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Model-Based Evaluation of Signal to Clutter

Ratio for Landmine Detection Using Ground

Penetrating Radar

Iraklis Giannakis, Antonios Giannopoulos, and Alexander Yarovoy ⇤†‡

November 16, 2015

Abstract

A regression model is developed in order to estimate in real time

the signal to clutter ratio (SCR) for landmine detection using ground

penetrating radar (GPR). Artificial neural networks (ANN) are em-

ployed in order to express SCR with respect to the soil’s properties, the

depth of the target and the central frequency of the pulse. The SCR is
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synthetically evaluated for a wide range of diverse and controlled sce-

narios using the finite di↵erence time-domain (FDTD) method. Frac-

tals are used to describe the geometry of the soil’s heterogeneities as

well as the roughness of the surface. The dispersive dielectric proper-

ties of the soil are expressed with respect to traditionally used soil’s

parameters, namely, sand fraction, clay fraction, water fraction, bulk

density and particle’s density. Through this approach, a coherent and

uniformly distributed training set is created. The overall performance

of the resulting non-linear function is evaluated using scenarios which

are not included in the training process. The calculated and the pre-

dicted SCR are in good agreement indicating the validity and the

generalisation capabilities of the suggested framework.

Index Terms – ANN, clutter, FDTD, fractals, GPR, landmines,

regression, SCR.

I Introduction

The term “Anti-Personnel (AP) landmine” includes a wide range

of di↵erent explosive devices designed to maim or kill pedestrians

[1], [2]. AP landmines are typically shallow-buried (no more than

10 cm) [1], [2] and can be found in a wide range of environments

(urban environments, deserts, jungles and so on) [3]. Humanitarian

demining tries to detect and disable AP and anti-vehicle landmines

while balancing between e�ciency and safety. Numerous approaches
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from a diverse set of scientific fields have been proposed in an e↵ort to as-

sist humanitarian demining, from metal detector (MD) [4], [5] and electrical

resistivity tomography (ERT) [6], [7] to trained rats [8], artificial noses [9]

and acoustic methods [10]. In the same context, GPR has been shown to

be a promising demining approach [11], [12] and a number of commercial

GPR-based demining tools are now available for field operations [13], [14].

The main advantage of GPR is its ability to detect both metallic and

non-metallic targets (in contrast to MD). Furthermore, GPR can provide

an insight regarding the nature of the target (size, burial depth and so on).

From the above, it is evident that GPR can potentially reduce the false

alarms emerging from small metallic objects (bullets, wires, etc.) often en-

countered in battle-fields and industrialised areas. Combining the robust-

ness of MD with the resolution of GPR results to a reliable and e�cient

detection-framework. The latter has been successfully applied in Cambodia

and Afghanistan [15].

However, GPR’s performance is limited due to the presence of electromag-

netic losses and unwanted clutter. While soil attenuation is relatively well

studied [11], estimation and prediction of soil-clutter remains mainly an open

issue. In general, ground reflection constitutes the most dominant part of the

clutter [16]. In addition, soil’s heterogeneities can significantly contribute to

the overall clutter especially in soils with highly heterogeneous moisture dis-

tribution [17], [18]. Regardless of its origin, unwanted clutter increases with

frequency [12]. This has major e↵ects to high-frequency applications such as
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GPR for AP landmine detection. A proper estimation of the clutter for a

particular operational scenario can potentially assist demining via selecting

the optimised frequency-band (and correspondingly, proper GPR sensor) for

a given set of soil properties [11].

Di↵erent processing approaches have been suggested in an e↵ort to re-

duce clutter and to enhance the overall GPR’s performance. An adapted

ground removal technique is proposed by [19] in order to suppress the ir-

regular clutter resulting from the rough surface. In the same context, an

exponential-based approximation of the clutter is suggested by [20] which

is subsequently subtracted from the original data. In [21] a review of the

ground removal techniques is given emphasizing on high pass filter, moving

average removal, adaptive scaled and shifted (ASaS) filter [22] and two-sided

linear prediction. Principal components analysis (PCA) and singular value

decomposition (SVD) [23] have also been proposed in order to eliminate high

and low correlation features associated with the ground-bounce and the high

frequency clutter respectively. Extensive research has also been conducted

focusing on single A-traces [14]. In addition, Kalman filter, wavelet packet

decomposition, matched filter deconvolution and symmetry filters are some

of the methods (among others) proposed to improve landmine detection using

GPR [24].

