
Computer Physics Communications 237 (2019) 208–218

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A CUDA-based GPU engine for gprMax: Open source FDTD
electromagnetic simulation software
Craig Warren a,∗, Antonios Giannopoulos b, Alan Gray c, Iraklis Giannakis b,
Alan Patterson d, Laura Wetter d, Andre Hamrah d

a Department of Mechanical & Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
b School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
c NVIDIA, UK
d Google, USA

a r t i c l e i n f o

Article history:
Received 3 October 2017
Received in revised form 6 November 2018
Accepted 11 November 2018
Available online 22 November 2018

Keywords:
CUDA
Finite-Difference Time-Domain
GPR
GPGPU
GPU
NVIDIA

a b s t r a c t

The Finite-Difference Time-Domain (FDTD) method is a popular numerical modelling technique in
computational electromagnetics. The volumetric nature of the FDTD technique means simulations often
require extensive computational resources (both processing time andmemory). The simulation of Ground
Penetrating Radar (GPR) is one such challenge, where the GPR transducer, subsurface/structure, and
targets must all be included in the model, and must all be adequately discretised. Additionally, forward
simulations of GPR can necessitate hundreds of models with different geometries (A-scans) to be
executed. This is exacerbated by an order of magnitude when solving the inverse GPR problem or when
using forward models to train machine learning algorithms.

We have developed one of the first open source GPU-accelerated FDTD solvers specifically focused
on modelling GPR. We designed optimal kernels for GPU execution using NVIDIA’s CUDA framework.
Our GPU solver achieved performance throughputs of up to 1194 Mcells/s and 3405 Mcells/s on NVIDIA
Kepler and Pascal architectures, respectively. This is up to 30 times faster than the parallelised (OpenMP)
CPU solver can achieve on a commonly-used desktop CPU (Intel Core i7-4790K). We found the cost–
performance benefit of the NVIDIA GeForce-series Pascal-based GPUs – targeted towards the gaming
market – to be especially notable, potentially allowing many individuals to benefit from this work using
commodity workstations. We also note that the equivalent Tesla-series P100 GPU – targeted towards
data-centre usage – demonstrates significant overall performance advantages due to its use of high-
bandwidthmemory. The performance benefits of our GPU-accelerated solverwere demonstrated in a GPR
environment by running a large-scale, realistic (including dispersive media, rough surface topography,
and detailed antenna model) simulation of a buried anti-personnel landmine scenario.
New version program summary
Program Title: gprMax
Program Files doi: http://dx.doi.org/10.17632/kjjm4z87nj.1
Licensing provisions: GPLv3
Programming language: Python, Cython, CUDA
Journal reference of previous version: Comput. Phys. Comm., 209 (2016), 163–170
Does the new version supersede the previous version?: Yes
Reasons for the new version: Performance improvements due to implementation of CUDA-based GPU
engine
Summary of revisions: A FDTD solver has been written in CUDA for execution on NVIDIA GPUs. This is in
addition to the existing FDTD solver which has been parallelised using Cython/OpenMP for running on
CPUs.
Nature of problem: Classical electrodynamics
Solution method: Finite-Difference Time-Domain (FDTD)

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

∗ Corresponding author.
E-mail address: craig.warren@northumbria.ac.uk (C. Warren).

1. Introduction

The desire to simulate larger andmore complex scientific prob-
lems has created an ever-increasing demand for High-Performance

https://doi.org/10.1016/j.cpc.2018.11.007
0010-4655/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

https://doi.org/10.1016/j.cpc.2018.11.007
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2018.11.007&domain=pdf
http://dx.doi.org/10.17632/kjjm4z87nj.1
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:craig.warren@northumbria.ac.uk
https://doi.org/10.1016/j.cpc.2018.11.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218 209

Computing (HPC) resources. Parallelised software codes running
on HPC facilities have significantly reduced simulation times, and
enabled researchers to investigate problems that were not previ-
ously computationally feasible. However, HPC facilities are costly
to build, maintain, and upgrade, and hence are often only acces-
sible to those working in universities, big businesses, or national
research centres. Over the past decade general-purpose computing
using graphics processing units (GPGPU) has become a common
method for accelerating scientific software. GPGPU is attractive
because a GPU has a massively parallel architecture, typically con-
sisting of thousands of efficient cores designed for handling spe-
cific tasks simultaneously. In contrast, a CPU has few cores that
are designed to handle more generic sequential tasks. Combined
with the relatively low cost of GPUs, it makes GPGPU appealing
from a cost–performance perspective — from small-scale worksta-
tion setups through to large-scale GPU-accelerated HPC facilities.
In addition, the creation of programming environments such as
CUDA [1], available forNVIDIAGPUs, havemadeGPGPU computing
more accessible to developers without necessitating expertise in
computer graphics.

