triplicate from each sample
donated from each of the human donors. The samples were incubated at 37 ◦C and were quenched by
placing the tubes on ice at 0, 4, 8, 24 and 48 h after incubation. Methanol (LC-MS grade) was added to
each vial to a final concentration of 70% and the samples were immediately prepared for LC/MS/MS
analysis. Tubes containing the medium plus SSI were incubated for 48 h as a control (n = 3).

2.4.4. LC-MS/MS Analysis of Saponins and Sapogenols from Biological Samples.

LC-MS/MS analysis of SSI and SSB from the human faecal and plasma samples was performed
on an Agilent 6490 triple-quadrupole mass spectrometer with an Agilent 1290 Infinity LC, (Agilent
Technologies, Stockport, UK). Metabolites were separated on a Kinetex C18 column (250 × 4.6 mm; 5µ)
(Phenomenex, Torrance USA). The mobile phases used were acetic acid (0.25% v/v) in water (solvent
A) and acetic acid (0.25% v/v) in methanol (solvent B). Gradient elution was performed as follows:
70%–90% B for 40 min and 90%–60% B for 5 min and then followed by return to the initial conditions
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(70% B) within 3 min (45–48 min). The flow rate was 1 mL/min which was split post-column before
admittance to the mass spectrometer. Ionisation was performed using the Agilent Jet Stream (AJS)
source in positive ion mode. Selected source conditions were as follows: Gas Temp 200 ◦C, Nebulizer 35
psi, Capillary 3000 V, Nozzle 2000 V and Sheath Gas Temp 300 ◦C. For the first 8 min, data was collected
in MS2/SIM mode (set at mass 944.2) for the analysis of Soyasaponins I and then the scan type was
changed to multi reaction monitoring (MRM) mode (441.2→423.3) for the analysis of Soyasapogenol B.

2.5. Statistical Analysis

All data are expressed as mean ± standard deviation. The effect of treatment over time (on plasma
and faecal metabolites) and between metabolites was assessed by two-sided post-hoc t-tests using the
volunteers as their own controls. Microsoft ® Excel® for Office 365 (Microsoft Corporation, Redmond,
Washington, DC, USA) was used for statistical analyses.

3. Results and Discussion

3.1. Saponins (Soyasaponin I) Content of Soya-Rich Foods

The main soya products used in the SOYA HP WL diet [14] were analysed for their content of
Soyasaponin I (SSI) and the results are presented in Table 1. Representative HPLC chromatograms of
soya-rich food products are presented in Figure 2. The soya products were found to be rich in SSI,
the richest being the soya protein isolate, followed by soya milk and then soya flour with concentrations
of 146.25 ± 10.55, 74.11 ± 4.16, 47.01 ± 5.27 mg in 100 g dry product respectively. Soyasaponin levels in
a variety of soya foods have also been determined in previous studies [18,19].

Table 1. Soyasaponin I content in soya rich foods from SOYA HP WL diet.

Soya Product Soyasaponin I a

Flour 47.01 ± 5.27
Milk 74.11 ± 4.16
Meat 38.97 ± 1.43

Protein Isolate 146.25 ± 10.55
Sausage
Spread

26.47 ± 3.73
n/d

a Concentrations are presented as mean ± standard deviation (n = 3) in mg/100 g dry weight, n/d = not detected or
below limit of detection.
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Figure 2. Representative chromatograms for Soyasaponin I and Soyasapogenol B: LC-MS total ion
chromatogram for a mixture of SSI and SSB standards showing the extracted mass spectra for each
(A); HPLC chromatogram (monitored at 206 nm) of soya diet (milk) (B); and LC-MS chromatogram of
faecal sample obtained from one volunteer after seven days soya diet consumption (C).
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3.2. Concentration of Saponins and Sapogenols (SSI and SSB) in Human Faecal Samples