The aforementioned processing algorithms try to enhance the detectabil-

ity of GPR by increasing the overall SCR. The latter is case sensitive and

highly related to the environment, the probing waveform (operational band-
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width) and the antenna unit [25], [26]. Due to that, evaluation of SCR, either

via measurements or direct numerical simulations is a time consuming task.

In the present study a regression model is developed which establishes the

algebraic relationship of SCR to the soil’s properties, the roughness of the

surface, the depth of the landmine and the central frequency of the pulse.

The proposed model is based on a back-propagation ANN [27]. In order to

fully resolve the complexity of the feature space, a large number of randomly

chosen scenarios are employed during the training process. Subject to the

training set, the weights of the ANN are tuned using a scaled complex-

conjugate optimization method [28]. Subsequently, the performance of the

resulting ANN is evaluated in scenarios which are not included in the training

step (testing set). The predicted (using ANN) SCR and the testing set are

in good agreement indicating that the suggested regression framework can

su�ciently model the nature and the behaviour of SCR.

Synthetic data, evaluated using the FDTD method [29], [30] are em-

ployed in the present paper for both training and testing purposes. Due

to computational constrains [26], 2D geometries are considered. If compu-

tational resources are available, the proposed method can be extended to

3D geometries providing a platform for comparing di↵erent antenna units

in a variety of environments. Modelling commercial systems is not a

straightforward task since information is not trivially available due

to confidentiality issues. Nonetheless, when adequate information

is available, commercial antennas can be accurately modelled using
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numerical solvers like FDTD [31]. In addition, recent advantages

to gprMax [32], [33] (www.gprmax.com) make it possible for the

manufacturers to provide electromagnetic models of their antennas

without revealing any information to the users, thus respecting the

confidentiality constrains [34].

Soil’s heterogeneities and rough surfaces are simulated using fractal corre-

lated noise. The latter, it has been proven that can su�ciently represent both

the spatial correlation of the soil’s properties [35], [36] as well as the roughness

of the surface [37], [38]. Regarding the dielectric properties of the soil, a semi-

empirical model [39], [40] is used which expresses soil’s dispersive dielectric

properties with respect to its sand fraction, clay fraction, water volumetric

fraction, particle’s density and bulk density [39], [40]. The target of interest

is represented by the AP landmine PMA-1. Lastly, a Gaussian-modulated

sinusoidal pulse (representing the one’s typically employed in GPR) is im-

plemented to FDTD as an impressed current source.

The rest of the paper is organized as follows. Details over SCR evaluation

using FDTD are presented in Section II. Regression modelling using ANN and

verification of the developed model are presented in Section III. A number

of representative case studies are demonstrated in Section IV. Finally, the

conclusions are drawn in Section V.
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II SCR Evaluation Using FDTD

II.1 Dielectric properties of soil

Soils are complex media which are primarily consisted of sand, clay, water

and air. Based on these elements, soils can be classified accordingly

e.g. dry sand, saturated clay and so on. Soils can be further

categorised based on their chemical composition and their organic

fraction [41]. Nonetheless, classifying soils based on their particle’s

size (sand, clay) is proven to be a valid simplification for predicting

soil’s dielectric properties [39].

The size of the soil’s particles, as well as the volume of the pores are orders

of magnitude smaller than the typical wavelengths employed in GPR. Due

to that, the bulk dielectric properties of the soil can be accurately expressed

with respect to the dielectric properties of its elements [42], [43].

In the present study we use the semi-empirical model initially suggested

by [39] for the frequency range of 1.4-18 GHz. The main advantage of the

semi-empirical model is that it evaluates the frequency-dependent electrical

permittivity of the soil based on its most dominant elements (sand, clay,

water and air). The semi-empirical model was initially proposed for high

frequency applications [35]. Later on, a modification was proposed by [40],

[44] in order to expand the semi-empirical model to lower frequencies (0.3-

1.3 GHz). In the present study the adaptation proposed by [40], [44] is

employed since its range of validity is closer to the frequency range used for
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AP landmine detection.

The semi-empirical model [39], [40], [44] is described by the equations

(1)-(9), where ✏ = ✏

0 + j✏

00, j is the imaginary unit
⇣
j =

p
�1
⌘
, fw is the

water volumetric fraction, ⇢s is the mean particle’s density (g/cm3), ⇢b is

the bulk density of the soil (g/cm3), ✏s is the relative permittivity of the sand

particles, a = 0.65 is an experimentally derived constant, S is the sand mass

fraction and C is the clay mass fraction (0  {S,C}  1 and S + C = 1).