In the field of computational electromagnetics (EM), the Finite-
Difference Time-Domain (FDTD)method is one of themost popular
numerical techniques for solving EM wave propagation problems.
One such set of problems is the simulation of Ground Penetrat-
ing Radar (GPR), where the GPR transducer, subsurface/structure,
and targets must all be included in the model. GPR antennas
are typically impulse-driven and broadband, so the time-domain
nature of the FDTD method means this behaviour can be mod-
elled with a single simulation, i.e. separate simulations are not
required for each excitation frequency. In general the strengths
of the FDTD method are that it is fully explicit, versatile, robust,
and relatively simple to implement. However, it can suffer from
errors due to ’stair-case’ approximations of complex geometrical
details, and the aforementioned requirement – to discretise the
entire computational domain – can also be disadvantageous in ne-
cessitating extensive computational resources. The building block
of the FDTD method is the Yee cell [2] in which Maxwell’s curl
equations are discretised in space and time (usually using second-
order accurate derivatives). A leapfrog time-stepping method is
used to alternately update the three electric and three magnetic
field components in three-dimensional (3D) space. At each time-
step the electric and magnetic field updates are performed inde-
pendently at each point of the computational grid. This grid-based
parallelism can bemapped tomultiple computational threads run-
ning in parallel. This has led to both commercial and open source
FDTD EM software being parallelised for CPU solving [3–8] and,
more recently, some commercial codes being accelerated using
GPGPU. However, there are currently no open source FDTD EM
tools that are GPU-accelerated and contain the necessary features
to simulate complex, heterogeneous GPR environments. There is
a clear need for such tools in areas of GPR research such as full-
waveform inversion [9,10] andmachine learning [11], where thou-
sands of complex and realistic forward models required to be
executed.

We have developed a GPU-accelerated FDTD solver and inte-
grated it into open source EM simulation software that is specifi-
cally focused onmodelling GPR. In Section 2 we explain the design
of the GPU kernels and optimisations that have been employed.
Section 3 presents performance comparisons, using simplemodels,
between the existing parallelised CPU solver and our new GPU
solver, on a selection of NVIDIA GPUs. In Section 4 we demonstrate
the performance of the GPU-accelerated solver with a more repre-
sentative, realistic GPR simulation, aswell aswith a large-scaleGPR
simulation of buried anti-personnel landmines. Finally, Section 5
gives our conclusions.

2. Kernel design

A GPU-accelerated FDTD solver has been developed as an in-
tegral component of gprMax1 which is open source software that
simulates electromagnetic wave propagation, using the FDTD
method, for numerical modelling of GPR. gprMax is one of the
most widely used simulation tools in the GPR community, and
has been successfully used for a diverse range of applications in
academia and industry [12–17]. It has recently been completely
re-written [18] in Python with the CPU solver component written
in Cython2 and parallelised using OpenMP. This recent work [18]
also introduced a unique combination of advanced features for
simulating GPR including: modelling of dispersive media using
multi-poleDebye, Drude or Lorenz expressions [19]; soilmodelling
using a semi-empirical formulation for dielectric properties and
fractals for geometric characteristics [20]; diagonally anisotropic
materials; rough surface generation; an unsplit implementation
of higher order perfectly matched layers (PMLs) using a recursive
integration approach [21]; and the ability to embed complex trans-
ducers [22] and targets.

As previously stated one of the reasons the FDTD method is at-
tractive to parallelise is because at each time-step the electric and
magnetic field updates can be performed independently at each
point of the computational grid. A standard FDTD update equation
(omitting the source term) for the electric field component in the
x-direction (Ex) is given by (1) [23].

