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Silicon crystal puller (SCP) is a key equipment in silicon wafer manufacture, which is, in turn, the
base material for the most currently used integrated circuit (IC) chips. With the development of
the techniques, the demand for longer mono-silicon crystal rod with larger diameter is continuously
increasing in order to reduce the manufacture time and the price of the wafer. This demand calls
for larger SCP with increasing height, however, it causes serious swing phenomenon of the crystal
seed. The strong swing of the seed causes difficulty in the solidification and increases the risk of
mono-silicon growth failure.The main aim of this paper is to analyze the nonlinear dynamics in
the FSRL system of the SCP. A mathematical model for the swing motion of the FSRL system
is derived. The influence of relevant parameters, such as system damping, excitation amplitude
and rotation speed, on the stability and the responses of the system are analyzed. The stability
of the equilibrium, bifurcation and chaotic motion are demonstrated, which are often observed in
practical situations. Melnikov method is used to derive the possible parameter region that leads to
chaotic motion. Three routes to chaos are identified in the FSRL system, including period doubling,
symmetry-breaking bifurcation and interior crisis. The work in this paper explains the complex
dynamics in the FSRL system of the SCP, which will be helpful for the SCP designers in order to
avoid the swing phenomenon in the SCP.

I. INTRODUCTION

As the main material base for IC chip production,
mono-silicon wafer production plays an important role in
modern industrial field. The mono-silicon wafer is made
from the mono-silicon rod produced by silicon crystal
puller using the Czochralski (Cz) method [1]. In the Cz
method, the polycrystalline silicon blocks are put into a
crucible and melted by a heater surrounding the crucible
at about 1420 ◦C. A mono-silicon seed hanged at the end
of the flexible shaft rotating-lifting system is dropped into
the melting silicon, provided the proper conditions are
obeyed. As the flexible shaft rotating counterclockwise
and the crucible rotating clockwise, the mono-silicon seed
is slowly lifted upward to allow the new crystal growth.
By precisely controlling the temperature gradients and
the rate of lifting, a mono-silicon crystal ingot is ex-
tracted from the melt. During the whole procedure of
the mono-silicon rod production, the FSRL system ro-
tates and lifts the crystal rod at a certain rate determined
by the technique parameters. The rotation of the mono-
silicon crystal seed mixes the silicon melt and makes the
crystal/melt surface to have a radius uniformity, which is
essential for the quality of the mono-silicon crystal [2-4].
There is an increasing demand for longer mono-silicon
crystal rods with increasing diameter in order to reduce
the manufacture time and to improve the utilization rate
of the wafer. Larger SCPs with increasing height being
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put into usage lead to stronger swing phenomenon of the
crystal seed. Specifically, in the seeding stage of crys-
tal growth process, the swing phenomenon increases the
risk of mono-silicon growth failure or causes defects in
the growth of the silicon crystal. The engineering obser-
vation is that the swing amplitude and frequency sud-
denly become irregular under some circumstances. The
SCP operator usually adjusts the rotation speed to avoid
such unexpected irregular swing. But with the larger
SCP size, this unexpected phenomenon becomes more
frequent with even larger amplitude. How to character-
ize this phenomenon from a dynamical system viewpoint
is of practical significance in the engineering field.

Up to now, few works have considered the dynamics
of the swing phenomenon in the SCP. Yuan assumed the
FSRL system to be like a double pendulum, and studied
the relationship of the swing amplitude and the rota-
tion speed (frequency) [5]. However, there are two weak
points in that work: first, it is unreasonable to treat the
FSRL system as a double pendulum, especially, at the
initial stage of the mono-silicon rod growth from the melt;
second, only simple oscillation is observed from the model
without the systematical analysis of the whole dynamics.
In a subsequent work [6], Yuan established a four-degree
of freedom nonlinear dynamic equations by considering
the in-plane and out-plane vibrations of the FSRL sys-
tem. Then it deduced a linear approximation model of
the system. Numerical simulations are given to show that
the oscillation could be diminished by reducing the error
of centration and by increasing the damping. However, it
is also unreasonable to analyze the FSRL system by using
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FIG. 1. (a) Structure diagram of flexible shaft rotating-lifting system of the Czochralski silicon crystal puller, and (b) its
simplified model.

linear models, especially to address the oscillation. More-
over, the damping between the solid mono-silicon crystal
seed and the liquid polycrystal melt is very small, and
it cannot be increased or decreased. The irregular swing
phenomenon and the underlying dynamics are still un-
clear, which need to be further and deeper investigated.