The relative permittivity of the water is ✏w = ✏

0
w + j✏

00
w (7) where t0,w = 9.23

ps is the relaxation time, ✏w,0 = 80.1 is the relative permittivity for zero

frequency and ✏w,1 = 4.9 is the relative permittivity for infinity frequency

[40]. The term �f is linearly related to the conductivity � [25], [26].

✏

0
(1.4�18 GHz) =

 

1 +
⇢b

⇢s

(✏as � 1) + f

�0

w ✏

0a
w � fw

!1/a

(1)

✏

0
(0.3�1.3 GHz) = 1.15✏

0

(1.4�18 GHz) � 0.68 (2)

✏

00 = �f

�”

a
w

 

✏

00
w +

�f

!✏0

(⇢s � ⇢b)

⇢sfw

!

(3)

✏s = (1.01 + 0.44⇢s)
2 � 0.062 (4)

�

0 = 1.2748 � 0.519S � 0.152C (5)

�

00 = 1.33797 � 0.603S � 0.166C (6)

✏w = ✏w,1 +
✏w,0 � ✏w,1

1 + j!t0,w

(7)
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�f(1.4�18 GHz) = �1.645 + 1.939⇢b � 2.25622 S + 1.594C (8)

�f(0.3�1.3 GHz) = 0.0467 + 0.2204⇢b � 0.411 S + 0.6614C (9)

The semi-empirical model described in (1)-(9) can not be directly imple-

mented to FDTD [25], [26]. Similar to [25] and [26], Debye expansions are

used in an e↵ort to approximate the semi-empirical model (for the frequency

range of interest) using functions which are compatible with FDTD. As it is

shown in [25], [26], a single Debye pole plus a conductive term can su�ciently

approximate the semi-empirical model for frequencies below 5 GHz.

Implementing dispersive media into FDTD increases the overall compu-

tational requirements [29]. Nonetheless, for high frequency problems

(like GPR for AP landmine detection), implementing the dipolar

losses of soils is highly important since the latter can substan-

tially decrease the amplitude of the received A-Scan and distort

its shape. Fig. 1 illustrates the resulting scattering field from a

low dielectric target (AP landmine PMA-1) buried at 10 cm depth

in a homogeneous saturated sand. It is evident that both the am-

plitude and the spectral shape of the reflected wave is a↵ected due

to the presence of dipolar relaxation mechanisms within the soil.

Dipolar losses can have a significant e↵ect on high frequencies and

should neither be neglected nor simply defined.
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II.2 Soil’s geometry

With the term “soil’s geometry” we define the spatial distribution of the

soil’s properties and the roughness of the surface. Soil’s geometry is stochas-

tic [35], [38] i.e. it can be described by a random process which can be

statistically defined but not precisely predicted. Fractal correlated noise is

a well known stochastic procedure which is considered as an attractive ap-

proach for simulating soil’s geometry [35], [38]. The self-similarity imposed in

fractals is the reason why fractal correlated noise can simulate soil with suf-

ficient detail [38]. Self-similarity is frequently encountered in nature and it is

the reason why on geoscience-related photos everyday objects are necessary

for visual purposes.

Furthermore, in [37] and [38], experimental evidences are given which sup-

port the premise that earth’s topography can be su�ciently approximated

using fractals. Apart from topography, the spatial distribution of various

environmental data also obey fractals laws [35], [36]. In particular, regarding

the distribution of water within the soil, solid evidences are given in [45]

which support the premise that soil’s pores (both the size and the network

structure) obeys a power law. It is obvious that soil’s pores and water vol-

umetric fraction are directly related. It is also known that power law has a

linear relationship with fractals [46]. From the above, it is concluded that

the spatial variation of the water volumetric fraction within the soils can be

e↵ectively described using fractals.
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Fractal correlated noise for n dimensions can be generated through

F (x1, x2...xn) = F�1

0

@
R (k1, k2, ...kn) ·

 
nX

i=1

k

2
i

!��
2

1

A (10)

where F is the resulting fractal correlated noise, xi is the ith dimension, R

is the Fourier transform of a nth-dimensional Gaussian noise, ki is the ith

dimension in the wavenumber domain, � is a linearly-related term to the frac-

tal dimension (known as Hurst exponent) [46] and F�1 denotes the inverse

Fourier transform symbol. As � increases, the correlation length of F

increases as well [38]. This indicates that � is inversely proportional

to the spatial derivatives and the roughness of F .