Ex
⏐⏐⏐n+ 1

2

i,j+ 1
2 ,k+ 1

2

= Ca,Ex

⏐⏐⏐
i,j+ 1

2 ,k+ 1
2

Ex
⏐⏐⏐n− 1

2

i,j+ 1
2 ,k+ 1

2

+ Cbz ,Ex

⏐⏐⏐
i,j+ 1

2 ,k+ 1
2

(
Hz

⏐⏐⏐n
i,j+1,k+ 1

2

− Hz

⏐⏐⏐n
i,j,k+ 1

2

)
− Cby,Ex

⏐⏐⏐
i,j+ 1

2 ,k+ 1
2

(
Hy

⏐⏐⏐n
i,j+ 1

2 ,k+1
− Hy

⏐⏐⏐n
i,j+ 1

2 ,k

)
, (1)

where Ca and Cb are the coefficients related to thematerial proper-
ties, Hy and Hz are the magnetic field components in the
y- and z-directions, the superscript n denotes the time-step, and
the subscripts (i, j, k) denote the 3D spatial location. It is evident
from (1) that updating Ex is a fully explicit operation, i.e. it depends
only on quantities stored in memory from previous time-steps.

GPUs offer performance advantages over traditional CPUs be-
cause they have significantly higher computational floating point
performance (through many lightweight cores) coupled with a
relatively high bandwidthmemory system. The rooflinemodel [24]
can be used to determinewhich of these aspects is the limiting fac-
tor, given the ratio of operations to bytes loaded, for any given al-
gorithm. In (1) a total of six field components (electric ormagnetic)
are either loaded or stored, corresponding to 24 or 48 bytes of
data in single or double precision. Seven floating point operations
are performed so the ratio is 0.3 (single precision) or 0.15 (double
precision), which is much less than the equivalent ratio offered
by the hardware (called the ‘‘ridge point’’ in the roofline model
terminology). This tells us that the code will not be sensitive to
floating point capability, and that the availablememory bandwidth
will dictate the performance of our algorithm.

Listing 1 shows an example of one of our kernels for updating
the electric field for non-dispersive materials. There are several
important design decisions and optimisations that we have made
with the kernel:

• We use one-dimensional (1D) indexing for defining the num-
ber of blocks in a grid, and the number of threads in a

1 http://www.gprmax.com.
2 http://www.cython.org.

http://www.gprmax.com
http://www.cython.org


210 C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218

Fig. 1. Strong scaling CPU solver performance (speed-up compared to a single thread). Different cubic sizes of model domain compared with different numbers of OpenMP
threads. CPU: 2 x Intel Xeon E5-2640 v4 2.40 GHz.

Table 1
NVIDIA GPU general specifications.
GPU Application Architecture Cores Base clock

(MHz)
Global memory
(GB)

GeForce GTX 1080 Ti Gaming Pascal 3584 1480 11
TITAN X Gaming Pascal 3584 1417 12
Tesla K40c Data centre Kepler 2880 745 12
Tesla K80 Data centre Kepler 2 × 2496 560 2 × 12
Tesla P100 Data centre Pascal 3584 1328 16

block. We want to make certain we achieve memory co-
alescing by ensuring that consecutive threads access con-
secutive memory locations. This is demonstrated in Listing
1 as is the fastest moving thread index, and consecutive
s correspond to consecutive elements of . We are aware
of other implementations for domain-decomposition using
two-dimensional planes or fully 3D indexing [25–27]. How-
ever, we found 1D indexing offered simpler implementation,
similar performance, andmore flexibility in terms of different
domain sizes that might be encountered.

• We define macros within all the GPU kernels to convert from
traditional 3D subscripts (i, j, k) to linear indices that are
required to access arrays in GPU memory. The macros are
principally used to maintain readability, i.e. both CPU and
GPU codes closely resemble the traditional presentation of
the FDTD algorithm. If linear indices had been used directly
the kernelwould bemuch less readable andwould differ from
the CPU solver which uses traditional 3D subscripts to access
3D arrays. This design choice takes on further significance
for the more complex kernels, such as those used to update
the electric andmagnetic field components formaterialswith

multi-pole Debye, Lorenz, or Drude dispersion, or those used
to update the PML.

• We make use of the constant memory (64 KB), available
through CUDA, on NVIDIA GPUs. Constant memory is cached,
so normally costs only a read from cache which is much
faster than a read from global memory. Electric andmagnetic
material coefficients, i.e. Ca and Cb from (1), for materials in a
model are stored in constant memory.

• Wemark pointers to arrays which will be read-only with the
and qualifiers. This increases the likely-hood

that the compiler will detect the read-only condition, and can
therefore make use of the texture cache — a special on-chip
resource designed to allow efficient read-only access from
global memory.

• Finally,we include the functions to update all the electric field
components, Ex, Ey, and Ez ,3 in a single kernel, to benefit from
kernel caching.