This paper is organized as follows. Section 2 describes
the structure and working principle of the system. Sec-
tion 3 introduces the mathematical modeling of the sys-
tem. Section 4 uses Melnikov method to obtain the pa-
rameter region where chaos might exist. Section 5 studies
the stability and bifurcation of the unperturbed system.
Section 5 presents the numerical simulation to show the
dynamic response of the system with perturbation, bi-
furcation diagrams, the Lyapunov exponents, phase tra-
jectories, Poincaré sections, and power spectrum. Three
routes to chaos are analyzed in section 6. Finally, section
7 summarizes the main results and the contributions of
this article.

II. THE SYSTEM CONFIGURATION AND
WORKING PRINCIPLE

The simplified structure diagram of SCP is given in
Fig. 1a. From Fig. 1a, the puller consists of four parts,
including the base pedestal usually placed underground
to support the whole puller upside and the crucible up-
down mechanism, the main body of the crucible and
heater inside, the puller neck to hold the long crystal
ingot rod, and the head with the rotating-lifting mech-
anism. The flexible shaft rope is curled around the reel
mounted on the spline shaft driven by the lifting motor

through the reducer. The lifting motor regulates the lift-
ing rate of the crystal ingot rod. A screw pair on the
spline shaft is used to make the rotation shaft rope to
be located at the center. All the lifting elements are
installed on the rotating disk, which is driven by the ro-
tating motor through the reducer. The rotation of the
rotating disk drives the flexible shaft rotation around the
center.

From the above description, we learn that the FSRL
system can be treated as a pendulum with moving pivot,
as shown in Fig. 1b. Works on parametrically excited
pendulum has been reported in [7-12]. The models in
those papers are usually abstracted from various actual
mechanical devices, such as the mechanical components
[13, 14], rotary cranes [15, 16], and energy converters [17].
Researches have shown that, a mathematical model like
a rotating pendulum exhibit chaotic phenomena [18, 19].
The pendulum model in this paper, however, is different
from the traditional parametric pendulum. Due to the
imperfection of the manufacture, the rotating disk might
have eccentricity, which makes the suspension point peri-
odically varying. The way the suspension point O moves
can be illustrated by the upper part in Fig. 1b. The pe-
riod is decided by the rotating disk rotation frequency. In
our model process, there is no linearization is considered,
which reveal the nature of the nonlinear dynamics.

In order to explain the swing phenomenon and to un-
derstand the dynamics of the FSRL system, we establish
the mathematical model of this system and analyze the
dynamical characteristics of the FSRL system. The main
purpose of this work is to demonstrate that the FSRL
system can generate different kinds of motion, from peri-
odic oscillations to chaos, when the rotational frequency
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of the crystal is close to the natural frequency of the
flexible shaft. We show that period doubling bifurcation,
symmetry-breaking bifurcation and interior crisis can be
present in the FSRL system. A better understanding of
the FSRL system dynamics will help engineers to con-
trol the swing in an effective and efficient way in order
to ensure a proper stable crystal growth environment.

III. MATHEMATICAL MODEL OF THE FSRL
SYSTEM IN SCP

In this paper, we focus on the model of the FSRL sys-
tem in the crystal seeding stage, in which the crystal seed
(about 10 mm in diameter) can be treated as a mass
point. Different from the previous double pendulum or 4
freedom oscillation equation, a pendulum with a moving
suspension point is the feature of our model, where the
moving of the suspension point is caused by the eccen-
tricity of the rotating disk with respect to the center of
the whole system.

The model is derived under the following three assump-
tions:

1. As the lifting speed is extremely slow with respect
to the rotation, the length of the suspended flexible shaft
can be treated as a constant.

2. The mass of the flexible shaft is neglected; the mass
of the crystal chucks and (seed) crystal is assumed as a
mass point.

3. Within the SCP, it is near vacuum state. The air
damping of the system is too small to affect the system.
The damping of the system is mainly caused by the inter
action between the solid mono-silicon crystal rod(seed)
and the polycrystalline silicon melt.

