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A Realistic FDTD Numerical Modeling Framework
of Ground Penetrating Radar for Landmine Detection
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Abstract—A three-dimensional (3-D) finite-difference time-
domain (FDTD) algorithm is used in order to simulate ground
penetrating radar (GPR) for landmine detection. Two bowtie
GPR transducers are chosen for the simulations and two widely
employed antipersonnel (AP) landmines, namely PMA-1 and
PMN are used. The validity of the modeled antennas and land-
mines is tested through a comparison between numerical and
laboratory measurements. The modeled AP landmines are buried
in a realistically simulated soil. The geometrical characteristics of
soil’s inhomogeneity are modeled using fractal correlated noise,
which gives rise to Gaussian semivariograms often encountered
in the field. Fractals are also employed in order to simulate the
roughness of the soil’s surface. A frequency-dependent complex
electrical permittivity model is used for the dielectric properties
of the soil, which relates both the velocity and the attenuation of
the electromagnetic waves with the soil’s bulk density, sand par-
ticles density, clay fraction, sand fraction, and volumetric water
fraction. Debye functions are employed to simulate this complex
electrical permittivity. Background features like vegetation and
water puddles are also included in the models and it is shown that
they can affect the performance of GPR at frequencies used for
landmine detection (0.5-3 GHz). It is envisaged that this model-
ing framework would be useful as a testbed for developing novel
GPR signal processing and interpretations procedures and some
preliminary results from using it in such a way are presented.

Index Terms—Antennas, antipersonnel (AP) landmines, bowtie,
dispersive, FDTD, fractals, GPR, GprMax, grass, modeling, roots,
rough surface, vegetation, water puddles.

I. INTRODUCTION

UMEROUS demining methods have been suggested over

the years, from the most common and one of the first
humanitarian demining methods used, the metal detector [1]-
[3] to trained dogs, trained rats [4], chemical methods, nuclear
methods [1], [5] and geophysical methods like acoustic/seismic
[5], [6], and electrical resistivity techniques [7], [8].

Ground penetrating radar (GPR) has a wide range of applica-
tions [9] and it has been extensively used for landmine detection
[10]. The ability to detect plastic landmines and the greater
depth range, compared with metal detectors in dry environ-
ments with no clay or saturated soils, are some of the reasons
why GPR is considered as an attractive demining method [10].
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A better understanding of the scattering mechanisms within
the ground can help us increase the effectiveness of GPR
and investigate its limitations. This can be achieved through
numerical modeling that can provide insight on how the soil’s
characteristics can influence the overall performance of GPR.
Apart from that, numerical modeling can be a practical tool
for testing and comparing different antennas and processing
algorithms in a wide range of environments. Furthermore, a
realistic numerical model can also be employed for training pur-
poses in machine learning based approaches. In order to address
a multivariable problem like GPR demining using a machine
learning approach, it will require a large number of data from a
diverse set of scenarios [11]. A reasonable and viable approach
to obtain a diverse, equally distributed and adequately large
dataset, is through a realistic numerical modeling framework
that faithfully represents the GPR forward problem.

Maxwell’s equations that are the governing equations of the
GPR forward problem can be numerically solved using a vari-
ety of methods, among them the finite element method, the
method of moments [12], implicit finite-difference techniques
(Crank—Nicolson method [13], alternative-direction implicit
[14]), transmission line matrix [12], and others. The finite-
difference time-domain (FDTD) method [15], [16] first intro-
duced by Yee [19] is considered to be a very attractive choice
for a number of reasons [12], [17] the most important of which
are its computational efficiency and its time domain nature that
particularly suits the GPR problem. We use gprMax [18] a
free software, which numerically solves Maxwell’s equations
by using a second-order FDTD algorithm.

Numerical modeling of GPR is considered to be an alter-
native interpretation approach [17] and has been extensively
applied to a number of GPR applications, among them are: the
detection of dense nonaqueous phase liquids (DNAPL) [20],
[21], the detection of geological targets like faults and caves
[22], [23], for tunnel inspections [24], detecting and assess-
ing pipes [25], in the inspection and condition assessment
of bridges [26], [27], for forensic applications [28], mineral
exploration [29], and airborne GPR [30]. In the case of GPR
numerical modeling for landmine detection, generic types of
antennas over simple targets buried in both homogenous and
inhomogeneous soils have been modeled by [31]-[34]. More
advanced and realistic models for both antennas and targets
are employed by [35]-[37] in order to simulate single GPR
traces (A-Scans), which were subsequently used as a reference
in an attempt to discriminate between landmines and false alarm
targets.

As stated in [10], a lot of GPR antennas were validated
in ideal conditions but their performance in real complex
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environments was found to differ significantly from the pre-
dicted one. Although, the probability of detection (PD) can
reach near 100% and the probability of false alarm (PFA)
fall to near 0.01% at simple test sites, in realistic conditions,
PD can fall to 50% and PFA can reach to 10% [10]. Based
on that, numerical modeling should be able to simulate and
capture the behavior of GPR in realistic and appropriately com-
plex environments and not only in clinically simplified ones.
Such simplifications give rise to predictable results that cannot
then be used to validate the performance of GPR in realistic
conditions. Landmines can be found in a number of different
environments, namely desert, jungle, urban settings, and oth-
ers [10]. The proposed numerical modeling framework is here
explicitly applied to rural environments. Arid as well as tropical
environments can be accurately modeled using the suggested
approach by simple modifications of input parameters.

One of the most challenging problems regarding the numer-
ical modeling of GPR is how to accurately implement the
dielectric properties of the soil, i.e., its frequency-dependent
electrical permittivity. Simplistic models based on a constant
permittivity with a conductive term cannot accurately describe
the soil’s behavior for frequencies employed in demining.
Dielectric properties of soils are a multiparametric problem,
and an analytical and completely inclusive function to describe
them that has yet to be derived.

A lot of soils and rocks can be accurately simulated employ-
ing either a Cole—Cole function [38]-[40], a constant @) fac-
tor [41]-[43] or the more inclusive Jonscher function that
holds as a special case the constant () factor approach [44].
Both the Cole—Cole and Jonscher functions cannot be directly
implemented into an FDTD code. Approximations to these
functions with multi-Debye relaxations [45]-[47] are the most
usual approach for implementing these type of dielectric prop-
erties into FDTD. Numerically evaluated fractional deriva-
tives [48] and Pade approximations [49] have also been sug-
gested for implementing complex dielectric properties. Multi-
Debye expansions, however, are more computationally efficient
because it is straightforward to choose the frequency range
in which the approximation will take place. By reducing the
frequency range, the number of Debye poles needed for an ade-
quate approximation is decreased, which subsequently results
in an overall decrease of the computational requirements.

A number of authors have used multi-Debye functions
in an effort to simulate simple homogenous soils [50]-[55].
Although, these approaches simulate the dielectric properties
of the specific soils correctly, the use of homogenous models is
still an oversimplification. A more inclusive approach is needed
if different types of soils are to be modeled. In the present
work, we use the semiempirical model initially suggested by
[56] and later modified by [57] and [58]. This semiempirical
model relates the dielectric properties of the soil to its bulk
density, sand particles density, soil fraction, clay fraction, and
water volumetric fraction. The semiempirical model resembles
the Cole—Cole relaxation and can be easily approximated by
a multi-Debye expansion. Using this approach, a wide range
of diverse soils can be incorporated into the model, as well as
complex media with realistic statistical variation of properties
like water fraction, clay fraction, and so on.

Rough surface can have a significant affect to the over-
all performance of GPR [9], [59]. Thus, a realistic numerical
model should include a representation of the roughness of soil’s
surface. Fractals can express the earths topography with rep-
resentative detail [60] for a wide range of scales. Therefore,
fractal correlated noise [61] was chosen to describe the stochas-
tic nature of the soil’s topography. Fractal correlated noise is
also employed in an effort to describe the soil’s inhomogeneity.
There is an evidence in the literature [62]-[65], which supports
the premise that for the scales used in the simulations presented
here, fractals give rise to semivariograms often encountered in
real soils.

Vegetation is a very important feature considering the GPR
frequency range employed in demining and should not be
neglected neither just simply defined. Both grass and roots are
realistically incorporated into the suggested modeling scheme
and simulated results indicate that they could have an effect on
the overall performance of GPR. A novel algorithm is proposed
that generates the geometry of both grass and roots with repre-
sentative detail. The suggested algorithm creates the geometry
of vegetation automatically having as its inputs statistical char-
acteristics like grass distribution, maximum height of grass
blades, maximum depth of roots, standard deviation of grass
height, standard deviation of the maximum depth of roots, and
properties related to the shape of the grass and roots. Regarding
the dielectric properties of vegetation, a multi-Debye expansion
is used to approximate the function suggested in [66] and [67].
The latter relates the complex electrical permittivity of vege-
tation with its water weight based fraction. Water puddles are
also incorporated into the numerical scheme in an attempt to
simulate more humid environments.