3 For the sake of brevity only the function for updating the Ex component is
shown.



C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218 211

3. Performance analysis

The host machine used to carry out performance comparisons
between the CPU and GPU-accelerated solvers was a SuperMi-
cro SYS-7048GR-TR with 2 x Intel Xeon E5-2640 v4 2.40 GHz
processors, 256GB RAM, and CentOS Linux (7.2.1511) operating
system.We tested five different NVIDIA GPUs, the specifications of
which are given in Table 1. The GPUs feature a mixture of current
generation NVIDIA architecture (Pascal) and previous generation
(Kepler). The GPUs are also targeted at different applications, with
the GeForce GTX 1080 Ti and TITAN X being principally aimed at
the computer gaming market, whilst the Tesla K40c, Tesla K80,
and Tesla P100 intended to be used in HPC or data centre envi-
ronments. Before testing our own kernels we ran the BabelStream

benchmark [28] to investigate the maximum achievable mem-
ory bandwidth for each GPU. Table 2 presents the results of the
BabelStream benchmark alongside the theoretical peak memory
bandwidth for each GPU. Table 2 shows that reaching between
66% and 75% theoretical peakmemory bandwidth is themaximum
performance that we can expect to achieve, with the Pascal gener-
ation of GPUs capable of achieving closer to their theoretical peak
memory bandwidth than the previous Kepler-based GPUs.

We carried out initial performance testing of the GPU-
accelerated solver using models with cubic domains of side length
ranging from 100 to 400, or 450 cells. For each of the model sizes
the entire domain was filled with free-space, the spatial resolution
was ∆x = ∆y = ∆z = 1 mm, and the temporal resolution was
∆t = 1.926 ps (i.e. at the Courant, Friedrichs and Lewy limit). A
Hertzian dipole was used as a (soft/additive) source, and excited



212 C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218

Fig. 2. Weak scaling CPU solver performance (execution time compared to a single thread). Size of model domain is increased in proportion to number of OpenMP threads.
CPU: 2 x Intel Xeon E5-2640 v4 2.40 GHz.

Table 2
NVIDIA GPU memory bandwidth (FP32)

GPU

Theoretical
peak memory
bandwidth
(GB/s)

BabelStream
memory
bandwidth
(GB/s)

Percentage
theoretical
peak

GeForce GTX 1080 Ti 484 360 74%
TITAN X 480 360 75%
Tesla K40c 288 191 66%
Tesla K80 2 × 240 160 66%
Tesla P100 732 519 71%

with a waveform of the shape of the first derivative of a Gaussian.
The centre frequency of this waveform was 900 MHz. The time
histories of the electric andmagnetic field componentswere stored
from a single observation point close to the source. Although these
initial models are unrepresentative of a typical GPR simulation,
they provide a valuable baseline for evaluating the performance
of the CPU and GPU-accelerated solvers.

Before evaluating the GPU-accelerated solver an overview of
the performance of the CPU solver is presented in Figs. 1 and 2.
Fig. 1 shows speed-up factors for different sizes of test model using
different numbers of OpenMP threads — from a single thread up
to the total number of physical CPU cores available on the host
machine (2×10 = 20 threads), i.e. strong scaling. For smaller sim-
ulations (<≈3 million cells or 1443 model), on this host machine,
using more than 10 threads has no impact, or is even detrimental,
to performance. This is likely because the computational overhead
of creating and destroying the additional threads is greater than
the time saved by having more threads doing work. The speed-
up trend converges as the number of cells increase, and is almost

identical for the 3003 and 4003 models. At this point the work
done by each thread has exceeded the overhead of creating and de-
stroying the thread. The overall speed-up trend decreases beyond
4–8 threads, and falls to around 50% with 20 threads. We would
only expect to see ideal speed-up if our algorithm was compute
(or cache) bound. Our algorithm is bound by memory bandwidth
which is a shared resource across threads. Although adding more
threads allows a higher percentage of this to be used, it is not a lin-
ear correlation due to the nature of the hardware. Also depending
on where the data is allocated onmemory in relation to where it is
accessed, there may also be non-uniform memory access (NUMA)
effects. This behaviour is further evidenced by Fig. 2, which shows
execution times when the model size is increased in proportion to
the number of threads, i.e. weak scaling. In this test ideal scaling is
when the execution time stays constant when larger models with
more threads are computed.

A more useful benchmark of performance is to measure the
throughput of the solver, typically given by (2).