Using (10) and rescaling according to the desired minimum and maximum

water volumetric fraction, di↵erent soils with di↵erent spatial variations of

water volumetric fraction (di↵erent �) can be generated. In the same context,

di↵erent surfaces can be modelled subject to a given fractal dimension and a

pre-defined minimum and maximum amplitude. Application of fractal

correlated noise to modelling surface clutter is coherently described in [49].

Fig. 2 illustrates a representative sample of the generated models using

fractal correlated noise.

II.3 Target Model

The AP landmine PMA-1 is chosen to represent a generic low dielectric

target. The modelled landmine is based (see Fig. 2) on the model described
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in [25], [26]. PMA-1 can be found both with and without metal fuse. In

the present paper no metallic parts are incorporated in the modelled PMA-

1 in an e↵ort to create a more challenging platform with respect to SCR

estimation.

II.4 Impressed Current Sources

Impressed current sources, also known as soft sources, are chosen to excite

the FDTD grid. Soft sources, in contrast with hard sources, do not interact

with the propagating field [29]. This is particularly attractive for near field

applications (like GPR for landmine detection) and this is the main reason

why soft sources are considered in the present paper.

The shape of the excitation pulse is a Gaussian modulated sinusoidal

function [50]

J(t) = exp

 

�(2⇡ · t · bw · fc)2

11.0524

!

cos (2⇡ · fc · t) (11)

where t is time (s), fc is the central frequency of the pulse (Hz) and bw is

a non-unit constant which denotes the fractional bandwidth of (11). Fig.

3 illustrates a set of Gaussian modulated sinusoidal pulses using the same

fractional bandwidth (bw = 0.9) for di↵erent central frequencies (fc).
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II.5 FDTD simulations

Without loss of generality, the received A-Scan over an AP landmine can be

expressed as

G = Gq +Gc +Gs (12)

where G is the raw A-Scan, Gq is the incident field, Gc is the clutter and Gs

is the signal i.e. the resulting scattering field due to the presence of PMA-1.

Ground-removal techniques are typically applied to the raw data in an ef-

fort to suppress the direct wave and the ground reflection. These techniques

[19]-[22] would ideally work in the presence of a homogeneous medium sub-

ject to a flat surface. Any deviation from these ideal conditions reduces the

e↵ectiveness of ground-removal methods. In that context, we define as inci-

dent field Gq the field which would occur if the soil was homogeneous with

flat surface. The clutter Gc is defined as the di↵erence of the total field in the

absence of the landmine minus the incident field (Gq). Through that, we

indirectly implement a generic ground removal before estimating the clutter.

Thus, the clutter neither includes the direct wave nor the reflection of an

average surface. Only the deviations from the ideal scenario (homogeneous

soil with flat surface) are considered as scattering sources. Knowing G, Gq

and Gc, the signal Gs can be trivially calculated from (12).

The FDTD method [29], [30] is chosen for the evaluation of (12). The

spatial discretization step of the FDTD is uniform along the grid with �x =

�z = 1 mm. The time discretization equals 0.99 times the Courant limit
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[29], [30]. The Debye relaxation mechanisms of the soil are implemented using

the current density (CD) method [47]. Regarding the absorbing boundary

conditions (ABC), a time-synchronised perfectly matched layer (PML) [48]

is applied with ten-layers thickness.

In an e↵ort to create a coherent and equally distributed training set,

a large number of randomly selected scenarios are created and their corre-

sponding SCR is subsequently evaluated. Following this approach, results to

a uniformly distributed training set which includes a wide range of scenarios

varying from dry to saturated environments, homogeneous to highly complex

soils, flat to rough surfaces, shallow to deep buried targets and so on (see

Fig. 2). This is critical in order to fully and equally represent the feature

space without being biased to specific cases while neglecting others.

A detailed step-by-step description of the procedure applied to generate

the training set is outlined below:

• The excitation pulse is a Gaussian-modulated sinusoidal function (11)

with fractional bandwidth equals to bw = 0.9. The central frequency

of the pulse fc is randomly selected using a uniform distribution vary-

ing from 0.9 to 3 GHz (typical frequency range used for AP landmine

detection). The height of the source is assumed constant at 5

cm above the average soil’s surface. This is a valid assump-

tion since the majority of the commercial systems associated

with demining are ground coupled antennas which operate in

a close proximity to the ground [14], [15], [24].
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• The minimum m and the maximum M value of the water fraction are

randomly selected based on a uniform distribution which varies from 0

to 0.3.