Numerical modeling has been widely used for designing
and optimizing antennas. From complex antennas [68], [69] to
more common designs are bowties [70]-[72], dipoles [73], vee
dipoles [74], spiral [75], and horn antennas [76]. In addition,
FDTD has been successfully employed to model generic types
of antennas based on generic designs used in commercial ones
[77]1-[79]. In the present work, we use models of generic bowtie
high-frequency GPR transducers based on the geometrical char-
acteristics obtained from commercially available antennas like
the GSSI 1.5 GHz and the MALA 1.2 GHz as presented in [77].
Both of these GPR antennas are designed mostly for engineer-
ing applications because of their high-frequency range and their
availability for simple testing, which have been chosen to illus-
trate the effectiveness of the proposed modeling framework for
landmine detection.

The targets used in the simulations are detailed repre-
sentations of the AP landmines PMA-1 and PMN. Dummy
landmines have been used to obtain their geometrical character-
istics. The dielectric properties of the AP landmines have been
chosen from an iterative process of matching numerical and
laboratory measurements of scattered electromagnetic fields in
free space.

II. SOIL MODELING

Soil modeling consists of two parts: the first part addresses
the dielectric properties of the soil and the second deals with the
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soil’s geometrical characteristics, i.e., the soil’s inhomogeneity
and rough surface.

A. Dielectric Properties of the Soil

In this work, a semiempirical model—initially suggested in
[56]—is used to describe the dielectric properties of the soil.
This semiempirical model relates the soil’s relative permittivity
to simply determined properties, namely bulk density, sand par-
ticles density, sand fraction, clay fraction, and water volumetric
fraction. Using this approach, a realistic soil with a stochastic
distribution of the aforementioned parameters can be modeled.

The semiempirical model was originally suggested for the
frequency range of 1.4—18 GHz [56]. Used in that form and for
frequencies below 1.4 GHz, it underestimates ¢’ and overesti-
mates € [57], [58]. Therefore, a modification was introduced
in [57] and [58] for the frequency range of 0.3-1.3 GHz.
In our proposed modeling framework, the dielectric mixing
model is chosen based on the central frequency of the exci-
tation pulse. If the central frequency is below 1.4 GHz, the
model for 0.3—1.3 GHz [57], [58] is used otherwise the model
suggested for 1.4-18 GHz [56] is employed. Both models are
described by (1)—(9), where ¢,,, = € — j€” is the complex elec-
trical permittivity of the defined medium, j is the imaginary
unit (j = v/—1), m,, is the water volumetric fraction, p; is the
sand particles density (g/cm?), py is the bulk density of the soil
(g/cm?), €, is the relative permittivity of the sand particles,
a = 0.65 is an experimentally derived constant, and S and C
are the sand and clay fractions, respectively. The complex dipo-
lar relaxation of water is described by (7), where ¢ ,, = 9.23 ps
is the relaxation time of the water, €, s = 80.1 and €y, = 4.9
are the relative electrical permittivity of the water for zero and
infinity frequencies, respectively [57]. The term o is a linearly
proportional term to the conductivity o
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Fig. 1 shows the relative electrical permittivity (using the
model suggested for 0.3—1.3 GHz) for ps = 2.66 g/cm?, p, =
2¢g/ecm?, S=0.1, C=0.9, and for m, = 0.05—0.25 with
a step of 0.05. Fig. 2 is similar to Fig. 1 with S = 0.9 and
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Fig. 1. Relative electrical permittivity for ps = 2.66 g/cm?, p, = 2 g/cm?,

S =0.1, C = 0.9 and for m, = 0.05—0.25 with step 0.05. The frequency
range of GPR for landmine detection is denoted between the bold lines.
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Fig. 2. Similar to Fig. 1 using S = 0.1 and C' = 0.9.

C = 0.1. Tt is evident that the real part of the electrical permit-
tivity is practically constant over the frequency range of interest
for landmine detection (0.5-3 GHz) and it increases when the
volumetric water fraction is increased. Increasing the clay frac-
tion results in the decrease of the real part of the electrical
permittivity, i.e., increasing the velocity of the EM waves.

At first that seems not to be in good agreement with the gen-
eral experience, which expects low velocities in clay environ-
ments. This apparent peculiar result could be easily explained
from the fact that clay environments (due to the high porosity
of clays) have usually significant water content that results in
the decrease of their overall velocity. However, dry clay on the
other hand has equal or even smaller real part of relative per-
mittivity compared with dry sand [9]. Furthermore, due to the
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Fig. 3. Exact (lines) and the single pole Debye approximations (dots) of the
relative electrical permittivity for the frequency range of interest (0.5-3 GHz).
The properties of the soil are ps = 2.66 g/cm?, p, = 2 g/cm?, S = 0.9,
C' = 0.1, and for m,, = 0.05—0.25 with step equals 0.1.

high porosity of clays, dry clays could have a large fraction of
air that adds to the overall increase of their velocity.

The imaginary part of the electrical permittivity consists
of two parts: one related to the conductive term and another
related to the Debye relaxation due to the water content (3).
Increasing the water volumetric fraction results in an increase of
the imaginary part (i.e., the attenuation) and also increases the
contribution of the Debye relaxation. Increasing the clay frac-
tion makes the electromagnetic losses to be primarily related
to the conductive term and decreases the effects of the Debye
relaxation at the frequency range used for landmine detection
(0.5-3 GHz).

As the the semiempirical model cannot be directly imple-
mented into FDTD, a particle swarm optimization (PSO) [80]
has been used to approximate both the real and the imagi-
nary part of the dielectric model explained in (1)-(9) with a
conductive term plus a multipole Debye function (10)
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where N is the number of the Debye poles and Ae, =
€p,s — €p,co-

In order for FDTD to be stable, Aep must be positive and
€~ Mmust be greater than € [46]. By increasing the number of
Debye poles, the approximation becomes more accurate but for
each extra Debye pole three additional memory variables are
needed to be stored for each FDTD cell with dispersive dielec-
tric properties. A balance between accuracy of the fit and com-
putational cost must be achieved in order for the simulations
to be both accurate and practical. For the frequency range of
interest, a single Debye pole has been found to be an adequate
approximation as it is shown at Fig. 3. Accurate approximations
for wider range of frequencies require more Debye poles to be
used subsequently increasing the computational requirements.
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Fig. 4. Resulting scattering fields for a plane wave propagating in a four layer
medium (air-soil-plastic—soil). Three different approaches are used for both
soils to define their dielectric properties. With black, only a constant electrical
permittivity is used. With blue, a constant electrical permittivity plus a conduc-
tive term is employed and with red, the full model (i.e., a Debye pole with a
conductive term) is implemented.

In order to illustrate the importance of implementing a real-
istic loss mechanism into the modeling scheme, a numerical
experiment was performed using a simple one-dimensional
(1-D) FDTD model. The model consists of four layers, namely
air, soil, plastic, and soil. The excitation is a Gaussian-
modulated sinusoidal pulse with central frequency 2 GHz. The
relative electrical permittivity of plastic was chosen to be ¢, =
3. Three different scenarios were tested. 1) A simple constant
electrical permittivity is implemented without any losses. 2) A
conductive term is added. 3) A Debye pole plus a conductive
term are employed. The soil’s properties are p, = 2.66 g/cm?,
pp =2g/em3, S =09, C=0.1, and m,, = 0.2. Fig. 4 illus-
trates that the full Debye model with a conductive term apart
from further decreasing the amplitude of the pulse, it also
lowers the central frequency of the scattering field that sub-
sequently reduces the ability of the pulse to resolve small
targets. Electromagnetic losses can have a significant effect to
the overall signal to noise ratio as well as to the shape of the
target’s scattering field. From the above example, it is evident
that simple definitions of the loss mechanisms within the soil
can result in a potential overestimation of GPR’s performance.
Thus, an accurate implementation of the dielectric proper-
ties is essential for a realistic numerical modeling scheme,
which aims to be used as a testbed for different process-
ing algorithms or as a training platform for machine learning
approaches.