The simplified diagram of the FSRL system of SCP is
shown in Fig. 1b. The rotation motors drives the rotat-
ing disk with angular velocity ω. The flexible shaft length
is l, and the seed crystal together with ingot crystal has
a mass m.

The system is considered to be a rotating pendulum,
and the general nonlinear differential equations can be
derived by using the second kind Lagrange’s equation.

Define the angle between the rotational axis and the
flexible shaft as the generalized coordinate, θ, as shown
in Fig. 1b. The level of the rotating disk is assumed to
be the zero potential energy surface. Then, the kinetic
energy T and the potential energy V of the system are
written as follows:

T =
1

2
m(l2θ2 + l2ω2 sin2 θ),

V = −mgl cos θ.

The Lagrangian of the system is, then,

L = T − V =
1

2
m(l2θ2 + l2ω2 sin2 θ) +mgl cos θ.

The periodic perturbed force caused by the eccentricity
is given as:

QF = mrω2 cos(ωt).

In the practical system, r is the eccentric distance.
Using the Lagrange’s equation, the dynamic equation of
the rotating pendulum can be given as:

θ̈ =
r

l
ω2 cos(ωt) +ω2 sin θ cos θ− g

l
sin θ− ξ

m
θ̇, (1)

where ξ is the damping coefficient. Introducing dimen-
sionless time τ = ω0t, where ω0 =

√
g/l is the natural

frequency of the pendulum, and then the dimensionless
coordinates θ ≡ θ, we have the dimensionless form of the
dynamics as follows:

θ̈ = AΩ2 cos(Ωτ) + Ω2 sin θ cos θ − sin θ − cθ̇, (2)

where Ω = ω
ω0

, A = r
l , and c = ξ

mω0
.

Equation. (2) can be rewritten as state space equa-
tions:

ẋ1 = x2

ẋ2 = AΩ2 cos(Ωτ) + Ω2 sinx1 cosx1 − sinx1 − cx2,
(3)

where x1 = θ and x2 = θ̇. The dynamics of the flexible
shaft rotating-lifting system is a two-dimensional non-
autonomous system.

The phenomenon obtained by our model method is
more reasonable to explain the practical observation, the
on-going practice to control the swing also testifies the
effectiveness of the model.

IV. ANALYSIS OF THE UNPERTURBED
SYSTEM

The system without damping and perturbation is given
by

ẋ1 = x2

ẋ2 = Ω2 sinx1 cosx1 − sinx1. (4)

System (4) is a Hamiltonian system and the Hamiltonian
function is given by:

H(x1, x2) =
1

2
x22 +

1

4
Ω2 cos 2x1 − cosx1. (5)

By analyzing the fixed points of system (4) and their
stabilities, we obtain the following results:

(i) For Ω < 1, there is only one equilibrium O(0,0),
being the center.

(ii) For Ω > 1, there are three equilibria including
O(0,0), being the saddle, C1(x0, 0) and C2(−x0, 0) being
the centers, where x0 is the positive root of x1 satisfying
Ω2 sinx1 cosx1 − sinx1 = 0.
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FIG. 2. Equilibria bifurcation diagram of system (4), where
a pitchfork bifurcation is found, with stable equilibria given
by solid line and unstable equilibria given by dotted line.

System (4) undergoes pitchfork bifurcation at Ω = 1.
The equilibria bifurcation diagram is given in Fig. 2.
In addtion, with the help of the Hamilton function (5),
the trajectories can be classified by the different values
of the Hamiltonian H(x1, x2) = E, which are marked
in the corresponding phase portraits shown in Fig. 3.
It can be seen that the phase structure of system (4)
will change according to parameter Ω. In the case of

Ω < 1, the orbits for E < E0 (E0 = 2 +
1

4
Ω2 cos 2x1 −

cosx1) are represented by a family of ellipses, it means
the system moves periodically around the minimum of
potential energy, as shown in Fig. 3a. When Ω > 1, the
phase portraits suddenly change into another structure, a
pair of homoclinic orbits q0+(t) and q0−(t) connecting the
origin to itself appear, plotted using red and blue solid
lines, as shown in Fig. 3b, in the interior region of q0+(t)
and q0−(t), there exists a family of periodic orbits.

