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A B S T R A C T   

Steady state relative permeability experiments are performed by coinjection of two (or more) immiscible fluids. 
The relative permeabilities can be calculated directly from the stabilized pressure drop and saturation of the core 
if capillary end effects and transient effects are negligible. In most cases such conditions are difficult to obtain. 

This work presents an analytical solution in form of explicit expressions for the spatial profiles of pressure 
gradients and saturation, average saturation and pressure drop for a core being injected simultaneously with two 
phases at steady state when capillary end effects are significant. When arbitrary saturation functions are applied, 
such parameters and distributions can only by obtained by numerical integration. 

By assumption of simplified saturation function correlations the differential equation describing steady state 
can be integrated. A new dimensionless capillary number N is obtained which contains the fluid and rock pa
rameters, but also the saturation function parameters (relative permeability and capillary pressure), fluid vis
cosities, injected flow fraction, total flow rate and more. It is shown that when this number is of magnitude 1, end 
effects cover parts of the core, but parts of the core are also unaffected. For N > 10 the end effects are negligible, 
while for N < 10 end effects are dominant. 

This paper gives the first formal proof of the intercept method from basic assumptions. It is shown that when 
the inlet saturation is sufficiently close to that of a no capillary pressure situation; the average saturation changes 
linearly with the inverse of total rate towards the saturation corresponding to no capillary forces; also, the 
pressure drop divided by the pressure drop of a no end effect situation goes linearly towards 1 with the inverse of 
total rate.   

1. Introduction 

Relative permeabilities are parameters describing how the mobility 
of a phase is affected in presence of other fluids in a porous medium. 
Accurate measurements of relative permeability are required for making 
reliable predictions and decisions at field scale. Such measurements are 
traditionally performed either by the unsteady state method where one 
fluid is injected to displace the other or the steady state method where 
both fluids are co-injected. The former method is similar to the 
displacement taking place in the reservoir, while stable and uniform 
flow can be achieved in the latter. The steady state method will be the 
focus of this paper. 

Core flooding where several phases are involved will be affected by 

capillary pressure. Leverett (1941) stated that the natural outlet 
boundary condition is a zero capillary pressure. This follows from the 
phase pressures being continuous towards the outlet where both phases 
are produced and that the radius of curvature goes from a small value in 
the pore space to (practically) infinity. This condition forces the satu
ration at the outlet to be fixed as defined by the capillary pressure curve 
(the imbibition curve if it is an imbibition process) and can be observed 
as a fluid accumulation near the outlet (Richardson et al., 1952). The 
amount of accumulation will depend on wettability, injected water 
fraction, advective forces and capillary forces. Increasing the injection 
rate will in such cases affect the average saturation for the same injected 
fluid fraction. Especially, for water injection this affects estimation of 
the critical oil saturation and end point water relative permeability. 
Apparently rate-dependent relative permeabilities do however tend to 
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give consistent results once the end effects have been corrected for 
(Osoba et al., 1951; Chen and Wood, 2001). 

Virnovsky et al. (1995) developed a model which expressed the 
relative permeabilities and capillary pressure as functions of the re
sponses of average saturation and pressure drop to changes in total rate. 
To make full use of their model they would require measurements for 
many different rates at a given fraction. Huang and Honarpour (1998) 
developed a model for oilflooding to displace water in a strongly 
water-wet system and obtained analytical solutions by means of 
Corey-Burdine equations relating the capillary pressure and relative 
permeability functions. Although analytical expressions could be 
defined for saturation profiles and average saturation, they depended on 
the inlet saturation which needed calculation from an algebraic equa
tion. Gupta and Maloney (2016) recently developed the intercept method. 
This method argues that stabilized pressure drop and average saturation 
measurements during steady state tests vary systematically with rate; if 
end effects are limited to within the core, then the average saturation sw 

and pressure drop divided by rate Δp=Q plotted against inverse rate 1
Q 

will linearly approach constant values srep
w and 

�
Δp
Q

�rep 
at inverse rate 

equal zero (with slopes a and b), representative of a system without end 
effects. 