B. Soil’s Geometrical Characteristics

Fractals are scale-invariant functions, which can express the
earths topography for a wide range of scales with sufficient
detail [60]. This is the reason why fractals were chosen in this
work to represent the soil’s topography. Fractals can be gen-
erated by the convolution of Gaussian noise with the inverse
Fourier transform of 1/k®, where k is the wavenumber and b
is a constant related with the fractal dimension [61]. Fig. 5
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Fig. 5. Stochastic distribution of an arbitrarily chosen property of the soil (e.g.,
water volumetric fraction, clay fraction, and sand density). The rough sur-
face as well as the soil’s property distribution are created using a fractal-based
approach.

illustrates the resulting rough surface using fractal correlated
noise. Increasing the fractal dimension results to the increase of
the roughness of the soil’s surface. The semivariogram (11) is a
geostatistical tool used to describe correlation lengths and it is
an attractive approach to describe the stochastic nature of soil’s
properties

v

10) = 5 S Ie+ ) = ()

i=1

)

where h is the lag distance, z is the investigated property (water
fraction, clay fraction, bulk density, etc.), and V' is the number
of the observations for each lag length (k). Soil’s properties usu-
ally follow exponential, spherical or Gaussian semivariograms
[62]-[64]. In this work, a fractal correlated noise [61] is used to
describe the stochastic distribution of the soil’s properties. This
approach is chosen because as it is stated in [81] and [82], soil-
related environmental properties frequently obey fractal laws.
Furthermore, as it is shown in Fig. 6, the distribution of an arbi-
trarily property using three-dimensional (3-D) fractals results in
Gaussian semivariograms for the scales used for AP landmine
detection.

Fig. 5 illustrates an example of a stochastic soil’s prop-
erty distribution (e.g., water volumetric fraction, clay fraction,
sand density etc.) and rough surface created using fractal cor-
related noise. Fig. 6 shows the simulated Gaussian and the
calculated semivariogram for the model shown in Fig. 5. A
Gaussian semivariogram can simulate the calculated one with
sufficiently accuracy , which is an indicator of the reliabil-
ity of the modeled soil. Soil’s inhomogeneity affect GPR’s
performance by decreasing the signal to noise ratio and by
increasing the false alarm rate. A numerical scheme aiming to
facilitate the development of processes to address such prob-
lems (through processing validation, antenna design, machine
learning etc.) must be able to accurately simulate such neg-
ative effects. Modeling soil’s inhomogeneity by using simple
deterministic shapes and unrealistic property distributions may
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Fig. 6. Calculated semivariogram (dots) and simulated Gaussian semivari-
ogram (solid line) of the arbitrarily chosen property of the soil shown in Fig. 5.
The distance h is unit-less and represents the pixels in Fig. 5.

lead to data that are not suitable for machine learning purposes
neither for evaluation of processing techniques.

III. VEGETATION

AP landmines are shallow buried targets, typically no more
than 10 cm, and their diameter is usually 10-20 cm [3].
Therefore, in order for AP landmines to be detectable high-
frequency antennas are employed (0.5-3 GHz). The use of
high-frequency antennas leads to an increased sensitivity to
small scale features such as grass and roots. In order to investi-
gate the effects of vegetation to AP landmine detection using
GPR, we propose an algorithm that models the geometrical
characteristics of vegetation using statistical properties. The
steps of the proposed algorithm are as follows.

1) A two-dimensional (2-D) fractal is created and the sum-

mation of the fractal values is constrained to be equal
to one. Each fractal value represents the probability of a
blade of grass to exist in the corresponding coordinates of
this value (z., y.).

2) For each blade of grass, a maximum height is picked

based on a Gaussian distribution.

3) The parametric equations of each blade of grass are (for

0 < t <maximum height)

£\ 2
T =T,+ Sy (m) (12)
£\ 2
Yy
z=t (14)

where s, and s, can be 1 or —1 and they are randomly
chosen. The constants b, and b, are random numbers
based on a Gaussian distribution.

4) For each blade of grass, a root is placed in the same
coordinates (z.,¥y.) and a maximum depth for the root
is picked based on a Gaussian distribution.



42 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 1, JANUARY 2016

T
0O o—q

16 1
145 1
S T = e e A
o 12t 1

v

10k 1
000 0 O O O O O O OO OO OO OO OO

ol ]

5l J
00 O O O O O O O O O O O O OO OO OO

4 . . .

05 1 1.5 25 3

Frequency (GHz)

0
0.5 1 1.5 2 25 3
Frequency (GHz)

Fig. 7. Debye approximations (dots) compared with the analytic (lines) rela-
tive electrical permittivity of vegetation (18) for water weight fraction M =
0.1—0.4 with step 0.1.

3) The function, which describes the geometry of the roots,
is a random walk in = and y coordinates as the depth
increases linearly

Tit1 =2 + Ry (15)
Vi1 = i + Iy (16)
Zi+l1 = % — Az (17)

where both R, and R, are random variables based on

a Gaussian distribution and Az is the depth discretiza-

tion step. The iterative procedure described in (15)—(17)

continues until z reaches the maximum depth of the root.

Dielectric models of plants like leaves of corn [83], stalks,

trunks [84], [85] alfalfa [86], conifer trees [87], etc., have been

reported in the literature. In the present work, the formula (18)

suggested in [66] and [67] is employed in an effort to describe
the dielectric properties of vegetation

6I €I/
e, —jel = 1.5+ (w —j“’) M (18)

2 3
where €, is the real part of the electrical permittivity of the
water, €/ is the imaginary part of the permittivity of the water,
j is the imaginary unit (j = /—1), and M is the water content
based on a weight basis [67].

The main drawback of this model is that it is validated only
to a single frequency of 8.5 GHz. Extending (18) to the wider
frequency range of interest (0.5-3 GHz) results in an electrical
permittivity that has a constant real part and an imaginary part,
which increases linearly with the frequency. This seems reason-
able, but as it is reported in [67], the extension of this model to
other frequencies should be checked experimentally.

Similar to soil modeling, a PSO is used [80] to simulate (18)
with a multi-Debye function (10). For the frequency range of
interest, a single Debye pole can sufficiently approximate (18)
for different water weight-based fractions (M) as it is shown in
Fig. 7.

Shield & Case
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(®)

Fig. 8. Modeled antennas. (a) 1.5 GHz. (b) 1.2 GHz [77].

IV. ANTENNAS AND LANDMINES

The GPR transducers used in this work are models of bowtie
antennas based on the geometrical characteristics of commer-
cial GPR antennas, namely the GSSI 1.5 GHz and the MALA
1.2 GHz [77], [78] (see Fig. 8). Using realistic models of GPR
antennas is a reliable way to illustrate the capabilities of the
proposed numerical scheme. When information is provided by
manufacturers and antenna developers complex antennas can
be accurately modeled and directly evaluated in realistic sce-
narios. Furthermore, bowtie antennas have been successfully
applied for landmine detection [8] and have been also employed
in previous published numerical schemes focusing on landmine
detection [35], [37].

The targets employed in the simulations are the AP land-
mines PMA-1 and PMN. Both of them are widely used and
frequently found in minefields [88], [89]. PMA-1 is a blast
AP landmine with minimum metal content. It was manufac-
tured in former Yugoslavia and was used in the Balkan area
[89]. Because of the metal fuse inside PMA-1, it is possible
to be detected with metal detector, but there are also reported
types of PMA-1 with plastic fuses. PMA-1 has 200 g of high
explosive content (TNT). The dimensions of PMA-1 are: height
30 mm, length 140 mm, width 65 mm. Fig. 9 illustrates the
modeled AP landmine. The discretization step used for the
model is Az = Ay = Az = 1 mm. Larger discretization step
can be applied in a straightforward manner with a simple inter-
polation. PMN is one of the oldest landmines that are still in
use. It is manufactured in Russia and it is one of the most
widely employed landmines [88]. Similar to PMA-1, PMN has
a large amount of high explosive (240 g TNT). PMN is a palm
shaped cylindrical blast AP landmine. It has a minimum metal
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<« Pl

Fig. 9. Modeled AP landmine PMA-1. Green is plastic (¢ = 2.5), gray is
perfect conductor (PEC), and yellow is rubber (¢ = 6).

Fig. 10. Modeled AP landmine PMN. The adapted side parts of the landmine
are shown at the right of the image. The black top of the AP landmine is rubber
(e = 6), the black pieces on the adapted parts is bakelite (¢ = 3.5), shiny gray is
perfect conductor (PEC), blue is plastic (¢ = 3), the gray parts of the landmine
are also bakelite (¢ = 3.5), and the inside of the landmine is rubber (e = 6).