• The sand fraction S is randomly selected based on a uniform distribu-

tion varying from 0 to 1. Subsequently the clay fraction is calculated

by C = 1 � S. The sand and the clay fractions are assumed uniform

along the grid.

• The water volumetric fraction of the soil has a stochastic spatial vari-

ation which is described by (10). The value of �w is randomly selected

using a uniform distribution varying from 0 to 3.5.

• The maximum absolute deviation of the topography (T ) is

defined as

T = max
x2R

||Top (x) � mean (Top (x)) || (13)

where Top(x) is the topography with respect to x. The maxi-

mum absolute deviation of the surface is chosen using a uni-

form distribution varying from 0 to 30 mm.

• The roughness of the soil’s surface is described by (10). The value of

�T is randomly chosen using a uniform distribution varying from 2 to

4.5.

• Based on the parameters given in the previous steps and using (10),

a stochastic soil is generated with a fractal variation of water fraction
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subject to a fractal rough surface. The clay as well as the sand fraction

are assumed uniform along the soil and their values are randomly cho-

sen. Bulk and particle’s density are also considered uniform and their

values are set to ⇢b = 1.5 gr/cm3 and ⇢s = 2.66 gr/cm3 (typical values

for soils).

• Using (1)-(9), the dielectric properties of the soil are calculated and sub-

sequently are approximated using a Debye function plus a conductive

term [25]. The resulting distribution of the dielectric properties is used

as input to FDTD. The output trace equals with Gq + Gc (incident

field plus clutter).

• Subsequently, a half-space model (homogeneous soil with flat surface)

is generated in order to calculate the incident field Gq (using FDTD).

The water volumetric fraction of the aforementioned model is uniform

and equal to the mean value of the stochastic model (described at the

previous steps). Knowing Gq and Gq + Gc (from the previous step),

the clutter Gc can be calculated in a straightforward manner.

• The AP landmine PMA-1 is added to the stochastic soil. Its depth D

is randomly selected using a uniform distribution varying from 0 to 100

mm (typical depths for AP landmines). Using FDTD, the raw A-Scan

G is calculated. Knowing G, Gq and Gc (from the previous steps), the

signal Gs can be trivially evaluated from (12).
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• Lastly, the SCR is calculated through

SCR = 20 · log10

 
max{||Gs||}
max{||Gc||}

!

. (14)

The above scheme is repeated until the feature space is adequately re-

solved. For the present regression model, it is proven that ten thousands

data can su�ciently represent the feature space of the problem (more details

are provided in Section III).

Fig. 4 illustrates the probability density function (PDF) of the syntheti-

cally evaluated SCR using the procedure previously explained. A Gaussian

distribution can su�ciently represents the PDF of SCR. The mean value and

the standard deviation of SCR equal to -5.9 dB and 13.74 dB respectively.

Notice that neither gain nor any kind of processing (apart from the generic

ground removal) are applied to the data prior to SCR estimation.

III Regression Modelling of SCR using ANN

Regression modelling (or regression analysis) tries to estimate the relation-

ship (if any) between given inputs and their corresponding outputs [27]. In

the present study, regression modelling using ANN is applied in order to

unravel the underlying relationship between given inputs and SCR. In par-

ticular, the inputs are:

• Sand fraction (S)
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• Depth of the landmine (D)

• Minimum water volumetric fraction (m)

• Maximum water volumetric fraction (M)

• Spatial statistics of water volumetric fraction (�w)

• Maximum absolute deviation of the surface (T )

• Spatial statistics of soil’s surface (roughness) (�T )

• Central frequency of the pulse (fc)

Millions of scenarios need to be examined in order to fully ex-

plore the feature space defined by the aforementioned inputs. More-

over, the stochastic properties of the soil results to a stochastic variation of

SCR i.e. di↵erent SCR occurs for the same inputs. Thus, the average SCR

for a specific scenario is to be predicted. This means that a su�cient num-

ber of models must be simulated for each unique set of inputs. From the

above, it is evident that a brute-force approach using pre-calculated data is

not a practical method for predicting and estimating SCR for a wide range

of environments.