Analytical expressions for the unperturbed homoclinic
orbits can be derived by using Hamilton function (5).
Notice that the solution of homoclinic orbits should sat-
isfy the initial condition (x1(0), x2(0) = (0, 0)), and then

H(x1, x2)|(0,0) =
1

4
Ω2 − 1, we obtain:

x22 =
1

2
Ω2 − 2− 1

2
Ω2 cos 2x1 + 2 cosx1, (6)

Equation (6) can be rewritten as follows:

dx1
dt

=
√

Ω2 − 2− Ω2 cos2 x1 + 2 cosx1,

letting α2 = Ω2 − 1 , it is rewritten as:

dt =
dx1√

α2 − 1− α2 cos2 x1 − cos2 x1 + 2 cosx1
.

Integrating both side of the above equation, we have:

t = ± 1

α
cosh−1(α cot

x1
2

).

The above function can be transformed into:

x1(t) = ±2 cot−1(
1

α
) coshαt.

From x2(t) =
dx1(t)

dt
, we obtain the x2(t) in the follow

form:

x2(t) = ∓ 2α2 sinhαt

α2 + cosh2 αt
.

We obtain the two homoclinic orbits:

q0+(t) = (2 cot−1(
1

α
) coshαt,− 2α2 sinhαt

α2 + cosh2 αt
), (7)

and

q0−(t) = (−2 cot−1(
1

α
) coshαt,

2α2 sinhαt

α2 + cosh2 αt
). (8)

The analytical expression of the homoclinic orbits of
the unperturbed system obtained above enables us to in-
vestigate theoretically the chaotic motion in the original
system.

V. PARAMETER REGION OF CHAOS
EXISTENCE USING MELNIKOV METHOD

In this section, we will investigated the necessary con-
dition for existing the chaotic motion in system (3) by
using the Melnikov method. The Melnikov method is
an analytical method to detect possible chaotic motion
in Hamiltonian system. For a two-dimentional Hamilto-
nian system with the homoclinic or heteroclinic orbits,
considering the perturbation of the system damping and
periodic excitation, the distance between the stable and
unstable manifolds of the system fixed point can be calcu-
lated by Melnikovs integration. If the distance is equal to
zero, the stable and unstable manifolds cross each other
transversally, and from that crossing, the system will be-
come chaotic [20].

We introduce the following notation for system (3):

ẋ = f(x) + g(x, t). (9)

Here f(x) is the Hamiltonian system and g(x, t) is the
perturbation,

f(x) =

(
x2

sinx1(Ω2 cosx1 − 1)

)
,

g(x) =

(
0

AΩ2 cos Ωt− cx2

)
,x =

(
x1
x2

)
.

Considering a Melnikov function defined as follows:

M(τ) =

∫ +∞

−∞

[
f(q0(t)) ∧ g(q0(t), t+ τ)

]
dt (10)
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FIG. 3. (a) The phase portraits of system (2) for Ω = 0.5, (b) the phase portraits of system (2) for Ω = 2.

where operation ”∧” is defined as:

(a1, a2)T ∧ (b1, b2)T = a1b2 − a2b1,

Then, the Melnikov function M(τ) for the homoclinic
orbits q0+(t) of system (3) is given by:

M(τ) =

∫ +∞

−∞
x2(t)

[
AΩ2 cos Ω(t+ τ)− cx2(t)

]
dt

=

∫ +∞

−∞
− 2α2 sinhαt

α2 + cosh2 αt
[AΩ2 cos Ω(t+ τ)

− c −2α2 sinhαt

α2 + cosh2 αt
] dt. (11)

The computation for q0−(t) can be conducted similarly.
Since x2(t) is an odd function, equation (11) can be
rewritten as:

M(τ) = AΩ2

∫ +∞

−∞

2α2 sinhαt

α2 + cosh2 αt
sin Ωt dt sin Ωτ

− c
∫ +∞

−∞
(
−2α2 sinhαt

α2 + cosh2 αt
)2 dt. (12)

The integrals in equation (12) can be calculated by:

I1 =

∫ +∞

−∞

2α2 sinhαt

α2 + cosh2 αt
sin Ωt dt

= 2π sin[
Ω

α
sinh−1(α)]× sech(

Ωπ

2α
),

I2 =

∫ +∞

−∞
(
−2α2 sinhαt

α2 + cosh2 αt
)2 dt

= 4[
ln(
√
α2 + 1− α)√
α2 + 1

+ α],

By calculating the above integrals, Melnikov function
is given by:

M(τ) = AΩ2 × 2π sin[
Ω

α
sinh−1(α)]× sech(

Ωπ

2α
)× sin Ωτ

− 4c[
ln(
√
α2 + 1− α)√
α2 + 1

+ α].