1.5 GHz
antenna

Fig. 11. 1.5-GHz antenna (red box) operates 10 cm above a PEC on which the
PMA-1 is placed. The same experiment was also executed using the PMN.

content, which can make the PMN detectable with metal detec-
tors. The dimensions of PMN are: height 50 mm and diameter
115 mm. Fig. 10 shows the modeled PMN, the discretization
of the model is Az = Ay = Az = 1 mm. The dielectric prop-
erties of the modeled AP landmines are chosen such as the
numerical and the real A-Scans from the experiment shown in
Fig. 11 were in good agreement. During the experiment, both of
the AP landmines were placed over a perfect electrical conduc-
tor (PEC) and the antenna was positioned at 10 cm above the
PEC. The antenna unit chosen for the experiment was the 1.5-
GHz antenna. Fig. 12 illustrates that the numerical and the real
normalized A-Scans are in good agreement, which indicates the
accuracy of the modeled AP landmines.

V. SIMULATION RESULTS

For the simulations, we used gprMax [18] a free software,
which solves Maxwell’s equations using a second-order accu-
rate FDTD method [19]. In all of the models, the discretization
step was set to Az = Ay = Az = 1 mm and the time step was

Modelled A-scan
— — — Real A-scan

Normalised voltage

1 15 2 25 3 3.5 4
Time (ns)

PMA-1

Normalised voltage

25
Time (ns)

Fig. 12. Numerical and real normalized A-Scans for the experiment described
in Fig. 11 using both PMA-1 and PMN.

equal to the Courant limit for the 3-D FDTD scheme (At =
1.925 ps) [15]. A small discretization step increases the com-
putational cost but it is essential to model the geometry of soil,
targets, vegetation, and antennas with very good resolution. In
addition, a small discretization step tackles the unnatural disper-
sion, which occurs to small wavelengths due to numerical errors
inherent in the FDTD [15]. Regarding the absorbing boundary
conditions, a perfectly matched layer (PML) [15], [90] with 10
cells thickness is applied to all the simulations.

The computational requirements are related to the model’s
size, its dielectric properties and the maximum number of
iterations required for a given GPR time window. Dispersive
soils have increased computational requirements compared
to nondispersive media. In that context, a 1000 x 400 x 300
(cells) model consisted entirely of dispersive media needs
approximately 8-GB of random-access memory (RAM). Using
six processors and 12-GB of RAM, the computation time
for such a model was approximately 2 h per trace for 2500
iterations.

The computational resources required for these kinds of
modeling problems are more than what a conventional com-
puter can offer if results are to be obtained in reasonable time.
To overcome this obstacle, we have employed ECDF [91], the
cluster computer of the University of Edinburgh. A parallelized
version of gprMax has allowed us to compute complete B-
Scans in the same time that was needed for computing a single
A-Scan on a single workstation.

A. Vegetation

In the first example, we examine how vegetation affects
landmine detection using GPR. The model’s dimensions are
1000 x 250 x 450 mm, the surface is relatively smooth, the
soil’s properties are p; = 2.66 g/cm?, p, = 2 g/cm?, C' = 0.5,
S = 0.5, and the water volumetric fraction varies stochastically
from m,, = 0 to 0.25. The height of grass blades varies from
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Fig. 13. AP landmines PMN and PMA-1 buried in a soil with stochastic varied
water volumetric fraction from m,, = 0—0.25. Red color depicts the dry areas
while with blue colors saturated areas are illustrated. The red box is the antenna
unit. The axis are in millimeter.

X-axis

sixe-7

o |

Fig. 14. Slice parallel to the tomography line of the model shown in Fig. 13.

20 to 130 mm and the roots from 20 to 200 mm. Three dif-
ferent scenarios were tested with both antenna models. In the
first scenario, the water weight-based fraction of the vegetation
is equal to M = 0.4 (saturated grass and roots). In the sec-
ond scenario, the water weight-based fraction is M = 0.1 (dry
grass and roots) and in the third scenario, there is no vegetation.
Figs. 13 and 14 illustrate the geometry of the model. The height
of the antenna unit is approximately 160 mm above the ground
and 20 mm above the grass. The depth of both landmines is
approximately 50—70 mm. The B-Scan is taken place along
the z-axis. The moving step of the antenna is 6 mm, which
results in a B-Scan consisted of 132 traces. To all the simula-
tions presented in this section a quadratic gain and subsequently
a singular value decomposition (SVD) [92], having three dom-
inant eigenvalues filtered out, are applied to the raw data. After
removing the ground clutter and the ringing noise, the energy
of each trace is calculated by (19)

P(z) = / E,(z,t)2dt. (19)
0

Fig. 15 presents the B-Scans and normalized energy plots for

the present model (see Figs. 13 and 14) using the 1.5-GHz

antenna. In the absence of vegetation, both AP landmines can
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Fig. 15. B-Scans and normalized energies of the model shown in Fig. 13 with
and without vegetation. The vegetation’s water weight-based fraction equals
M = 0.1 and M = 0.4. The 1.5-GHz antenna is used in the simulations. A
quadratic gain and subsequently a singular value decomposition (three dom-
inant eigenvalues are filtered out) are applied to the raw data. The X-axis
corresponds to the center of the antenna unit in each trace.
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g. 16. Similar to Fig. 15 using the 1.2-GHz antenna.

be reliably detected from the B-Scans and the energy plots.
When vegetation is present and as the water weight-based
fraction increases, B-Scans as well as energy plots become
noisy and more difficult to interpret. This is due to the high-
frequency content of the antenna (1.5 GHz), which results in
an increased sensitivity to features such as vegetation. Using
a higher-frequency antenna will further increase this problem.
Using the 1.2-GHz antenna, due to the slightly lower-frequency
content of the pulse, the effects of vegetation are not as dom-
inant. However, vegetation can result in false alarms as it is
shown in Fig. 16 for M = 0.1. This study shows that the simu-
lated vegetation is not a negligible feature and it can potentially
affect the performance of GPR for the frequency range used for
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(b)

Fig. 17. (a) Buried AP landmine PMA-1 in a stochastically varied soil. (b) No
landmine is buried in order to get an insight on the resulting clutter. The prop-
erties of the soil (for both cases) are ps = 2.66 g/cm3, pp = 1.5 g/cm3,
C = 0.5, S = 0.5, and water volumetric fraction, which varies from m.,, =
0—0.25. The antenna unit used is the 1.5 GHz.

landmine detection. Nonetheless, Figs. 15 and 16 illustrate that
GPR has the potential to be effective in grassy environments
in which vegetation removal is not trivial due to tripwires that
might be present [3].

B. Soil’s Inhomogeneity

Apart from vegetation, more frequently encountered features
like soil’s inhomogeneity can also result in false alarms and
mask the landmine’s scattering field [93]. Most of the numeri-
cal modeling done so far, as well as some real field experiments
took place in simplified/clinical settings. This overestimates
the performance of GPR and gives often a false impression
regarding its abilities and its limitations. The dimensions of
the models in this section are 1000 x 250 x 350. The proper-
ties of the soil are p, = 2.66 g/cm?, p, = 1.5 g/cm3, C = 0.5,
S = 0.5, and the water volumetric fraction varies from m,, = 0
to 0.25. The model antenna used was the 1.5 GHz and it is
placed relatively close to the ground. Two cases are presented.
1) the AP landmine PMA-1 is placed at the center of the model
at approximately 40 mm depth from the surface. 2) No land-
mines are present in an effort to put the emphasis on the level
of the resulting clutter (see Fig. 17). Fig. 18 presents the result-
ing B-Scans using the 1.5-GHz antenna. A quadratic gain is
initially applied to the raw data. Subsequently, three different
processing methods were used: 1) a high pass filter; 2) an adap-
tive scaled and shifted (ASaS) method [94], [95]; and 3) an
SVD filtering out three dominant eigenvalues. It is evident that
the landmine’s signature is masked from the ground clutter
(low signal-to-noise ratio). In addition, the soil’s inhomogene-
ity can give rise to false alarms as a result of the presence of
inhomogeneous clusters in the ground. From the above, it is
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Fig. 18. B-Scans using the 1.5-GHz antenna for the models illustrated in
Fig. 17. A high pass filter, ASaS, and an SVD (three dominant eigenvalues
are filtered out) are applied subject to a quadratic gain.

concluded that soil’s inhomogeneity is an essential feature for
a realistic and useful numerical modeling framework aiming
to reliably assist in evaluating a GPR’s performance. Realistic
and complex B-Scans from high clutter environments can pro-
vide a challenging testbed for evaluating as well as comparing
different processing approaches and antenna designs.