Regression modelling using ANN has the potential to find the underlying

relationship between the inputs and SCR using a limited number of data. To

do so, the training database must be representative of the feature space. Us-

ing the approach explained in Section II.5, a su�ciently large (ten thousands

data) and equally distributed training set is created.
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The synthetically generated training set is subsequently used to train

a feedforward ANN with two hidden layers. The number of neurones of

the first and the second layer are ten and five neurones, respectively. The

activation functions (AF) are all sigmoids apart from the output layer which

is linear. Fig. 5 illustrates the structure of the ANN chosen for the present

study. A trial and error procedure is used to adjust the neural structure in

an e↵ort to increase the accuracy without using unnecessary large number

of neurones and hidden layers (which would result to over-fitting [27]). A

scaled complex-conjugate optimization method [28] is applied in order to tune

the weights of ANN such as the mean squared error between the predicted

and the actual SCR to be minimised. In order to avoid over-fitting and

to increase the generalisation capabilities of ANN (as it is stated earlier) a

simple neural structure is selected. In addition, the generalisation capabilities

of the resulting ANN are further strengthened by using 10% of the data for

cross-validation purposes during the training process [27].

The validity and the generalisation capabilities of the suggested ANN

are tested on unknown cases that are not included in the training set. A

wide range of randomly selected scenarios are used as a testing platform.

Due to the stochastic nature of the soil, the statistical properties and not

the actual spatial variation for both water fraction and surface elevation

are given as inputs. In that context, fifteen realisations take place for each

testing scenario in order to evaluate the mean value of the resulting SCR.

The calculated (using FDTD) and the predicted SCR (using ANN) are in
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good agreement (see Fig. 6) indicating the generalisation capabilities of the

proposed regression model. Fig. 7 illustrates the PDF of the error between

the calculated and the predicted SCR. The mean value is -0.07 dB and the

standard deviation equals 1.8 dB.

As it is stated earlier, ten thousands data are used for both training and

validation purposes (90% for training and 10% for cross-validation). This

number is chosen based on the observation that further increase of the train-

ing set does not substantially a↵ect the performance of the proposed regres-

sion model.

Fig. 8 illustrates the mean squared error using di↵erent per-

centages of the original database. Since the training process is an

iterative technique, the resulting ANN are related to the initial

weights and biases chosen prior to the optimisation. In that con-

text, the mean squared error illustrated in Fig. 8 is the average of

twenty di↵erent ANN resulting using di↵erent initial weights and

biases. From Fig. 8 it is apparent that both the average and the

standard deviation of the mean squared error start converging to

a minimum when 90 % of the original database are employed for

training and 10 % for cross-validation purposes.
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IV Numerical Study

The proposed regression model is used in order to evaluate (in real time)

SCR for three representative case studies. The present examples are chosen

such as to emphasize on the e↵ects of the inputs to the overall performance

of GPR.

In the first scenario, a homogeneous saturated soil is examined with m =

0.1, M = 0.101, C = 0.5, �T = 3, �w = 1, fc = 0.9 � 3 GHz and D =

0 � 60 mm. Three di↵erent maximum absolute deviations are chosen

(T = 0 mm, T = 2 mm and T = 20 mm) in order to emphasize on the

relationship between T and SCR. From Fig. 9 it is evident that rough surfaces

decrease the overall performance of GPR. The e↵ects of rough surface are

more dominant when higher frequencies are employed. The latter, due to

their small wavelengths can su�ciently resolve the roughness of the surface

which leads to the decrease of SCR. From the above (and as it is clearly

shown in Fig. 9), it is concluded that lower frequencies are more suitable for

large values of T .

Regarding the relationship betweenD (landmine’s depth) and SCR, larger

D results to lower signal thus lower SCR. In addition, the dipolar relaxation

mechanisms within the soil (see Section II), rapidly absorb high frequencies

when water is present. Due to that, the optimal central frequency (which

maximizes SCR for a given scenario) is decreased as the burial depth increases

(see Fig. 9).
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In the second example we examine how the distribution of water within

the soil can a↵ect the overall SCR. A flat-surface is chosen in order to em-

phasize on the e↵ects of soil’s heterogeneities. The inputs of the model are

m = 0.05, M = 0.2, C = 0.5, �T = 3, T = 0, fc = 0.9�3 GHz and D = 0�60

mm. Here, �T is irrelevant since T = 0. The value �T = 3 is chosen

arbitarilly, di↵erent values of �T result to the same outputs when

T = 0. Three di↵erent water distributions are tested A) �w = 0, B) �w = 0.8

and C) �w = 1.4. As �w increases, the correlation length of the water frac-

tion increases as well. From Fig. 10, it is evident that the correlation length

of the water’s fraction is inversely proportional to SCR. Similar to the pre-

vious example, the e↵ects of �w are more dominant when high frequencies

are used. This due to the fact that high frequencies (small wavelengths)

can su�ciently resolve small targets such as soil’s heterogeneities. This in-

creases the unwanted clutter emerging from soil’s spatial heterogeneities and

furthermore decreases the overall performance of GPR.