(13)

Melnikov’s function (13) measures the distance be-
tween the stable and unstable manifolds in the Poincare
section. If for all τ the following inequality (14) holds,
the system might demonstrate chaotic behavior in the
sense of Smale horseshoes.

A

c
≥

∣∣∣∣∣∣∣∣∣
2[

ln(
√
α2 + 1− α)√
α2 + 1 + α

]

πΩ2 sin[
Ω

α
sinh−1(α)]× sech(

Ωπ

2α
)

∣∣∣∣∣∣∣∣∣ (14)

The condition given in (14) is consistent with the follow-
ing result shown in Fig. 5.

VI. DYNAMICAL BEHAVIORS OF THE FSRL
SYSTEM

In order to investigate the dynamical behaviors of the
full system (3), including the bifurcation diagrams, the
Lyapunov exponents, and phase trajectories, Poincaré
sections are used to show the complicated dynamics of
system (3). Here, the fourth-order Runge-Kutta algo-
rithm is used for the integration and the solution of the
differential equations.
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FIG. 4. The bifurcation diagrams of the system in three-dimensional space: (a) in (c,Ω, θ) space for A = 0.2, (b) in (c, A, θ)
space for Ω = 1.1.

FIG. 5. Parameter space plot in the range of Ω ∈ (0.9, 1.4)
and A ∈ (0, 0.5), blue marks the period one motion, red
marks the period two motion, green marks the period four
motion, cyan marks the period three motion, magenta marks
the higher period motion, and black marks the chaos.

A. Bifurcation diagrams

There are three parameters in system (3): the damping
coefficient, the frequency and the amplitude of periodic
excitation force caused by the eccentricity. The three-
dimensional bifurcation diagrams of the system in space
(c, A, θ) and (c,Ω, θ) are given in Figs. 4a and 4b, respec-
tively. In Fig. 4a, A is fixed at 0.2, and in Fig. 4b, Ω is
fixed at 1.1. It can be seen from Fig. 4a that: first, near
the natural frequency, i.e., Ω = 1.1, system (3) exhibits
chaos, the smaller the damping is, the larger is the region
of the parameter Ω having chaos; second, with the rota-
tion frequency moving away from the natural frequency,
the chaotic motion becomes a periodic oscillation; third,
in the small damping coefficient range, there are periodic

motion windows; the smaller the damping coefficient is,
the smaller is the periodic window width; fourth, in a
practical situation, period one is desirable if the oscilla-
tion is unavoidable, which means that the rotation speed
should be set away from the natural frequency of the sys-
tem. In addition, the small rotation speed corresponds
to small oscillation amplitude.

From Fig. 4b, for fixed Ω = 1.1, we learn that: first,
with the damping coefficient decreasing, the parameter
range of the excitation amplitude, where chaos can be
observed, becomes larger; second, there exists a periodic
window between two chaotic parameter regions; third,
with the damping coefficient decreasing, the chaotic pa-
rameter region becomes large. If the damping coefficient
is large enough, chaos is eliminated.

Parameter space plot in Fig. 5 shows the different
kinds of system responses when two parameters of the
system are varied. It can be seen from Fig. 5 that: first,
the system is in period one motion when the rotation fre-
quency is less than the natural frequency; second, when
the excitation amplitude is A > 0.2, it is easier for the
system to be in a higher period or chaos; third, there are
periodic windows in the chaotic region.

From the parameter space plot in Fig. 5, we know
that, if the exciting amplitude is less than A < 0.06,
the irregular swing can be avoided. This means that
the irregular swing is disappeared if the eccentricity is
small enough. And we also know that the irregular swing
can be avoided by selecting the rotation speed less than
Ω < 1.07, which give the helpful guide for the operator
of the SCP to set the process parameter.