Representative LC-MS chromatogram of a volunteer’s faecal sample is presented in Figure 2.
The concentration of SSI and SSB in the faecal samples obtained from all volunteers (n = 10) after
consumption (7 days) of the SOYA HP WL and MEAT HP WL diets are presented in Figure 3. For the
SOYA HP WL diet, the concentration of SSI varied from 0.65 to 4.06 mg per 100 g dry faecal sample
(or 0.26 to 1.19 mg in 100 g fresh faecal sample) and the concentration of SSB varied between 4.36
to 62.73 mg in 100 g dry faecal sample (or 1.36 to 17.52 mg in 100 g fresh faecal sample). For the
MEAT HP WL diet, the concentration of SS I in human faecal samples varied in the range of 0.04
and 1.31 mg in 100 g dry faecal sample (or 0.01 to 0.38 mg in 100 g fresh faecal sample); and the
concentration of SSB varied from 0.26 to 4.52 mg in 100 g dry faecal sample (or 0.08 to 1.32 mg in 100 g
fresh faecal sample). Consequently, in the faecal samples both SSB and SSI were present, and SSB
was found to be the main metabolite. Similar findings have been previously reported, which also
suggest that soyasapogenol seems to be the final metabolic product following anaerobic incubation
with human gut microorganisms [20]. The moisture content of the faecal samples after the SOYA HP
WL diet was between 58.9% and 72.8% and after the MEAT HP WL diet was between 65.2% and 80.1%.
The conversion of SSI to SSB by human faecal microbiota was also tested in vitro.
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Figure 3. Soyasaponin I (SSI) and soyasapogenol B (SSB) concentrations (mg in 100 g dry sample) in
human volunteers’ faecal samples (n = 10) after seven days on the vegetarian high-protein weight loss
(SOYA HP WL) diet and meat high-protein weight loss (MEAT HP WL) diet respectively.

3.3. In Vitro Microbial Transformation of Soyasaponin I by Human Faecal Inoculation

Previous in vitro research has demonstrated that SSI is converted to SSB by human colonic
microbiota [20]. The presence of the parent SSI molecule in human faeces could be explained by the
chronic (repetitive) soya consumption of soya-rich foods over the 2-week period. To confirm this
hypothesis, and to estimate the length of the time necessary for total conversion of SSI to SSB by
the human gut microbiota, in vitro incubation of SSI with human faecal samples (n = 4 donors) was
conducted. The results are shown in Figure 4. Incubation for 48 h resulted in almost a total conversion
of SSI to SSB (0.98 mol of SSB was recovered from 1 mol of SSI). In the absence of gut microbiota,
no SSI degradation into SSB was observed (data not shown). These results agree with published data,
which suggests that soyasaponin cannot be detected after a 48 h incubation with human gut enzymes
and the main metabolic product is the aglycone form of the precursor molecule (soyasapogenol) [20].
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Figure 4. Average Soyasaponin I (SSI) and Soyasapogenol B (SSB) concentrations (µM), for the microbial
incubation of SSI with human faecal inoculants (n = 4 donors in triplicate), showing almost complete
conversion of SSI to SSB in 48 h.

3.4. Concentration of Saponins and Sapogenols (SSI and SSB) in Human Plasma Samples

On test meal days (SOYA MEAL and MEAT MEAL, see Figure 1), blood samples were collected
from the human volunteers at regular intervals for up to five hours after test meal consumption.
For a sub-sample of volunteers (n = 4) after the SOYA MEAL, the presence of SSI and SSB in plasma
was measured for the entire sampling period (0 to 5 h; hourly intervals). As it is common for dietary
components to be present in the glucuronidated and/or sulphated form in plasma, the samples
were treated with a combined enzyme treatment (sulphatase and glucuronidase). Only after the
deconjugation of volunteers’ plasma with sulphatase and glucuronidase, the presence of SSI and SSB
in these samples was confirmed (Figure 5). SSB was found in the baseline (0 h) samples and the
concentration remained significantly constant (p > 0.05) throughout the five-hour sampling period
following consumption of the SOYA MEAL. SSI was not detected in the baseline (0 h) samples and the
concentration increased to a significant (p = 0.02) maximum concentration at three hours following
consumption of the SOYA MEAL; however, its absorption systemically was poorer in comparison with
SSB. SSB was the major metabolite in human plasma with concentrations (i.e., 73.3 ± 12.1 ng /mL at 3 h
postprandial) found to be significantly higher (p < 0.0001) than that of SSI (i.e., 24.5 ± 15.5 ng /mL at
3 h postprandial).
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Figure 5. Average Soyasaponin I (SSI) and Soyasapogenol B (SSB) plasma concentrations (ng/mL)
throughout the 5 h interval following SOYA MEAL consumption after sulphatase and glucuronidase
enzyme treatments. The concentration of SSI at 3 h after consumption of SOYA MEAL was significantly
higher in comparison with the baseline (0 h), (p = 0.02), and was significantly lower in comparison with
the SSB concentration (p < 0.0001). Data is presented as mean ± standard deviation for four volunteers.