The last example focuses on the e↵ects of surface’s correlation length

(implicitly described by �T ) to the performance of GPR. A homogeneous

saturated soil is examined in order to focus on the underlying relationship

between �T and SCR. The inputs of the model are m = 0.10, M = 0.101,

C = 0.5, �w = 1. fc = 1.5 GHz, D = 35 mm, T = 2 � 10 and �T =

2 � 4.5. Fig. 11 clearly illustrates that both the correlation length of the

soil’s surface and the maximum absolute deviation of the surface reduce SCR.

In particular, for the same maximum absolute deviation, smooth surfaces
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(large �T ) result to lower SCR compared to surfaces with small correlation

length (small �T ). This is due to the generic ground removal applied to the

training set (see Section II.5) which assumes a homogeneous soil with

flat surface. Any variation from the aforementioned assumption is treated as

clutter. Thus, clutter subtraction in the case of smooth surfaces, results

to large segments which act as large targets easy to be resolved due to their

size.

To further support the results illustrated in Fig. 11, three models are

synthetically modelled using di↵erent �T (see Fig. 12). Average removal and

SVD (�i, i < 3, where �i is the ith eigenvalue of the B-Scan) are applied

in an e↵ort to suppress the ground reflection and increase the overall SCR.

Both of the employed techniques try to remove the spatially correlated fea-

tures associated with the ground reflection and the direct wave. Thus, they

resemble the generic ground removal applied prior to the evaluation of SCR

(see Section II.5). From Fig. 12 it is evident that increasing �T reduces

the e↵ectiveness of ground removal techniques as predicted by the proposed

regression model (see Fig. 11).

V Conclusions

A regression model using ANN is developed in order to model and pre-

dict (in real time) SCR for a wide range of diverse scenarios. Resolving the

present feature space requires an equally distributed and adequately large
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training set. The latter is synthetically generated using FDTD. Fractal cor-

related noise is chosen for modelling both the soil’s heterogeneities and the

surface of the soil. The dielectric properties of the soil are expressed using a

semi-empirical model which (for implementation purposes) is approximated

by a conductive term plus a Debye pole. Via numerical experiments it is

shown, that the proposed framework can unravel the underlying relationship

between medium properties and SCR using a limited number of training

data. The generalisation capabilities of the suggested regression model are

demonstrated on a large number of randomly selected scenarios which were

not included in the training process. If adequate computational resources

are available, the proposed framework can be expanded to 3D geometries

providing a real-time platform for comparing the performance of di↵erent

GPR units to a wide range of diverse scenarios. In addition, the suggested

approach can be trivially modified to include other classes of targets, e.g.

cables, pipes, air voids and so on.
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Figure 1: Scattering field from PMA-1 with and without dipolar losses. The
AP landmine is buried in a homogeneous saturated sand with S = 1, C = 0,
⇢b = 1.5 gr/cm3, ⇢s = 2.66 gr/cm3 and fw = 0.3. The depth of the landmine
is 10 cm. The surface of the soil is flat and the central frequency of the pulse
is equal to 2 GHz. The dipolar losses incorporated into the Debye pole can
substantially decrease both the amplitude and the central frequency of the
scattering field.
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Fig. 1. Scattering field from PMA-1 with and without dipolar losses. The
AP landmine is buried in a homogeneous saturated sand with S = 1, C = 0,
�b = 1.5 gr/cm3, �s = 2.66 gr/cm3 and fw = 0.3. The depth of the
landmine is 10 cm. The surface of the soil is flat and the central frequency
of the pulse is equal to 2 GHz. The dipolar losses that are incorporated into
the Debye pole can substantially decrease both the amplitude and the central
frequency of the scattering field (when high frequencies are used).

and highly related to the environment, the post-processing and
the antenna unit [22], [23]. In the present study we suggest
a back-propagation ANN framework [24] which unravels the
underlying relationship of SCR (subject to a generic ground
removal processing scheme) to the soil’s properties, the rough-
ness of the surface, the depth of the landmine and the central
frequency of the pulse. Due to computational constrains, 2D
geometries are considered in the present study. If adequate
computational resources are available, the proposed framework
can be trivially expanded to 3D geometries providing a real-
time platform for comparing the performance of different
antenna units to a wide range of diverse scenarios.

