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A Machine Learning Scheme For Estimating The
Diameter of Reinforcing Bars Using Ground
Penetrating Radar

Iraklis Giannakis, Antonios Giannopoulos, and Craig Warren

Abstract—Ground Penetrating Radar (GPR) is a well-
established tool for detecting and locating reinforcing bars
(rebars) in concrete structures. However, using GPR to quantify
the diameter of rebars is a challenging problem that current
processing approaches fail to tackle. To that extent, we have devel-
oped a novel machine learning framework that can estimate the
diameter of the investigated rebar within the resolution range of
the employed antenna. The suggested approach combines neural
networks and a random forest regression, and has been trained
entirely using synthetic data. Although the training process
relied only on numerical training sets, nonetheless, the suggested
scheme is successfully evaluated with real data indicating the
generalization capabilities of the resulting regression. The only
required input of the proposed technique is a single A-scan,
avoiding laborious measurement configurations and multi-sensor
approaches. Additionally, the results are provided in real-time
making this method practical and commercially appealing.

Index Terms—GPR, rebar, machine learning, random forest,
regression, diameter, concrete. non-destructive testing, NDT.

I. INTRODUCTION

ROUND Penetrating Radar (GPR) is a non-destructive

technique (NDT) with a unique span of applications
[1], ranging from glaciology [2], tree monitoring [3] and
archaeology [4], to landmine detection [S], forensic science
[6], and planetary exploration [7]. GPR has been established
as a mainstream NDT tool in civil engineering [8], and it
has been successfully applied for building inspection and
for detecting reinforcing bars (rebars) in concrete structures
[9]. Various approaches using GPR have been suggested for
locating and characterising rebars [10], [11], and there are
many commercial GPR systems that are custom-built for
this purpose [12], [13]. Although GPR can reliably detect
and locate rebars, assessing their quality and estimating their
diameter is an ongoing area of research with, as of yet, no
conclusive outcomes. Due to that, additional NDT methods
(e.g. eddy current [11], electromagnetic induction [14], [15])
need to be applied in the field to complement GPR, raising
the overall computational and operational costs, and adding
complexity to the acquisition.

To address these issues, various signal processing ap-
proaches have been reported that try to establish a causal
relationship between the diameter of the rebar and the received
GPR signal [10], [16], [17]. However, these methods are based
on simplified assumptions and they fail to provide a universal
and reliable solution [11]. To tackle this, a detection algorithm
based on full-waveform inversion (FWI) using shuffled com-
plex evolution optimization has been suggested [18]. FWI is

a holistic approach that keeps simplifications to a minimum
and exploits all the available information embedded in the
investigated signal. This gives rise to a robust detection tool
that accurately manages to recover both the coordinates and
the diameter of buried cylindrical targets [18]. Nonetheless,
FWI is a time-consuming process, primarily due to the large
computational resources necessary for the numerical eval-
uation of Maxwell’s equations. Machine learning (ML) is
gaining a renewed reputation within the GPR community due
to the ability to provide real-time results for complex and
computationally demanding problems [19], [20], [21]. In that
context, a novel forward solver based on ML is described in
[11]. A deep neural network (NN) is used in order to map
the received waveform with respect to the depth of the rebar,
the radius of the rebar, and the water fraction of the concrete
[11]. The resulting forward solver is substantially faster than
traditional electromagnetic numerical methods [11], and can
accelerate FWI without compromising its accuracy [11]. In
spite of that, interpretation is still far from real-time, since the
ML-based forward solver needs to be coupled with a global
optimizer in order to avoid local minima that are present in
the optimization space [11].

In this paper a machine learning architecture is suggested
in order to map the relationship between a single A-Scan and
the diameter of the underlying rebar without the need for
FWI. The suggested scheme consists of two NNs and one
random forest (RF) regression [22] that are coupled together
to estimate the diameter of the rebar in real-time. Similar to
[11], the proposed ML framework is trained entirely using
synthetic training sets. The generalization capabilities of this
method are successfully tested using both numerical and real
data.