The largest Lyapunov exponent (LLE) of a dynamical
system is a quantity that characterizes the average ex-
ponential separation between two phase trajectories that
are initially close by. In the chaotic region, the LLE must
be positive. In the following, we give the LLE variation
versus the parameter variation in order to clearly see the
relationship of the LLE and the dynamics of the system,
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FIG. 6. (a) The bifurcation diagrams of the system for varying parameter Ω, and (b) the LLE corresponding to the parameter
range in(a).

FIG. 7. (a) The bifurcation diagrams of the system for varying parameter A, and (b) the LLE corresponding to the parameter
range in (a).

the bifurcation diagram with the same parameter varia-
tion is also given.

In the first case, A is fixed at 0.2 and the damping
coefficient c is fixed at 0.3, then the LLE variation and the
corresponding bifurcation diagram versus Ω variation are
given in Figs. 6a and 6b, respectively. In the second case,
Ω is fixed at 1.1 and the damping coefficient c is fixed
at 0.1, then the LLE variation and the corresponding
bifurcation diagram versus A variation are given in Figs.
7a and 7b, respectively. From Figs. 6 and 7, we know
that in the chaotic parameter region the LLE is positive.

B. Routes to Chaos

a. A. Period doubling bifurcation
Period doubling bifurcation is one of the most common
routes from periodic motion to chaos. From Figs. 4 to 7,

we can observe many examples of this route. To clearly
see this point, we show the blow up bifurcation diagram
within the range Ω ∈ (1.06, 1.16) in Fig. 6a, shown in Fig.
8a. From Fig. 8a, we know that when Ω ∈ (1.06, 1.087),
period one is observed; when Ω ∈ (1.087, 1.129), period
two is observed; when Ω ∈ (1.129, 1.137), period four is
observed; afterwards, period eight and then chaos are ob-
served. To see the different dynamical behaviors, we give
the phase trajectories and the corresponding Poincaré
sections for Ω = 1.068, Ω = 1.115, Ω = 1.133, Ω = 1.139,
and Ω = 1.15 in the upper panel and in the lower panel
of Figs. 8b ∼ 8f , respectively.

To see the time sequence of different periods and chaos,
we give the time sequence for Ω = 1.068, Ω = 1.115,
Ω = 1.133, and Ω = 1.2 and their corresponding power
spectrum in the upper panel and lower panel of Figs.
9a ∼ 9d, respectively. From Fig. 9, we surmise that
the periodic oscillations are consistent with the corre-
sponding power spectrum. In addition, chaos has a wide
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FIG. 8. (a) Local blow up bifurcation diagram shown in fig. 6(a) at Ω ∈ (1.06, 1.16). (b) The phase trajectory and Poincaré
section point of period-1 oscillation at Ω = 1.068 are shown in the upper panel and in the lower panel, respectively. (c) The
phase trajectory and Poincaré section points of period-2 oscillation at Ω = 1.115 are shown in the upper panel and in the lower
panel, respectively. (d) The phase trajectory and Poincaré section points of period-4 oscillation at Ω = 1.133 are shown in the
upper panel and in the lower panel, respectively. (e) The phase trajectory and Poincaré section points of period-8 oscillation
at Ω = 1.139 are shown in the upper panel and in the lower panel, respectively. (f) The phase trajectory and Poincaré section
points of chaos at Ω = 1.15 are shown in the upper panel and in the lower panel, respectively.

spectrum.

b. B. Symmetry-breaking bifurcation
In Fig. 8a, a periodic window occurs when A ∈
(0.125, 0.193). We notice that this periodic window are
of period-3. In this interval, symmetry-breaking bifur-
cation takes place at A = 0.1535. To exhibit how the
system enters chaos through symmetry-breaking route, a
detailed bifurcation diagram is given in Fig. 10. In fact,
Fig. 10 shows a blow up of a local region in the bifur-
cation diagram of Fig. 7a. The black points in Fig. 10
represent the symmetric period-3 oscillations, while the

blue and red points correspond to the two asymmetric
period-3 solutions. For A > 0.182, the asymmetric solu-
tions simultaneously undergo period doubling. Following
the bifurcation cascades, finally chaos occurs. The sys-
tem state is asymptotic to the blue asymmetric or the
red asymmetric depending on the initial conditions [21].