Synthetic data, evaluated using the FDTD method [25], [26],
are employed in the present paper for both training and
testing purposes. Soil’s heterogeneities and soil’s topography
are simulated using fractal correlated noise. The latter, it has
been proven that can sufficiently represent both the spatial
correlation of the soil’s properties [27], [28] as well as the
soil’s topography [29], [30]. Regarding the dielectric properties
of the soil, a semi-empirical model [31], [32] is used which
expresses soil’s (dispersive) dielectric properties with respect
to its sand fraction, clay fraction, water volumetric fraction,
particle’s density and bulk density [31], [32]. The target of
interest is represented by the AP landmine PMA-1. Lastly,
a Gaussian-modulated sinusoidal pulse (typical of the one’s
employed in GPR) is implemented to FDTD as an impressed
current source.

A large number of randomly chosen scenarios are employed
during the training process in an effort to accurately resolve
the complexity of the feature space. Subject to the train-
ing set, the weights of the ANN are tuned using a scaled
complex-conjugate optimization method [36]. Subsequently,
the performance of the resulting ANN is evaluated in scenarios
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Fig. 2. A representative sample of the models used to train the suggested
regression framework.

which are not included in the training process. The predicted
(using ANN) and the calculated (using FDTD) SCR are
in good agreement indicating that the suggested regression
framework can sufficiently model (in real-time) the nature and
the behaviour of SCR.

II. SCR EVALUATION USING FDTD
A. Dielectric properties of soil

Soil is a complex medium which is primarily consisted
of sand, clay, water and air. The size of the soil’s particles,
as well as the volume of the pores are orders of magnitude
smaller than the typical wavelengths employed in GPR. Due
to that, the bulk dielectric properties of the soil can be
accurately expressed with respect to the dielectric properties
of its elements [33], [34].

In the present study we use the semi-empirical model
initially suggested by [31] for the frequency range of 1.4-18
GHz. The main advantage of the semi-empirical model is that
it evaluates the frequency-dependent electrical permittivity of
the soil based on its most dominant elements (sand, clay, water
and air). The semi-empirical model was initially proposed for
high frequency applications [27]. Later on, a modification was
proposed by [32], [35] in order to expand the semi-empirical
model to lower frequencies (0.3-1.3 GHz). In the present study
the adaptation proposed by [32], [35] is employed since its
range of validity is closer to the frequency range used for AP
landmine detection.

The semi-empirical model [31], [32], [35] is described by
the equations (1)-(9), where � = �� + j���, j is the imaginary
unit

�
j =

p
�1

�
, fw is the water volumetric fraction, �s

is the particle’s density (g/cm3), �b is the bulk density of
the soil (g/cm3), �s is the relative permittivity of the sand
particles, a = 0.65 is an experimentally derived constant, S
is the sand mass fraction and C is the clay mass fraction
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Figure 2: A representative sample of the models used to train the suggested
regression framework.
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Figure 9: The input parameters are m = 0.1, M = 0.101, C = 0.5, �T = 3,
�w = 1, fc = 0.9 � 3 GHz and D = 0 � 60 mm. Three di↵erent surface’s
maximum absolute deviation are considered, A) T = 0 mm, B) T = 2 mm
and C) T = 20 mm. Black circles depicts the optimal central frequency with
respect to landmine’s depth.
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Figure 10: The input parameters are m = 0.05, M = 0.2, C = 0.5, �T = 3,
T = 0, fc = 0.9� 3 GHz and D = 0� 60 mm. Three di↵erent water fraction
distributions are examined, A) �w = 0, B) �w = 0.8 and C) �w = 1.4.
Black circles depicts the optimal central frequency with respect to landmine’s
depth.



46

2 2.5 3 3.5 4 4.5
10

12

14

16

18

20

22

`T

SC
R

 (d
B)

 

 
T=4 mm
T=6 mm
T=8 mm
T=10 mm

Figure 11: The input parameters are m = 0.10, M = 0.101, C = 0.5, �w = 1.
fc = 1.5 GHz, D = 35 mm, T = 4 � 10 and �T = 2 � 4.5.
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Figure 12: The input parameters are m = 0.2, M = 0.2, C = 0.5, fc = 2
GHz, D = 40 mm, T = 30 mm and �T = [2, 3, 4]. Average removal and SVD
(�i, i < 3) are employed in an e↵ort to remove the direct wave and the ground
reflection. Notice that increasing �T slightly decreases the performance of
ground removal techniques as predicted in Fig. 11.