P =
NX · NY · NZ · NT

T · 1 × 106 , (2)

where P is the throughput in millions of cells per second; NX ,
NY , and NZ are the number of cells in domain in the x, y, and z
directions; NT is the number of time-steps in the simulation; and
T is the runtime of the simulation in seconds. Fig. 3 shows compar-
isons of performance throughput for the CPU solver on different
CPUs: 1× Core i7-4790 K CPU (4 GHz, 4 cores), 2× Xeon E5520
(2.26 GHz, 8 cores), and 2× Xeon E5-2640 v4 (2.4 GHz, 20 cores).
It is intended to provide an indicative guide to the performance of
the CPU solver on three different Intel CPUs from typical desktop
and server machines.



C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218 213

Fig. 3. CPU solver performance throughput on different CPUs.

Table 3
NVIDIA GPU floating point (FP) performance.
GPU FP32 performance

(TFLOPS)
FP64 performance
(TFLOPS)

GeForce GTX 1080 Ti 11.3 0.35
TITAN X 11 0.34
Tesla K40c 4.29 1.43
Tesla K80 8.74 2.91
Tesla P100 10.6 5.3

Figs. 4 and 5 show comparisons of performance throughput
for both the CPU solver (using 2× Xeon E5-2640 v4 (2.4 GHz, 20
cores)) and the GPU-accelerated solver on the five different NVIDIA
GPU cards. The Kepler-based Tesla K40c and Tesla K80 exhibit
similar performance to one another, and the Pascal-based TITAN
X and GeForce GTX 1080 Ti also have similar performance to one
another in all the tests. This is expected given these cards have
similar memory bandwidth. The TITAN X and GeForce GTX 1080 Ti
performance is approximately twice the throughput of the Kepler
cards. The Tesla P100 has the highest memory bandwidth, and
also has the highest performance throughput. The performance
throughput for all the GPUs begins to plateau for models sizes
of 3003 and larger, which is because the arrays that the kernels
are operating on become large enough to saturate the memory
bandwidth.

We investigated both single and double precision performance,
as for many GPR simulations single precision output provides
sufficient accuracy. Table 3 shows that the Tesla-series cards have
peak double precision performance that is half of their peak single
precision performance. The TITAN X and GeForce GTX 1080 Ti
are designed for single precision performance, so their double

precision performance is worse than half of the single precision
performance. However, as previously explained the performance
of our GPU kernels is governed by memory bandwidth rather
than floating point performance. Figs. 4 and 5 show that the per-
formance of the Tesla-series GPUs as well as the TITAN X and
GeForceGTX1080 Ti GPUs halveswhen comparing double to single
precision. This reduction in performance happens because twice
the amount of data is being loaded/stored for the double precision
results, so the time doubles because the memory bandwidth is
fixed.

Finally, we used the NVIDIA CUDA profiler (nvprof) to mea-
sure the actual read/write throughput of our kernels. Summing
the average read/write bandwidth for the kernel that updates
the electric field gave 320 GB/s, compared to 360 GB/s from the
BabelStream benchmark given in Table 2. The kernel that updates
themagnetic field gave a similar result. This shows that our kernels
are performing in a state that is close to the optimum that can be
achieved.

4. GPR example simulations

Following the initial performance assessment of the GPU-
accelerated solver with simplemodels, we carried out further test-
ing with more realistic, representative models for GPR. Both of the
presented example simulations use some of the advanced features
of gprMax such as: modelling dispersive media (for which GPU
kernels have been written) using multi-pole Debye expressions;
soil modelling using a semi-empirical formulation for dielectric
properties, and fractals for geometric characteristics; rough surface
generation; and the ability to embed complex transducers.



214 C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218

Fig. 4. CPU solver and GPU-accelerated solver performance throughput (FP32).

4.1. Buried utilities model

The first examplemodel represents a common environment for
which GPR is used in Civil Engineering, which is detecting and
locating buried pipes and utilities. Fig. 6 shows the FDTD mesh
of the model which contains: a GPR antenna model, similar to
a Geophysical Survey Systems, Inc. (GSSI) 1.5 GHz (Model 5100)
antenna; a heterogeneous, dispersive soil with a rough surface; a
100 mm diameter metal pipe with centre at x = 0.25 m, z =

0.31 m; a 300 mm diameter high-density polyethylene (HDPE)
pipe with centre at x = 0.6 m, z = 0.2 m; and 2 × 50 mm
diameter metal cables with centres at x = 0.9 m, z = 0.51 m
and x = 1.05 m, z = 0.51 m. The model domain size was
600 × 100 × 500 cells, the spatial resolution was ∆x = ∆y =