c. C. Interior crisis
In this subsection, we show that there is another route
to chaos, namely, interior crisis. In Fig. 6a, it can be
observed that, at Ω ≈ 1.18, a small chaotic region sud-
denly enlarges into a larger one, which is a typical interior



9

FIG. 9. (a) The time sequence and the corresponding power spectrum of period-1 oscillation at Ω = 1.068 are shown in the
upper panel and in the lower panel, respectively. (b) The time sequence and the corresponding power spectrum of period-2
oscillation at Ω = 1.115 are shown in the upper panel and in the lower panel, respectively. (c) The time sequence and the
corresponding power spectrum of period-4 oscillation at Ω = 1.133 are shown in the upper panel and in the lower panel,
respectively. (d) The time sequence and the corresponding power spectrum of chaos at Ω = 1.2 are shown in the upper panel
and in the lower panel, respectively.

FIG. 10. An amplified window of Fig. 7(a) exhibiting symmetry-breaking bifurcation.

crisis phenomenon [22]. Figure 12 shows this change in
the Poincaré section. This interior crisis, which is a type
of global bifurcation, is another route to chaos when the
parameter of the FSLR system varies.

The interior crisis can also be observed in Fig. 7a,
where we can see that, for A = 0.3, there exist two
isolated small chaotic region whose Pioncaré section is

shown in Fig. 13a, while, for A = 0.301, there is one sin-
gle large chaos region whose Pioncaré section is shown in
Fig. 13b. As parameter A passes the critical value, the
size of the attractor is suddenly enlarged. The new blue
Poincaré section points include the old red ones and new
incremental blue points. This is a typical interior crisis
phenomenon.
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FIG. 11. The phase portraits and Poincaré sections for three different A values in the symmetry-breaking bifurcation in Fig.
10. Subplot (a) is the phase trajectory and Poincaré section for A=0.145. Subplots (b) and (c) are the phase trajectories and
Poincaré sections for A=0.17 at different initial values; Subplots (d) and (e) are the phase trajectories and Poincaré sections
for A=0.185 at different initial conditions.

FIG. 12. (a) The Poincaré section of a small chaotic attractor at Ω = 1.17 in the bifurcation diagram of Fig. 6(a). (b) The
Poincaré section of a large chaotic attractor at Ω = 1.18. in the bifurcation diagram of Fig. 6(a).

VII. CONCLUSIONS

In this paper, the dynamical model of the FSRL sys-
tem of SCP is established based on the working principle
of the FSRL system. The Melnikov method, the bifur-
cation diagram, the Lyapunov exponents, phase trajec-

tories, Poincaré sections and power spectra have been
used to investigate the dynamical behaviors of the sys-
tem. We learn from the analysis of this paper that: first,
the rotation speed, i.e., the excitation frequency, the am-
plitude of excitation depending on the degree of eccen-
tricity, and the damping coefficient affect the dynamical
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FIG. 13. (a) The Poincaré section of two isolated weak chaotic attractors located at A = 0.3 in Fig. 7(a). (b) The Poincare
section of a single strong chaotic attractor located at A = 0.301 in Fig. 7(a).

behaviors of the system; second, depending on different
parameters, the system demonstrates a tremendous vari-
ety of different dynamical behaviors, including period-1,
period-2, ..., and chaos; third, when the excitation fre-
quency is close to the natural frequency of the system,
complex behaviors, including high period and chaos oc-
curs, which is consistent with the practical observations
from industrial plants.We have shown three routes to
chaos of the FSRL system, namely, the period doubling
bifurcation, symmetry-breaking bifurcation, and the in-
terior crisis route.

The complex dynamic characteristics of the system in-
vestigated in this paper explain the irregular swing phe-
nomenon observed in the practical plants, and it provides
a theoretical basis for eliminating the unexpected swing
phenomenon of the FSRL system in the SCP using Cz
method. Designing the eccentricity to be zero for the
mechanical engineer is too challenge task to accomplish,
therefore, designing an active controller to control the
swing is a more feasible and adaptive method to deal
with the swing problem, which will be given in the fu-
ture paper.
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