II. METHODOLOGY
A. Training Set

Supervised ML exploits information from labelled data
in order to map the causal relationship (if there is one)
between given inputs and their corresponding outputs [23]. To
that extent, a well-labelled, coherent and equally distributed
training set is crucial during the training process and largely
affects the overall performance of ML [23]. For estimating
the diameter of rebars, obtaining such a training set from
real-data is time-consuming and not practical since it would
require casting hundreds of concrete slabs with different water
contents and different rebar characteristics. To overcome this,



Fig. 1. The simulated scenario used for training the regression scheme. The
antenna is the model-equivalent of the GSSI 1.5 GHz antenna [13] and is
placed directly above the rebar. The polarization of the antenna is parallel to
the main axis of the rebar.

we employ a synthetic training set ensuring accurate labelling
and avoiding unattainable experimental setups and undersized
training sets.

The training data are generated using the ML-based forward
solver described in [11]. The ML-based forward solver uses
a deep NN architecture that accurately predicts the simulated
A-Scan based on the depth of the rebar, the diameter of the
rebar, and the water fraction of the host concrete [11]. The ML
solver is trained based on data generated using gprMax [24],
[25] — an open source electromagnetic simulator based on a
second-order accurate finite-difference time-domain (FDTD)
method [26]. The antenna used in the simulations is a model-
equivalent of a 1.5 GHz commercial GPR antenna made by
Geophysical Survey Systems, (GSSI) [13]. Consequently, the
proposed regression scheme is tuned for the GSSI 1.5 GHz
antenna, and therefore using a different antenna system would
require a new training set to be generated including a new
model of that antenna. Figure 1 illustrates the scenario under
consideration during the training process. The GSSI 1.5 GHz
antenna is placed directly above the rebar on the surface of
the concrete. Using a single A-Scan as input instead of a
complete B-Scan makes the process practical in the field and
reduces the computational requirements necessary to generate
the synthetic training data. This configuration (single A-
Scan) contains adequate information to fully recover the depth
and the radius of the investigated rebar. The direct coupling
provides information regarding the dielectric properties of the
host medium while the amplitude and the arrival time of the
reflected wave are associated with the depth and radius of the
rebar. In particular, concrete slabs with higher water fractions
act as a low pass filter which results in smoother cross-
coupling. In addition, the reflection arrival time is associated
with the water fraction of the concrete (derived from cross-
coupling) and the depth of the target. Lastly, the amplitude
of the reflected signal is related to the water fraction of the
concrete (derived from the cross-coupling), the depth of the
target (derived from the cross-coupling and the arrival time of
the reflected wave) and the radius of the rebar. In conclusion,
a combined sequential approach that utilises all the available
information embedded in an A-Scan is capable of estimating
the diameter of the rebar within the resolution of the employed
antenna [11].

TABLE I
EXTENDED DEBYE PROPERTIES OF CONCRETE [28]

wC €s €co to (ns) o (7 1lm™1)
12% 1284 742 0.611 20.6x 1073
93 % 11.19 7.2 0.73 23x 1073
62 % 9.14 5.93 0.8 6.7x 1073
55% 863 6.023 1 5.15x 1073
28% 675 5.503 2.28 2.03x 1073
02 % 4814 4507 0.82 6.06x 1074
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Fig. 2. The structure of the autoencoder used in this work. The inputs and
the outputs are the raw A-Scans which consist of 300 points. The inner layer
consists of 45 ReLU nodes that represent the compressed A-Scan.

The rebar is modelled as a cylindrical perfect electrical
conductor (PEC) with its main axis parallel to the polarization
of the antenna. The dielectric properties of concrete are dis-
persive (similar to natural media [27]) and can be sufficiently
approximated using an extended Debye model [11], [28]. The
parameters of the Debye model —static permittivity, permit-
tivity at infinite frequency, relaxation time, and conductivity—
are expressed only with respect to the water content of the
concrete [11], [28]. This is particularly attractive since it
reduces the number of parameters necessary to fully describe
the dielectric behaviour of the host medium [11]. Table I
illustrates the experimentally derived [28] properties of the
extended Debye model with respect to the water fraction of the
concrete. In a similar approach to [11], a spline interpolation
is used in order to map the discrete properties shown in Table I
in a continuous manner.

A training set consisting of 2000 samples has proven ade-
quate for accurately resolving the investigated feature space.
Increasing the number of samples beyond this value does not
seem to affect the overall performance of the regression model.
Each trace is simulated using a randomly selected set of the
following three parameters:

o Water content of concrete (WC)
o Radius of the rebar (R)
o Depth of the rebar (D)

Based on what is realistically expected in the field [11], the
radius and the depth of the rebar vary from 2-25 mm and from
0-30 cm respectively, while the water content ranges between
0.2-12 % [28]. The proposed regression model is trained and
validated within these ranges. Consequently, extrapolating this
approach for cases outside the aforementioned bounds is not
recommended.
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Fig. 3. The mean absolute error with respect to the number of nodes in the
inner layer of the autoencoder (shown in Figure 2). The error is calculated
on normalized traces. The vertical bars correspond to the standard deviation.