C. Targets

Different targets give rise to different scattered signatures.
For high-frequency problems like GPR for AP landmine detec-
tion, detailed modeling of the targets of interest is a basic
requirement if, i.e., the numerical scheme is to be used as a
training platform for machine learning. In the present section,
the importance of accurate models of landmines is illustrated.
The two AP landmines, PMN and PMA-1, are buried in the
same stochastically varied soil (see Fig. 19) in an effort to illus-
trate the different resulting B-Scans. The dimensions of the
models in this section are 1000 x 250 x 350. The rough sur-
face as well as the soil’s inhomogeneity are modeled using
fractal correlated noise. The properties of the soil are p; =
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Fig. 19. Buried AP landmines PMA-1 and PMN in a stochastically varied soil.
The properties of the soil are ps = 2.66 g/cm?, p, = 1.5 g/cm3, C' = 0.5,

S = 0.5, and water volumetric fraction, which varies from m,, = 0—0.25.
The antenna unit used is the 1.5 GHz.
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Fig. 20. B-Scans using the 1.5-GHz antenna for the models illustrated in
Fig. 19. A quadratic gain and a high pass filter are applied to the raw data.

2.66 g/cm?, p, = 1.5 g/cm3, C' = 0.5, S = 0.5, and the water
volumetric fraction varies from m,, = 0 to 0.25. The model
antenna unit used was the 1.5 GHz and it was placed relatively
close to the ground. Fig. 20 clearly illustrates the differences
between the two B-Scans (a quadratic gain and a high pass filter
are applied for both cases). From this, it is clear that a numeri-
cal scheme that potentially can be used to provide training sets

(a)

(c)

Fig. 21. Water puddles with gradually increasing size over a homogenous
saturated sand with fractal rough surface. The soil’s properties are ps =
2.66 g/cm?, pp, = 2 g/cm3, C = 0.5, S = 0.5, and m,, = 0.15.

for machine learning should be able to predict the signatures
of specific landmines and not generic simplified geometrical
objects.

D. Water Puddles

AP landmines can be found in a variety of environments
[10]. Humid environments with saturated soils and water pud-
dles are a common environment in which AP landmines can be
found (e.g., Bosnia, Cambodia etc. [10]). In this section, we will
briefly examine how water puddles can affect the performance
of GPR for AP landmine detection.

The dimensions of the models are 1000 x 250 x 450 mm,
the modeled antennas are placed close to the ground surface
(40 mm) and the AP landmines are buried at 60 mm depth. The
soil is a homogenous saturated sand with ps = 2.66 g/cm?3,
pp =2g/em?, C =05, S=0.5 and m, = 0.15. Three
different scenarios are examined in which water puddles
are gradually increased (see Fig. 21). The complex relative
electrical permittivity of water is a Debye function (10) with
to,w = 9.8 PS, €u,s =80.1, and €, = 4.9 [56]. Notice
that only the dipolar relaxation of the water is used in the
simulations. The conductive term, which is related to the
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Fig. 22. B-Scans of the models shown in Fig. 21 using the 1.5-GHz antenna.
“A,)” “B,” and “C” scenarios correspond to the gradual increase of the water
puddles. A quadratic gain and subsequently an average removal technique are
applied to the raw data. The X-axis corresponds to the center of the antenna
unit.
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Fig. 23. Similar to Fig. 22 using the 1.2-GHz antenna. Instead of average
removal, a high pass filter is applied.

salinity of water [96], is neglected. This is due to the fact that
water puddles mostly consist of fresh water for which the main
loss mechanism is the dipolar relaxation. If high-salinity water
needs to be modeled, the formula suggested by [96] can be used
in order to express conductivity with respect to temperature
and particles per thousands (ppt). Subsequently, the conductive
term can be easily implemented in FDTD. Figs. 22 and 23
illustrate both B-Scans and energy plots using the 1.5- and
1.2-GHz antenna, respectively. A quadratic gain is applied to
the resulting B-Scans using both antennas. An average removal
technique [92] is proven to give good results for the 1.5 GHz
but does not perform equally well when the 1.2-GHz antenna
is employed. Due to that, a high pass filter is applied to the B-
Scan obtained when using the 1.2-GHz antenna and an average

removal is used for the 1.5-GHz antenna. Increasing the size
of the water puddles decreases the quality of the results when
using the 1.2-GHz antenna (Fig. 23). In “A” and “B” scenario,
the PMN is detectable. Increasing the size of the water puddles
in “C” scenario makes the detection of PMN difficult and unre-
liable (Fig. 23). PMA-1, using the 1.2-GHz antenna (for all the
three scenarios) results in weak scattering signals (compared
to clutter), which are unreliable for interpretation (Fig. 23).
The reasons why PMN is easier to be detected compared with
PMA-1 are because more water puddles occur above PMA-1
and because PMN is a bigger target, therefore, easier to be
resolved by the incident pulse. Due to the high dipolar losses of
the water, no multi-interference phenomena neither waveguide
effects occur within the water. The high-frequency propagating
modes of a thin dielectric slab (like water puddles) are rapidly
attenuating due to water’s dipolar losses.

From Figs. 22 and 23, it is evident that the 1.5-GHz antenna
gives clearer results with respect to the 1.2 GHz one. The rea-
son for that is because the high-frequency content, which is
essential in order to get a clear reflection from the AP land-
mines, which are small targets, is rapidly attenuating inside the
water and the saturated sand. The 1.2-GHz antenna has a lower-
frequency content, which manages to pass through the water
but it cannot resolve well the AP landmines. The already lower
high-frequency content of the 1.2-GHz antenna is attenuated
inside the water, due to that, the pulse that finally reaches the
AP landmines has a rather lower central frequency that makes
the AP landmines undetectable. This is the reason why high
pass filtering works better than the average removal processing
using the 1.2-GHz antenna (i.e., it enhances the high-frequency
content of the B-Scan). On the other hand, the 1.5-GHz antenna
has a larger amount of high-frequency content that manages
to pass through the water and get a clear reflection from the
AP landmines. The reduction of the central frequency of the
pulse due to the water puddles is illustrated in Fig. 22. In all
the scenarios (“A,” “B,” and “C”), the early reflections from
the surface have a higher-frequency content compared with the
later reflections from the AP landmines. As the size of the water
puddles increases the frequency content of the resulting scatter-
ing fields from the AP landmines is decreased. This is also due
to the Debye pole which describes the dielectric properties of
the saturated sand.

E. Water Puddles and Vegetation

In this last section, we examine how the combination of
rough surface, water puddles, and vegetation affects the sim-
ulated GPR performance for AP landmine detection. Three
different cases are examined in which, rough surface, water
puddles, and vegetation are implemented into the models. The
dimensions of the model are 1000 x 250 x 450 mm, the prop-
erties of the soil are p, = 2.66 g/cm?, p, = 2 g/cm?, C =
0.5, S = 0.5, and the water volumetric fraction varies stochasti-
cally from m,, = 0 to 0.25. The water weight-based fraction of
the vegetation is equal M = 0.4. In the first case, the AP land-
mine PMA-1 is buried in the center of the model at 60 mm
depth, in the second case, AP landmine PMN is buried in
the center of the model also at 60 mm depth, and in the the
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(c)

Fig. 24. Three different complex media with a stochastically varied water vol-
umetric fraction, rough surface, water puddles, and vegetation. In case “A,”
the AP landmine PMA-1 is buried at the center of the model at approximately
60 mm depth, In case “B,” PMN is placed 60 mm (approximately) beneath the
ground surface. In case “C,” no landmines are present.

third case, no landmines are present in order to investigate the
false alarms, which might occur (Fig. 24). One interpretation of
these examples is to assume that they do resemble a tropical-
humid environment in which AP landmines are frequently
found (PMN has been extensively used at the Thai border [88]
in heavily vegetated jungle environments). As AP landmines
can be found in a wide range of environments, from arid to
tropical [9], an efficient numerical scheme should be capable
of addressing the issue of diversity and not be constrained to
specific cases.

Figs. 25 and 26 illustrate the B-Scans and the energy plots
using the 1.5- and 1.2-GHz antenna models, respectively. A
quadratic gain and an SVD having four dominant eigenvalues
filtered out are applied to the raw data. Using both antenna
models results to noisy and difficult to interpret B-scans. The
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Fig. 25. B-Scans and energy plots using the 1.5-GHz antenna for the cases
shown in Fig. 24. A quadratic gain and subsequently a singular value decompo-
sition (four dominant eigenvalues are filtered out) are applied to the raw data.
The X -axis corresponds to the center of the antenna unit.
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Fig. 26. Same with Fig. 25 using the 1.2-GHz antenna.