∆z = 2 mm, and a temporal resolution of ∆t = 3.852 ps (i.e. at
the Courant, Friedrichs and Lewy limit) was used. Firstly, a single
model (A-scan) was used to benchmark the performance of each
of the different NVIDIA GPUs, with the results shown in Table 4.
The pattern of performance between the different GPUs is the same
as found for the simple models. However, the absolute values of
throughput are three times less than those for the equivalent size
of simple model (3003), e.g. TITAN X 3003 model — 2288 Mcells/s,
TITAN X buried utilities model — 721 Mcells/s. This reduction in
throughput is due to the additional operations (loads and stores)
in the more complex kernels, which are required to simulate the
soil which has materials with dispersive, i.e. frequency dependent,
properties.

Fig. 7 shows the results of the complete simulation, which is a
B-scan composed of 91 A-scans with an inline spacing of 10 mm.4

4 The only processing of the B-scan data was to apply a quadratic gain function
to enhance the target responses in the lossy soil.

Table 4
Buried utilities model: A-scan runtimes and performance throughput on different
NVIDIA GPUs.
CPU/GPU Name A-scan runtime

[s]
Performance
[Mcells/s]

2 x Intel(R) Xeon(R) E5-2640 v4 922 127
GeForce GTX 1080 Ti 161 726
TITAN X 162 721
Tesla K40c 374 312
Tesla K80 389 300
Tesla P100 129 906

The interpretation of the B-scan is not the subject of this paper,
but typical hyperbolic responses from the cylindrical targets can
be observed, including responses from the top and bottom surface
of the air-filled HDPE pipe. The B-scan was simulated utilising the
MPI task farm functionality of gprMax, which allows models (A-
scans in this case) to be task farmed as MPI tasks using either
the CPU or GPU-accelerated solver. For the B-scan model the host
machine was fitted with 2× GeForce GTX 1080 Ti GPUs and 2×
TITAN X GPUs, and the MPI task farm functionality was used to
run 4 A-scans at once in parallel, i.e. one on each of the GPUs.
The B-scan simulation (91 A-scans) required at total of 1 h 17 min
and 56 s to run on the GPUs. This would have required 23 h
and 20 min to run on host with the parallelised (OpenMP) CPU
solver.

4.2. Anti-personnel landmine model

To further illustrate the significance of our GPU-accelerated
solver for GPR modelling, we present an example of a large-scale



C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218 215

Fig. 5. CPU solver and GPU-accelerated solver performance throughput (FP64).

Fig. 6. FDTD mesh of a typical GPR environment for detecting and locating buried pipes and cables.

GPR simulation of buried anti-personnel landmines. This model
was conceived for two purposes: firstly, to provide realistic train-
ing data for our research into a machine learning framework for
the automated detection, location, and identification of landmines
using GPR; and secondly, to provide a numerical dataset for GPR

researchers to test their GPR imaging, inversion, and processing
algorithms. This latter concept has been well-established in seis-
mic modelling with the Marmousi model [29], however, to our
knowledge no such detailed and realistic 3D model exists for GPR.
The model is a near-surface example of a fictional but realistic



216 C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218

Fig. 7. B-scan data from a typical GPR environment containing buried pipes and cables.

Fig. 8. FDTD mesh of a complex GPR environment for detecting and locating buried anti-personnel landmines. The model contains: buried anti-personnel landmines — 2×
PMN (blue) and 1× PMA-1 (green); a heterogeneous soil with a rough surface (not shown); a GPR antenna model (red); a false metal target (light grey cylinder); and several
rocks (dark grey). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

landmine detection scenario — an extremely challenging environ-
ment in which GPR is often utilised. The key parameters for the
simulation are given in Table 5, and an overview of the geometry
of the model is presented in Fig. 8. The simulation contains: anti-
personnel landmine models — 2× PMN and 1× PMA-1; a hetero-
geneous soil with a rough surface; a GPR antenna model; a false
metal target; and several rocks.

The simulation required a total of 121× 37× 2 = 8954models
(A-scans) to image the entire space. An example of one of the
B-scans from the simulation is given in Fig. 9. We carried out the
simulations on Tesla P100 GPUs on NVIDIA DGX-1 systems that

were part of the Joint Academic Data science Endeavour (JADE)
computing facility funded by the Engineering and Physical Sci-
ences Research Council (EPSRC). We were able to use 11 nodes
of JADE, where each node contained 8 T P100 GPUs. Each model
required 96 s runtime, and therefore the total time to complete
the simulation (8954 models) was 2 h and 44 min. This level of
performance for such large-scale, realistic GPR simulations would
simply not be attainable without the GPU-accelerated solver. It
is a significant advancement for areas of GPR research like full-
waveform inversion andmachine learning, wheremany thousands
of forward models are required.