B. Dimensionality Reduction

High-dimensional data give rise to a complex feature space
that is difficult to be resolved without large training sets and
advanced learning algorithms [23], [29]. Therefore, dimen-
sionality reduction is an essential aspect of ML, and various
methodologies have been suggested for compressing the data
prior to training [29]. One of the most mainstream and widely
applied tool for compressing one-dimensional data is the
autoencoder [30]. An autoencoder is an unsupervised NN that
copies its inputs to the outputs. Autoencoders utilize the given
training data x € R™ (n are the dimensions of the problem)
and transform them to a revised representation x’ € R™ that
can be reproduced using a reduced number of dimensions (see
Figure 2).

Autoencoders consist of two parts, encoders and decoders.
The encoder compresses the signal through

y = o (Ax +b) (1)

where A € R™*"™ is the weight matrix, b is the bias, o is the
activation function, y € R™ is the compressed signal and m
are the dimensions of the compressed signal (m < n). The
compressed signal y is then decompressed in the decoder

X =0 (Aly+V) (2)

where A’ € R™*™ and b’ are respectively the weight matrix
and the bias of the decoder. An autoencoder can be seen as an
optimization process that tries to tune A, A’,b and b’ such as
to minimize a given metric that describes the error between x
and x'.

Figure 2 shows the autoencoder used for reducing the
dimensions of the current training set. Each A-Scan consists
of 300 time-steps and is compressed to 45 nodes using a single
hidden layer. The number of nodes in the hidden layer (m)
is chosen so as to compress the signal effectively without
compromising its resolution. The activation function of each
node is a rectified linear unit (ReLU) [31]. Regarding the
training process, an adaptive moment estimator (Adam) [32]
is used that minimises the mean squared error between x and
x’. A subset (80%) of the data described in Section II-A is
utilized during the training process, while the rest are used for
testing and validation purposes. Figure 3 illustrates the error

ReLU, 300 nodes
RelU, 200 nodes
Inputs, 45 nodes
[ ] Output, | node
RF, 100 trees

Fig. 4. The proposed detection scheme is a combination of two NNs
regression models and one random forest with 100 trees. The two NNs are
trained independently to evaluate the water content and the depth of the rebar
based on the compressed signal. Subsequently, the estimated water content
and depth are combined with the compressed A-scan and used as inputs for
RF. The output of the random forest is the estimated radius of the rebar.

of the compression with respect to the number of nodes of
the autoencoder. The error is calculated using data that were
not used during the tuning of the autoencoder. It is apparent
that the suggested compression scheme can effectively reduce
the dimensions of the problem by a factor of ten without
compromising the information contained within the training
set.

C. Regression Scheme

The regression scheme consists of two sequential steps. In
the first step, two NNs are trained to predict the water fraction
of the concrete W' and the depth D of the rebar based on a
single compressed A-Scan. Both NNs have two hidden layers
with 300 and 200 nodes respectively, as shown in Figure 4. The
activation functions of both layers are all ReLU apart from the
last node which is linear. The synthetic data set is divided into
three groups, 70 % of the data are used for training, while 10
% are used for validation, and 20 % for testing purposes. As
with the autoencoder, Adam is employed in order to minimize
the mean squared error between the actual and the estimated
parameters.

In the second step, the estimated W' and D are coupled
with the compressed A-Scan x’ to form the new input vector
q = (WC, D, x') (see Figure 4). Subsequently, the vector
q is used as input to a regression scheme based on random
forest with 100 trees. Random forest is an ensemble supervised
learning scheme [22] with good performance in regression
problems that often surpasses NN [33]. In this work, random
forest has proven to perform better than NN for estimating the
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Fig. 5. Histograms of the errors between the actual and estimated parameters.
The errors are calculated using unknown synthetic data, i.e. data that were
not included in the training process.

diameter of the rebar. Multiple NN configurations (different
layers and nodes with different activation functions and various
dropout layers) were tested using different optimizers and
data batches. NNs become competitive only after applying
bootstrap aggregating [34], however random forest still shows
better generalization capabilities when applied to real mea-
surements.