1.2-GHz antenna gives indications of PMN and PMA-1 but
similar patterns also occur in the case of no landmines. This
increases the false alarm rate to a level that demining could
become more difficult and rather time consuming. Using dif-
ferent processing algorithms (e.g., SVD filtering out different
eigenvalues, average removal technique, high pass filter, and
adaptive ground removal [94], [95]) leads to equally unreli-
able results. This clearly illustrates the difficulties that GPR has
in some truly complex environments. It is evident from these
examples that a numerical scheme that aims to be used as a
testbed for developing GPR antennas and advanced processing
methods should be capable of producing difficult and challeng-
ing data sets. Previous approaches [31]-[37] often resulted in
rather clinical B-Scans that were easy to be addressed using
trivial processing methods.
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VI. CONCLUSION

A systematic framework for accurate and realistic numerical
modeling of GPR for landmine detection has been introduced.
Methods for implementing both the dielectric properties and
the geometrical characteristics of the subsurface were proposed
as well as methods for implementing vegetation into the mod-
els. The effects of vegetation, water puddles, rough surface,
and complex soils were examined and cases shown for which
GPR—using the specific modeled antennas—has difficulties in
clearly and easily detecting the simulated AP landmines. This
is in contrast to results from more clinical and simplified mod-
els in which numerical GPR modeling gives usually clear and
predictable results. Therefore, it appears that realistic simula-
tion results can more consistently predict the GPR’s behavior
in a manner that is closer to the experience of using GPR in the
field.

The overall aim of this work was to investigate the possi-
bility of modeling GPR for landmine detection as much as
realistically as possible. The availability of such a detailed
numerical modeling framework allows us to investigate in the
future advanced processing algorithms and new interpretation
schemes without having to oversimplify the problem that often
produces predictable outcomes and lead to approaches that
as seen in practice do not always perform well in the field.
Extensive field testing is obviously the only viable route to
be certain that a new approach could be beneficial. However,
such a realistic modeling framework is valuable in the phase of
developing and testing ideas. Finally, it has also been illustrated
via the numerical modeling examples that processing methods
are often case sensitive. As a result, interpretation methods must
be validated using a diverse set of scenarios. A realistic numer-
ical model is a practical and efficient way to address this issue
by providing synthetic but nonetheless realistic data. The long-
term intention of this modeling work is to inform and support
GPR antenna design, provides a reliable testbed for developing
advanced signal processing approaches, and used as a training
platform for machine learning purposes.

REFERENCES

[1] M. Acheroy, “Mine action: Status of sensor technology for close-in and
remote detection of anti-personnel mines,” Near Surf. Geophys., vol. 5,
pp. 43-55, Feb. 2007.

[2] B. Claudio, G. Bertrand, G. Frederic, P. Pierre-Yves, and C. Olivier,
“Ground penetrating radar and imaging metal detector for antipersonnel
detection,” J. Appl. Geophys., vol. 40, pp. 59-71, Oct. 1998.

[3] M. A. Cameron, R. J. Lawson, and B. W. Tomlin, To Walk Without Fear:
The Global Movement to Ban Landmines, 1st ed. London, U.K.: Oxford
Univ. Press, USA, Dec. 1998.

[4] APOPO. (2006). A Belgian Research Organisation That Was Initiated
in Response to the Global Landmine Problem [Online]. Available:
http://www.apopo.org/. Accessed: Nov. 30, 2014.

[5] C. P. Gooneratne, S. C. Mukhopahyay, and G. S. Gupta, “A review of
sensing technologies for landmine detection: Unmanned vehicle based
approach,” in Proc. 2nd Int. Conf. Auton. Robots Agents, Palmerston
North, New Zealand, Dec. 2004, pp. 401-407.

[6] C. T. Schroder and W. R. Scott, “A finite-difference model to study the
elastic-wave interactions with buried landmines,” IEEE Trans. Geosci.
Remote Sens., vol. 38, no. 4, pp. 1505-1512, Jul. 2000.

[71 P. Church, J. E. McFee, S. Gagnon, and P. Wort, “Electrical impedance
tomographic imaging of buried landmines,” IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 9, pp. 2407-2420, Sep. 2006.

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

49

M. Metwaly, “Detection of metallic and plastic landmines using GPR and
2-D resistivity techniques,” Nat. Hazards Earth Syst. Sci., vol. 7, pp. 755—
763, Dec. 2007.

D. J. Daniels, Ground Penetrating Radar, 2nd ed. London, U.K.:
Institution of Engineering and Technology, 2004.

D. J. Daniels, “A review of GPR for landmine detection,” Int. J. Sens.
Imag., vol. 7, no. 3, pp. 90-123, Dec. 2006.

1. Giannakis, A. Giannopoulos, C. Warren, and N. Davidson, “Numerical
modelling and neural networks for landmine detection using ground pen-
etrating radar,” in Proc. Int. Workshop Adv. Ground Penetrat. Radar,
Florence, Italy, 2015, in press.

M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2000.

J. Crank and P. Nicolson, “A practical method for numerical evaluation
of solutions of partial differential equations of the heat-conduction type,”
in Proc. Cambridge Philos. Soc., 1947, vol. 43, pp. 50-67.

T. Namiki, “A new FDTD algorithm based on alternating-direction
implicit method,” IEEE Trans. Microw. Theory Techn., vol. 47, no. 10,
pp. 2003-2007, Oct. 1999.

A. Taflove and S. C. Hagness, Computational Electrodynamics, the
Finite-Difference Time-Domain Method, 2nd ed. Norwood, MA, USA:
Artech House, 2000.

K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain
Method for Electromagnetics. Boca Raton, FL, USA: CRC Press, 1993.
N. J. Cassidy, “A review of practical numerical modelling methods for
the advanced interpretation of ground-penetrating radar in near-surface
environments,” Near Surf. Geophys., vol. 5, pp. 5-21, Feb. 2007.

A. Giannopoulos, “Modeling ground penetrating radar by GprMax,”
Constructions and Buildings Materials, vol. 19, 2005, pp. 755-762.

K. S. Yee, “Numerical solution of initial boundary value problems involv-
ing Maxwell’s equations in isotropic media,” IEEE Trans. Antennas
Propag., vol. 14, no. 3, pp. 302-307, May 1966.

V. Wilson, C. Power, A. Giannopoulos, J. Gerhard, and G. Grant,
“DNAPL mapping by ground penetrating radar examined via numerical
simulation,” J. Appl. Geophys., vol. 69, pp. 140-149, Dec. 2009.

J. M. Carcione, “Ground-penetrating radar: Wave theory and numerical
simulations in lossy anisotropic media,” Geophysics, vol. 61, pp. 1664—
1677, Dec. 1996.

R. Hu, L. Lu, and S. Wang, “The numerical simulation study on ground
penetrating radar detection of the typical adverse geological structure,” in
Proc. 14th Int. Conf. Ground Penetrat. Radar (GPR), Jun. 2012, pp. 243—
247.

C. Ozturk and M. G. Drahor, “Synthetic GPR modelling studies on shal-
low geological properties and its comparison with the real data,” in Proc.
13th Int. Conf. Ground Penetrat. Radar (GPR), Jun. 2010, pp. 1-4.

H. Xianqi, Z. Ziqiang, L. Guangyin, and L. Qunyi, “The FDTD modeling
of GPR for tunnel inspection,” in Proc. IEEE Int. Conf. Inf. Eng. Comput.
Sci., Dec. 2009, pp. 1-4.

N. J. Cassidy and T. M. Millington, “The application of finite-difference
time-domain modelling for the assessment of GPR in magnetically lossy
materials,” J. Appl. Geophys., vol. 67, pp. 296-308, Apr. 2009.

N. Diamanti and A. Giannopoulos, “Employing ADI-FDTD sub-grids for
GPR numerical modelling and their application to study ring separation
in brick masonry arch bridges,” Near Surf. Geophys., vol. 9, pp. 245-256,
Jun. 2011.

K. Belli, C.M Rappaport, Z. He, and S. Wadia-Fascetti, “Effectiveness
of 2-D and 2.5-D FDTD ground-penetrating radar modeling for bridge-
deck deterioration evaluated by 3-D FDTD,” IEEE Trans. Geosci. Remote
Sens., vol. 47, no. 11, pp. 3656-3663, Nov. 2009.

W. S. Hammon, III, G. A. McMechan, and X. Zeng, “Forensic GOR:
Finite-difference simulations of responses from buried human remains,”
J. Appl. Geophys., vol. 45, pp. 171-186, Oct. 2000.

L. Sixin, W. Junjun, Z. Junfeng, and Z. Zhaofa, “Numerical simulations
of borehole radar detection for metal ore,” IEEE Trans. Geosci. Remote
Sens., vol. 8, no. 2, pp. 308-312, Mar. 2011.