sw¼ srep
w þ a

1
Q
;

Δp
Q
¼

�
Δp
Q

�rep

þ b
1
Q

(1) 

This is especially important since measurements taken within the 
limits of experimental metering, sample integrity and Darcy’s law could 
be extrapolated to the correct result. However, in their derivation they 
mainly assumed that the role of the capillary pressure was a fixed 
pressure drop and did not derive their method for arbitrary saturation 
functions. For a review of the intercept method and its applications, see 
Reed and Maas (2018). Andersen et al. (2017) assumed saturation 
functions of a Corey type for water relative permeability and scaled 
capillary pressure and derived explicit analytical solutions for oil 
displacement by waterflooding affected by end effects in a mixed-wet 
system. A dimensionless capillary number incorporating the saturation 
function parameters was derived such that for its critical value of 1 the 

end effect region exactly reached across the core from outlet to inlet. For 
higher values of this number (i.e. high rates) the intercept method was 
obtained analytically for this system (waterflooding). In addition, the 
method explained how saturation and pressure drop varied when the 
theoretical end effect region also went beyond the core length. The 
model was used to interpret experimental data in Andersen et al. (2020) 
and estimate the full saturation functions and not only one point of the 
relative permeabilities as originally intended. 

In this work we aim to derive analytical solutions for steady state 
relative permeability measurements in form of explicit expressions. This 
requires the use of specific and limited correlations forms, but allows us 
to derive illustrative and theoretical results. By taking a simplest 
possible approach with linear saturation functions we underline that the 
correlations are not considered flexible enough to represent experi
mental data, but capture physical behavior related to saturation change 
on mobility and capillary pressure and how this interplays with the core 
and fluid properties and typical experimental control settings such as 
total injection rate and fluid fractions. We also show that the intercept 
method is obtained from this solution. 

The paper is structured as follows: a) We present equations for steady 
state flow during co-injection of two phases. Assuming appropriate 
forms of the saturation functions we derive explicit analytical solutions 
for spatial saturation and pressure gradient profiles and average satu
ration and phase pressure drops. b) Illustrative and theoretical results of 
the analytical solution are presented. Particularly the solution demon
strates a derivation of the intercept method. c) The paper is summarized 
by conclusions. 

2. Theory 

2.1. General model description 

The mathematical description of 1D incompressible and immiscible 
flow of oil (o) and water (w) in a porous homogeneous medium is given 
by: 

φ∂tsi ¼ � ∂xui; ði¼ o;wÞ; (2)  

Nomenclature 

Roman 
A Water fraction divided by water end mobility, Pa s 
B Oil fraction divided by oil end mobility, Pa s 
F Injected water fraction, 
fw Water fractional flow function, 
J Scaled capillary pressure, 
kri Phase relative permeability, 
K Absolute permeability, m2 
k*

i Relative permeability end point, 
L Core length, m 
M Mobility ratio based on end points, 
N Dimensionless capillary number (viscous to capillary 

forces), 
N1 Dimensionless capillary number not accounting for 

mobility ratio or fluid fraction, 
N0 Dimensional capillary number not accounting for mobility 

ratio, fluid fraction or mobility, 1/(Pa s) 
pi Phase pressure, Pa 
Pc Capillary pressure, Pa 
si Phase saturation, 
Si Normalized phase saturation, 
S1 Normalized water saturation at inlet (Y ¼ 1), 

Seq Normalized water saturation at which capillary pressure is 
zero, 

Sr Reference scaled saturation (obtained if no end effects 
present), 

S Normalized water saturation averaged over the core, 
ui Darcy phase velocity, m/s 
vi Interstitial velocity, m/s 
Y Scaled distance from outlet, 

Greek 
Δpi Phase pressure drop, Pa 
Δpr Pressure drop without end effects, Pa 
λi Phase mobility, 1/(Pa s) 
μi Phase viscosity, Pa s 
σow Interfacial tension, N/m 
φ Porosity, 