C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218 217

Fig. 9. B-scan data from a GPR environment containing buried anti-personnel landmines, a heterogeneous soil with a rough surface, a GPR antenna model, a false metal
target, and rocks.

Table 5
Key parameters for buried landmine model.
Parameter Value

Domain size (x,y,z) 1.5 × 1.2 × 0.328 m
Spatial resolution (x,y,z) 0.002 × 0.002 × 0.002 m
Temporal resolution 3.852 × 10−12s
Time window 8 × 10−9s
A-scan sampling interval 0.010 m
A-scans per B-scan 121
B-scan spacing 0.025 m
Number of B-scans (x,y) 37 × 37
Surface roughness (about mean height) ±0.010 m

5. Conclusion

We have developed a GPU-accelerated FDTD solver using
NVIDIA’s CUDA framework, and integrated it into open source EM
simulation software for modelling GPR. We benchmarked our GPU
solver on a range of Kepler- and Pascal-based NVIDIA GPUs, as well
as compared performance to the parallelised (OpenMP) CPU solver
on a range of desktop and server specification Intel CPUs. Simple
models that contained non-dispersive materials and a Hertzian
dipole source achieved performance throughputs of up to 1194
Mcells/s and 3405 Mcells/s on Kepler and Pascal architectures,
respectively. This is up to 30 times faster than the OpenMP CPU
solver can achieve on a commonly-used desktop CPU (Intel Core i7-
4790 K).We found the performance of our GPU kernels was largely
dependent on the memory bandwidth of the GPU, with the Tesla
P100, which had the largest peak theoretical memory bandwidth
of the cards we tested (732 GB/s), exhibiting the best performance.

We found the cost–performance benefit of the Pascal-based
GPUs that were targeted towards the gaming market, i.e. TITAN
X and GeForce GTX 1080 Ti, to be especially notable, potentially
allowing many individuals to benefit from this work using com-
modityworkstations. Additionally the equivalent Telsa series P100
GPU (targeted towards data-centre usage) demonstrated signifi-
cant overall performance advantages due to its use of high band-
width memory. These benefits can be further enhanced when

combined with our MPI task farm that enables several GPUs to be
used in parallel. We expect performance benefits of our GPU solver
to rapidly advance GPR research in areas such as full-waveform
inversion and machine learning, where typically many thousands
of forward simulations require to be executed.

Acknowledgements

The authors would like to acknowledge Google Fiber (USA) for
providing financial support for this work.

The authors would also like to acknowledge the use of the Joint
Academic Data science Endeavour (JADE) Tier 2 computing facility
funded by the Engineering and Physical Sciences Research Council
(EPSRC), UK.

References

[1] J. Nickolls, I. Buck, M. Garland, K. Skadron, Queue 6 (2) (2008) 40–53.
[2] K.S. Yee, IEEE Trans. Antennas Propag. 14 (3) (1966) 302–307.
[3] Acceleware, AxFDTD solver. [online, cited 2017-05-09].
[4] Computer Simulation Technology, CSTmicrowave studio. [online, cited 2017-

05-09].
[5] SPEAG, SEMCAD X. [online, cited 2017-05-09].
[6] P. Wahl, D.-S. Ly-Gagnon, C. Debaes, D.A. Miller, H. Thienpont, B-calm: an

open-source gpu-based 3d-fdtd with multi-pole dispersion for plasmonics,
in: Numerical Simulation of Optoelectronic Devices (NUSOD), 2011 11th
International Conference on, IEEE, 2011, pp. 11–12.

[7] P. Klapetek, Gsvit. [online, cited 2017-05-09].
[8] Korea University ElectroMagnetic wave Propagator, Kemp. [online, cited

2017-05-09].
[9] S. Busch, J. van der Kruk, J. Bikowski, H. Vereecken, Geophysics 77 (6) (2012)

H79–H91.
[10] T. Liu, A. Klotzsche, M. Pondkule, H. Vereecken, J. van der Kruk, Y. Su, Esti-

mation of subsurface cylindrical object properties from gpr full-waveform
inversion, in: Advanced Ground Penetrating Radar (IWAGPR), 2017 9th In-
ternational Workshop on, IEEE, 2017, pp. 1–4.