L. Sixin and F. Yanqian, “Airborne GPR: Advances and numerical sim-
ulation,” in IEEE Int. Geosci. Remote Sens. Symp., Jul. 2011, pp. 3397—
3400.

L. Gurel and U. Oguz, “Three-dimensional FDTD modelling of a ground-
penetrating radar,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 4,
pp. 1513-1521, Jul. 2000.

L. Gurel and U. Oguz, “Simulations of ground-penetrating radars over
lossy and heterogeneous grounds,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 6, pp. 1190-1197, Jun. 2001.

U. Oguz and L. Gurel, “Frequency responses of ground-penetrating
radars operating over highly lossy grounds,” IEEE Trans. Geosci. Remote
Sens., vol. 40, no. 6, pp. 1385-1394, Jun. 2002.



50

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 9, NO. 1, JANUARY 2016

L. Gurel and U. Oguz, “Optimization of the transmitter—receiver separa-
tion in the ground-penetrating radar,” I[EEE Trans. Geosci. Remote Sens.,
vol. 51, no. 3, pp. 362-370, Mar. 2003.

M. A. Gonzalez-Huici, U. Uschkerat, and A. Hoerdt, “Numerical simula-
tion of electromagnetic-wave propagation for land mine detection using
GPR,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 23-28, 2007,
pp. 4957-4960.

M. A. Gonzalez-Huici and U. Uschkerat, “GPR modeling for landmine
detection,” in Proc. Int. Symp. Electromagn. Theory (EMTS), Aug. 2010,
pp. 152-155.

M. A. Gonzalez-Huici, “A strategy for landmine detection and recogni-
tion using simulated GPR responses,” in Proc. 14th Int. Conf. Ground
Penetrat. Radar (GPR), Jun. 2012, pp. 871-876.

J. H. Bradform, “Frequency-dependent attenuation analysis of ground-
penetrating radar data,” Geophysics, vol. 72, no. 3, pp. j7-j16, Jun. 2007.
R. J. Sengwa and A. Soni, “Low-frequency dielectric dispersion and
microwave dielectric properties of dry and water-saturated limestones
of Jodhpur region,” Geophysics, vol. 71, no. 5, pp. G269-G277,
Sep. 2006.

M. R. Taherian, W. E. Kenyon, and K. A. Safinya, “Measurements of
dielectric response of water-saturated rocks,” Geophysics, vol. 55, no. 12,
pp. 1530-1541, Dec. 1990.

G. Turner and A. F. Siggins, “Constant Q attenuation of subsurface radar
pulses,” Geophysics, vol. 59, no. 8 pp. 1192-1200, Aug. 1994.

M. Bano, “Constant dielectric losses of ground-penetrating radar waves,”
Geophys. J. Int., vol. 124, pp. 279-288, Jan. 1996.

M. Bano, “Modelling of GPR waves for lossy media obeying a complex
power law of frequency for dielectric permittivity,” Geophys. Prospect.,
vol. 52, pp. 11-26, Jan. 2004.

F. Hollender and S. Tillard, “Modeling ground-penetrating radar
wave propagation and reflection with the Jonscher parameterization,”
Geophysics, vol. 63, no. 6, pp. 1933-1942, Dec. 1998.

J. Clegg and M. P. Robinson, “A genetic algorithm used to fit Debye
functions to the dielectric properties of tissues,” in Proc. IEEE Congr.
Evol. Comput. (CEC), Jul. 2010, pp. 1-8.

D. E. Kelley, T. J. Destan, and R. J. Luebbers, “Debye function expan-
sions of complex permittivity using a hybrid particle swarm-least squares
optimisation approach,” IEEE Trans. Antennas Propag., vol. 55, no. 7,
pp. 1999-2005, Jul. 2007.

1. Giannakis, A. Giannopoulos, and N. Davidson, “Incorporating disper-
sive electrical properties in FDTD GPR models using a general Cole-Cole
dispersion function,” in Proc. 14th Int. Conf. Ground Penetrat. Radar
(GPR), Jun. 2012, pp. 232-236.

F. Torres, P. Vaudon, and B. Jecko, “Application of fractional derivatives
to the FDTD modelling of pulse propagation in a Cole—Cole dispersive
medium,” Microw. Opt. Technol. Lett., vol. 13, no. 5, pp. 300-304, May
1996.

W. H. Weedon and C. M. Rappaport, “A general method for FDTD mod-
elling of wave propagation in arbitrary frequency-dispersive dielectrics,”
IEEE Trans. Antennas Propag., vol. 45, pp. 401-410, Mar. 1997.

J. M. Carcione and M. A. Schoenberg, “3-D ground-penetrating radar
simulation and plane-wave theory in anisotropic media,” Geophysics,
vol. 65, pp. 1527-1541, Oct. 2000.

T. Bergmann, J. O. Robertsson, and K. Holliger, “Finite-difference mod-
elling of electromagnetic wave propagation in dispersive and attenuating
media,” Geophysics, vol. 62, pp. 856-867, Jun. 1998.

T. Xu and G. A. McMechan, “GPR attenuation and its numerical simu-
lation in 2.5 dimensions,” Geophysics, vol. 62, no. 1, pp. 403—414, Mar.
1997.

F. L. Teixeira, W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang,
“Finite-difference time-domain simulation of ground penetrating radar on
dispersive, inhomogeneous, and conductive soils,” IEEE Trans. Geosci.
Remote Sens., vol. 36, no. 6, pp. 1928-1937, Nov. 1998.

D. Uduwawala, M. Norgren, and P. Fuks, “A complete FDTD simula-
tion of a real GPR antenna system operating above lossy and dispersive
grounds,” Prog. Electromagn. Res., vol. 50, pp. 209-229, 2005.

G. E. Atteia and K. F. A. Hussein, “Realistic model of dispersive
soils using PLRC-FDTD with applications to GPR systems,” Prog.
Electromagn. Res., vol. 26, pp. 335-359, 2010.

M. C. Dobson, F. T. Ulaby, M. T. Hallikainen, and M. A. El-Rayes,
“Microwave dielectric behavior of wet soil—Part II: Dielectric mixing
models,” IEEE Trans. Geosci. Remote Sens., vol. GRS-23, pp. 35-46,
Jan. 1985.

N. R. Peplinski, F. T. Ulaby, and M. C. Dobson, “Dielectric properties
of soils in the 0.3—-1.3-GHz range,” IEEE Trans. Geosci. Remote Sens.,
vol. 33, no. 3, pp. 803-807, May 1995.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

(791

[80]
[81]

[82]

N. R. Peplinski, F. T. Ulaby, and M. C. Dobson, “Corrections to dielec-
tric properties of soils in the 0.3—-1.3-GHz range,” IEEE Trans. Geosci.
Remote Sens., vol. 33, no. 6, p. 1340, Nov. 1995.

A. Giannopoulos and N. Diamanti, “Numerical modelling of ground-
penetrating radar response from rough subsurface interfaces,” Near Surf.
Geophys., vol. 6, pp. 357-369, Dec. 2008.

D. L. Turcotte, “A fractal interpretation of topography and geoid spectra
on the Earth, Moon, Venus and Mars,” J. Geophys. Res., vol. 92, no. B4,
pp. E5S97-E601, Mar. 1987.

D. L. Turcotte, Fractals and Chaos in Geology and Geophysics.
Cambridge, U.K.: The Press Syndicate of the Univ. Cambridge, 1992.

R. B. Rezaur, H. Rahardjo, and E. C. Leong, “Spatial and temporal
variability of pore-water pressures in residual soil slopes in a tropical
climate,” Earth Surf. Process. Landforms, vol. 27, pp. 317-338, 2002.

Q. F. Yansui Liu and M. Mikami, “Geostatistical analysis of soil moisture
variability in grassland,” J. Arid Environ., vol. 58, pp. 357-372, 2004.

J. D. Jabro, W. B. Stevens, R. G. Evans, and W. M. Iversen, “Spatial
variability and correlation of selected soil properties in the AP horizon of
a CRP grassland,” Appl. Eng. Agric., vol. 26, pp. 419-428, 2010.

J. Rea and R. Knight, “Geostatistical analysis of ground-penetrating radar
data: A means of describing spatial variation in the subsurface,” Water
Resour. Res., vol. 34, pp. 329-339, Mar. 1998.

N. L. Carlson, “Dielectric constant of vegetation at 85 GHz,)”
Electroscience Lab., Ohio State Univ., Columbus, Tech. Rep. 1903-5,
Mar. 1967.