These results demonstrate that SSB is the main metabolite present in plasma and that it is found in
the conjugated form. The SSB concentration in plasma was constant; there was no significant increase
in SSB concentration (after sulphatase or glucuronidase treatment) within the time points analysed
(p < 0.05).

Taking these results into consideration, plasma samples from all volunteers (n = 10) were analysed
for SSI and SSB at baseline (0 h) and at three hours following consumption of the SOYA MEAL.
As previously observed, SSB was the main metabolite in plasma and the concentration was stable
between baseline and three hours after consumption of the test meals (p > 0.05). The average
concentration of SSB in the plasma samples before and after the SOYA MEAL was 70.07 ± 14.55 ng
/mL at baseline and 74.14 ± 16.04 ng /mL after 3 h. The presence of SSB in fasted plasma indicated
that the absorption of the metabolite is most likely to be occurring in the colon and not earlier in the
gastrointestinal (GI) tract. The abundance of SSB in human plasma may be related to amount of SSI
present in foods (SOYA HP WL diet), however this needs to be further investigated. The absence of SSI
in the fasted sample (baseline) and the low detected values in plasma throughout the time course (5 h)
indicate very limited absorption early in the GI tract. Therefore, the presence of circulating saponins is
predominantly in the conjugated form of sapogenol, which in turn is absorbed following metabolism
of the precursor molecule (SSI) by the gut microbiota. Another possible explanation for the low levels
of SSI in human plasma could be the complexation of saponins with cholesterol in the gut to form
insoluble complexes and/or with bile acids to form mixed micelles [21]. Both proposed mechanisms
account for the hypocholesterolemic activity of soyasaponins due to inhibition of intestinal absorption
of (endogenous and exogenous) cholesterol and bile acids.

In vitro experiments and animal studies indicate that saponins are poorly absorbed in the intestine.
This study has confirmed the bioavailability of dietary soyasaponin aglycones in humans following
the consumption of a high soya protein diet for 14 days. Since soyasaponins and their metabolites
exert health-promoting properties including the lowering of plasma cholesterol, anti-carcinogenic
and hepato-protective effects, understanding their bioavailability and metabolism in humans from
soy-rich foods or diets is essential for the design of functional foods. Knowing the extent to which
bioactive ingredients reach the systemic circulation from a well-defined food source is the first step
for adopting dietary strategies for disease maintenance and prevention. A limitation of the work
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presented is that the human study was originally designed to measure appetite and weight loss from
two different protein sources; however, because of the nature of the study design, the elucidation of
systemic bioavailability of soyasapogenol was confirmed. Future work to identify gut bacterial species
involved in the process of soyasaponin metabolism will be conducted.

4. Conclusions

To date, research suggests that soyasaponins are poorly absorbed early in the GI tract and are
metabolised mainly in the colon. There is no evidence to demonstrate that soyasapogenols are
systemically bioavailable in the conjugated form. To the best of our knowledge, this is the first report
presenting evidence that sapogenols are present in human plasma following microbial metabolism in the
colon. Therefore, the proposed mechanism suggests absorption from the colon following metabolism
by the gut bacteria. In plasma, SSB is the major metabolite and it is found in the conjugated form.

The present findings are important for further studies to understand the bioactivity of these
compounds and the potential development of functional foods containing soya beans. Further work
is necessary to validate the suggested anti-inflammatory, hypercholesteraemic and anti-carcinogenic
effects of these molecules at nutritionally relevant concentrations and forms in humans. Establishing
the bioavailability of bioactive molecules, their form and concentration present in the human
gastrointestinal tract represents key information to develop functional ingredients for disease prevention
and maintenance.
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