[11] I. Giannakis, A. Giannopoulos, C. Warren, A machine learning approach for
simulating ground penetrating radar, in: 2018 17th International Conference
on Ground Penetrating Radar (GPR), 2018, pp. 1–4. http://dx.doi.org.10.1109/
ICGPR.2018.8441558.

[12] N.J. Cassidy, T.M. Millington, J. Appl. Geophys. 67 (4) (2009) 296–308.
[13] P. Shangguan, I.L. Al-Qadi, IEEE Trans. Geosci. Remote Sens. 53 (3) (2015)

1538–1548.

http://refhub.elsevier.com/S0010-4655(18)30399-0/sb1
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb2
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb6
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb6
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb6
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb6
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb6
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb6
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb6
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb9
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb9
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb9
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb10
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb10
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb10
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb10
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb10
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb10
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb10
http://dx.doi.org/http://dx.doi.org.10.1109/ICGPR.2018.8441558
http://dx.doi.org/http://dx.doi.org.10.1109/ICGPR.2018.8441558
http://dx.doi.org/http://dx.doi.org.10.1109/ICGPR.2018.8441558
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb12
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb13
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb13
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb13


218 C. Warren, A. Giannopoulos, A. Gray et al. / Computer Physics Communications 237 (2019) 208–218

[14] E. Slob, M. Sato, G. Olhoeft, Geophysics 75 (5) (2010) 75A103–75A120.
[15] F. Soldovieri, J. Hugenschmidt, R. Persico, G. Leone, Near Surf. Geophys. 5 (1)

(2007) 29–42.
[16] M. Solla, R. Asorey-Cacheda, X. Núñez-Nieto, B. Conde-Carnero, NDT&E Int. 77

(2016) 19–27.
[17] A.P. Tran, F. Andre, S. Lambot, IEEE Trans. Geosci. Remote Sens. 52 (9) (2014)

5483–5497.
[18] C. Warren, A. Giannopoulos, I. Giannakis, Comput. Phys. Comm. 209 (2016)

163–170.
[19] I. Giannakis, A. Giannopoulos, IEEE Trans. Antennas Propag. 62 (5) (2014)

2669–2678.
[20] I. Giannakis, A. Giannopoulos, C. Warren, IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 9 (1) (2016) 37–51.
[21] A. Giannopoulos, IEEE Trans. Antennas Propag. 60 (3) (2012) 1479–1485.
[22] C. Warren, A. Giannopoulos, Geophysics 76 (2) (2011) G37–G47.

[23] A. Taflove, S.C. Hagness, Computational Electrodynamics, Artech house, 2005.
[24] S. Williams, A. Waterman, D. Patterson, Commun. ACM 52 (4) (2009) 65–76,

http://doi.acm.org/10.1145/1498765.1498785.
[25] M. Livesey, J.F. Stack, F. Costen, T. Nanri, N. Nakashima, S. Fujino, IEEE Antenn.

Propag. Mag. 54 (5) (2012) 186–195.
[26] T. Nagaoka, S. Watanabe, A gpu-based calculation using the three-

dimensional fdtdmethod for electromagnetic field analysis, in: Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International Conference
of the IEEE, IEEE, 2010, pp. 327–330.

[27] J. Stack, Appl. Comput. Electromagn. Soc. Conf (2011).
[28] T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith, Gpu-stream v2.0: Bench-

marking the achievable memory bandwidth of many-core processors across
diverse parallel programming models, in: First International Workshop on
Performance Portable Programming Models for Accelerators (P3MA).

[29] R. Versteeg, Lead. Edge 13 (9) (1994) 927–936.

http://refhub.elsevier.com/S0010-4655(18)30399-0/sb14
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb15
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb15
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb15
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb16
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb16
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb16
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb17
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb17
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb17
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb18
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb18
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb18
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb19
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb19
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb19
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb20
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb20
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb20
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb21
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb22
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb23
http://doi.acm.org/10.1145/1498765.1498785
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb25
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb25
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb25
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb26
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb26
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb26
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb26
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb26
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb26
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb26
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb27
http://refhub.elsevier.com/S0010-4655(18)30399-0/sb29

	A CUDA-based GPU engine for gprMax: Open source FDTD electromagnetic simulation software
	Introduction
	Kernel design
	Performance analysis
	GPR Example Simulations
	Buried utilities model
	Anti-personnel landmine model

	Conclusion
	Acknowledgements
	References