H. S. Tan, “Microwave measurements and modelling of the permittivity
of tropical vegetation samples,” Appl. Phys., vol. 25, pp. 351-355, Jul.
1981.

K. Lee, C. C. Chen, F. L. Teixeira, and K. H. Lee, “Modeling and
investigation of a geometrically complex UWB GPR antenna using
FDTD,” IEEE Trans. Antennas Propag., vol. 52, no. 8, pp. 1983-1991,
Aug. 2004.

D. Uduwawala, “Modeling and investigation of planar parabolic dipoles
for GPR applications: A comparison with bow-tie using FDTD,” J.
Electromagn. Waves Appl., vol. 20, pp. 227-236, 2006.

J. R. Bourgeois and G. S. Smith, “A fully three-dimensional simulation
of a ground-penetrating radar: FDTD theory compared with experiment,”
IEEE Trans. Geosci. Remote Sens., vol. 34, no. 1, pp. 36-44, Jan. 1996.
G. Klysz, J. P. Balayssac, S. Laurens, and X. Ferrieres, “Numerical FDTD
simulation of the direct wave propagation of a GPR coupled antenna,” in
Proc. 10th Int. Conf. Ground Penetrat. Radar (GPR), Jun. 2004, vol. 1,
pp. 45-48.

D. Caratelli, A. Yarovoy, and L. P. Ligthart, “Accurate FDTD modelling
of resistively-loaded bow-tie antennas for GPR applications,” in Proc.
IEEE 3rd Eur. Conf. Antennas Propag., Mar. 2009, pp. 2115-2118.

J. M. Bourgeois and G. S. Smith, “A complete electromagnetic simulation
of a ground penetrating radar for mine detection: Theory and experiment,”
in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 13-18, 1997, vol. 2,
pp. 986-989.

T. P. Montoya and G. S. Smith, “Resistively-loaded Vee antennas for
short-pulse ground penetrating radar,” IEEE Antennas Propag. Soc. Int.
Symp., Jul. 1996 , vol. 3, pp. 2068-2071.

M. McFadden and W.R. Scott, “Numerical modelling of a spiral-antenna
GPR system,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2009,
vol. 2, pp. 109-112.

A. S. Turk, D. A. Sahinkaya, M. Sezgin, and H. Nazli, “Investigation
of convenient antenna designs for ultra-wide band GPR systems,” in
Proc. 4th Int. Workshop Adv. Ground Penetrat. Radar (GPR), Jun. 2007,
pp. 192-196.

C. Warren and A. Giannopoulos, “Creating finite-difference time-domain
models of commercial ground-penetrating radar antennas using Taguchi’s
optimisation method,” Geophysics, vol. 76, no. 2, pp. G37-G47, Apr.
2011.

C. Warren and A. Giannopoulos, “Investigation of the directivity of a
commercial ground-penetrating radar antenna using a finite-difference
time-domain antenna model,” in Proc. 14th Int. Conf. Ground Penetrat.
Radar (GPR), Jun. 2012, pp. 226-231.

G. Klysz, X. Ferrieres, J. P. Balayssac, and S. Laurens, “Simulation of
direct wave propagation by numerical FDTD for a GPR coupled antenna,”
NDT E Int., vol. 39, no. 4, pp. 338-347, Jun. 2006.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., Dec. 1995, vol. 4, pp. 1942-1948.

P. A. Burrough, “Fractal dimensions of landscapes and other environmen-
tal data,” Nature, vol. 294, pp. 240-242, Nov. 1981.

D. Hillel, Environmental Soil Physics. New York, NJ, USA: Academic
Press, 1980.



GIANNAKIS et al.: REALISTIC FDTD NUMERICAL MODELING FRAMEWORK OF GPR

[83]

[84]

[85]

[86]

F. T. Ulaby and R. P. Jedlicka, “Microwave dielectric properties of plant
materials,” IEEE Trans. Geosci. Remote Sens., vol. GE-22, no. 4, pp. 406-
415, Jul. 1984.

M. A. El-Rayes and F. T. Ulaby, “Microwave dielectric spectrum
of vegetation-part I: Experimental observations,” IEEE Trans. Geosci.
Remote Sens., vol. GE-25, no. 5, pp. 541-549, Sep. 1987.

F. T. Ulaby and M. A. El-Rayes, “Microwave dielectric spectrum
of vegetation—Part II: Dual-dispersion model,” IEEE Trans. Geosci.
Remote Sens., vol. GE-25, no. 5, pp. 550-557, Sep. 1987.

B. L. Shrestha, H. C. Wood, and S. Sokhansanj, “Modeling of vegeta-
tion permittivity at microwave frequencies,” IEEE Trans. Geosci. Remote

51

Antonios Giannopoulos received the B.Sc.
degree in geology from the Aristotle University of
Thessaloniki, Thessaloniki, Greece, and the D.Phil.
degree in electronics from the University of York,
York, U.K., in 1991 and 1997, respectively.

Since 2009, he has been a Senior Lecturer with the
School of Engineering, Institute for Infrastructure and
Environment, University of Edinburgh, Edinburgh,
U.K. He is the author of gprMax (wWww.gprmax.com),
a freely available FDTD GPR simulator. He is a
Member of SEG and EAGE. His research interests

Sens., vol. 45, no. 2, pp. 342-348, Feb. 2007. include advanced numerical modeling of ground penetrating radar, computa-
[87] A. Franchois, Y. Pineiro, and R. H. Lang, “Microwave permittivity mea-  tional electromagnetics and the development and application of geophysical
surements of two conifers,” IEEE Trans. Geosci. Remote Sens., vol. 36,  techniques to shallow depth geophysical, and nondestructive testing problems.

[88]

[89]

[90]

[91]
[92]

[93]

[94]

no. 5, pp. 1384-1395, Sep. 1998.

Physicians for Human Rlghts, Landmines, A Deadly Legacy. Human
Rights Watch, New York, NY, USA, 2003.

Reporting formats for Article 7, Convention on the prohibition of the use,
stockpiling, production and transfer of anti-personnel mines and on their
destruction, The Republic of Croatia, 2014.

J. P. Berenger, “A perfectly matched layer for the absorption of elec-
tromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185-200, Aug.
1994.

University of Edinburgh. (2014, Nov. 30), Edinburgh Compute and Data
Facility [Online]. Available: www.ecdf.ed.ac.uk

J. H. Kim, S. J. Cho, and M. J. Yi, “Removal of ringing noise in GPR data
by signal processing,” Geosci. J., vol. 11, pp. 75-81, Mar. 2007.

K. Takahashi, J. Igel, H. Preetz, and M. Sato, “Influence of heteroge-
neous soils and clutter on the performance of ground-penetrating radar
for landmine detection,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6,
pp. 3464-3472, Jun. 2014.

H. Brunzell, “Detection of shallowly buried objects using impulse radar,”

Craig Warren received the B.E. degree in electri-
cal and mechanical engineering and the Ph.D. degree
in engineering from the University of Edinburgh,
Edinburgh, U.K., in 2003 and 2009, respectively.
From 2010 to 2013, he held the positions of
Teaching Fellow and Learning Technologist, and is
currently a Research Associate with the University of
Edinburgh. He is a Chartered Engineer (C.Eng.). His
research interests include development of numerical
models of ground-penetrating radar and novel appli-
cations of GPR to engineering problems, engineering

IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 875886, Mar,  education, and technology enhanced learning.
1999. Dr. Warren is a Fellow of the Higher Education Academy (FHEA), U.K., and

[95] R. Wu, A. Clement, J. Li, E. G. Larsson, M. Bradley, J. Habersat, and a member of both the Institution of Mechanical Engineers (IMechE), U.K., and
¢ ; : ’ ’ ) the Institution of Engineering Technology (IET), U.K.

[96]

G. Maksymonko, “Adaptive ground bounce removal,” Electron. Lett.,
vol. 37, no. 20, pp. 1250-1252, Sep. 2001.

A. Stogryn, “Equations for calculating the dielectric constant of saline
water,” IEEE Trans. Antennas Propag., vol. MTT-19, no. 8, pp. 733-736,
Aug. 1971.

Iraklis Giannakis received the B.Sc. degree in geol-
ogy and the M.Sc. degree in geophysics from the
Aristotle University of Thessaloniki, Thessaloniki,
Greece, in 2009 and 2011, respectively. He is cur-
rently pursuing the Ph.D. degree in engineering at
the School of Engineering, University of Edinburgh,
Edinburgh, U.K.

He is currently working on the numerical model-
ing of ground penetrating radar and its application
to landmine detection. His research interests include
development and application of near surface geophys-

ical techniques.