The split criterion of the trees in the random forest tuned
in this work is the mean squared error, and the nodes are
expanded until all the leaves are pure. The data set is divided
into training (80 %) and testing (20 %) sets, and no bootstrap
was used during the training. Figure 5 illustrates the error
between the actual (simulated) and the predicted (via our re-
gression approach) parameters. The evaluation was done using
unknown data that were not included in the training set. The
depth D is accurately estimated with +2 ¢cm maximum error
and standard deviation less than +1 cm. The water content
WC of the concrete is estimated with a maximum error at
+2 % and standard deviation less than +1%. Subsequently,
the estimated D and WC are coupled with the compressed
A-Scan x’ in order to form the input vector q. Based on q,
the radius of the rebar is estimated with £6 mm accuracy.
As mentioned in [11], the discrepancies between the actual
and predicted radii arise due to the inherent resolution of the
employed GPR antenna, which is a function of its transmitted
pulse length or centre frequency (1.5 GHz). Consequently, the
employed antenna has a minimum resolution (approximately
4 mm) that can not be increased with typical signal processing
approaches. In order to decrease the error, we need to increase
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Fig. 6. The actual and the predicted rebar diameter and location using the
proposed regression scheme. The inputs are real compressed A-scans collected
with the antenna directly above the rebar on the surface of the (well-cured)
concrete slab.

the overall resolution by employing higher frequency antennas.

From the training data, it is apparent that the developed
regression is suitable for single measurements on top of the
rebar. Scenarios that deviate from this setup will likely result
in errors and instabilities since they would lie out of the
feature space that the ML-based scheme has been trained for.
Consequently, the user will initially have to identify the apex
of the hyperbola and subsequently apply the ML-scheme on
that trace.

III. LABORATORY EXPERIMENTS

One of the novelties of the suggested regression scheme
is that it is trained entirely using synthetic data. Although
synthetic data are easy to gather (compared to real data),
discrepancies between the real and the numerical A-Scans will
compromise machine learning and negatively affect the overall
performance of the proposed approach. Accurate numerical
frameworks should be employed in order for the ML to
be effectively extrapolated to real measurements. Therefore,
similarly to [11], special care was taken to generate synthetic
but nonetheless realistic and accurate training sets [13].

Four case studies are examined in order to evaluate the
generalization capabilities of the suggested scheme and val-
idate its performance using real data. The measurements were
taken in the NDT laboratory at the School of Engineering,
The University of Edinburgh. Four A-Scans were collected
using the GSSI 1.5 GHz antenna over four different rebars
with different radii and varying depths. The polarization of
the antenna was parallel with the main axis of the rebar, in
the same way that the synthetic data were generated. The raw
A-Scans were collected without any filtering (apart from the
removal of static features) in order to match the modelled
antenna [13] for which the ML was trained for.

Figure 6 shows the actual and the predicted diameters as
well as the locations of the rebars. The results are given
in real-time with minimum computational and operational
requirements. It is apparent that both the depth and the radii
of the rebars are accurately reconstructed and the errors are
within the expected ranges given when using the synthetic
data. The estimated water content of the concrete varies from
10.6 — 11.8% which are in excellent agreement with the ones
given in [11] using FWI. This indicates that the suggested
regression scheme can be successfully extrapolated to real
measurements providing real-time results from a single A-
scan.



IV. CONCLUSIONS

A novel regression scheme has been described that can
estimate the diameter of reinforcement bars in concrete using
Ground Penetrating Radar. It requires a single A-scan as an
input, and provides the depth and diameter of the rebar, as
well as the water content of the concrete in real-time. The
regression consists of two neural networks (NNs) coupled
with a random forest. Both the NNs and the random forest
are trained independently using a coherent and well-labeled
synthetic training dataset. The raw data were effectively
compressed using a shallow autoencoder in order to reduce
the dimensionality of the problem and simplify training. The
resulting approach has been successfully evaluated using both
numerical and real data. This demonstrates that the proposed
scheme can be reliably used with real measurements, despite
the fact that it has been trained entirely using synthetic
data. Therefore, data-driven processing tools can complement
or potentially replace multi-sensor approaches, providing an
accurate and real-time method for detecting and characterizing
rebars in concrete structures.
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