Indices 
eq Zero capillary pressure condition 
i Phase index 
o Oil 
r Reference (no end effects) 
T Total 
w Water  
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ui¼ � Kλi∂xpi; λi ¼
kri

μi
; ði¼ o;wÞ; (3)  

where φ is porosity, si saturation, ui Darcy velocity, K absolute perme
ability, λi mobility, kri relative permeability, μi viscosity and pi pressure. 
The saturations are dependent due to volume conservation, and the 
pressures are related by the capillary pressure function: 

swþ so ¼ 1; (4)  

po � pw¼PcðswÞ: (5) 

The total Darcy velocity uT is defined as: 

uT ¼ uo þ uw ¼ � KλT ∂xpw � Kλo∂xPc: (6) 

It follows from adding the transport equations in (2) that: 

∂xuT ¼ 0 (7) 

The water phase equation (2) can then be expressed with variables 
uT; sw as: 

φ∂tsw¼ � ∂x½uT fw þKλofw∂xPc�; (8)  

where fw ¼ λw
λwþ λo 

is the fractional flow function. 

2.2. Boundary and initial conditions 

Water and oil are injected simultaneously at the inlet x ¼ 0 with a 
water flow fraction F (the water fraction of the total injected flux) with a 
total Darcy flux uT: 

uwðx¼ 0Þ¼ uT F: (9) 

The flux of a given phase is composed of both an advective and 
capillary component. Hence, we note that F does not correspond to 
fwðx¼ 0Þ unless capillary forces can be ignored. From (8) we write this 
boundary condition as: 

uwðx¼ 0Þ¼ ½uT fw þ Kλofw∂xPc�x¼0: (10) 

The outlet boundary condition is described by a zero capillary 
pressure: 

Pcðx¼LÞ¼ 0: (11) 

The initial condition is considered the steady state of a previous 
injected fraction, Fpre. If Fpre ¼ 0 this state corresponds to initial water 
saturation. We assume an imbibition process is considered where water 
saturation will increase with time as implemented by setting F > Fpre, i.e. 
injecting a higher fraction of water. 

2.3. Steady state 

At steady state we have no changes with time in the system, i.e.: 

∂tsi ¼ 0; ∂tpi ¼ 0; ði¼ o;wÞ: (12) 

The phases are non-uniformly distributed due to the balance between 
advective and capillary forces. Given that time is not influential at 
steady state; in the following, saturations and pressures will be taken as 
function of spatial coordinate alone, e.g. sw ¼ swðxÞ. (8) can be written 
as: 

0¼ dx½uT fwþKðλofwdxPcÞ�: (13) 

At steady state the fluxes are uniform, i.e. the same amount of water 
and oil passes through every cross section, however the saturations and 
velocities can differ. Setting the water flux uniformly equal to that at the 
inlet gives: 

uT F¼ uT fw þ KðλofwdxPcÞ: (14) 

This is equivalent to: 

uw ¼ uT F; uo¼ uTð1 � FÞ: (15) 

Using that dxPc ¼ P’
cðswÞdxsw, we can solve (14) with respect to the 

saturation gradient: 

dxsw¼
uTðF � fwÞ

KλofwP’
c
¼

uT

K

�
F
λw
� 1� F

λo

�

P’
c

: (16) 

The water saturation gradient is thus dependent on the two phase 
mobilities, the capillary pressure curve, the injected water flow fraction 
F and the injection flux uT. We can further introduce the interstitial total 
velocity and dimensionless Leverett J-function: 

uT ¼φvT ; Pc¼ σow

ffiffiffiffi
φ
K

r

JðswÞ; (17)  

which results in: 

dxsw¼
vT

ffiffiffiφ
K

p

σow

�
F
λw
� 1� F

λo

�

J’ : (18) 

Let sw;eq denote the saturation where capillary pressure is zero, i.e. 
Pcðsw;eqÞ ¼ 0. The above equation can be integrated to find the saturation 
distribution starting from swðx ¼ LÞ ¼ sw;eq. The pressure gradients of oil 
and water at steady state follow from (3) combined with (14): 

∂xpw¼ �
uT F
Kλw

; ∂xpo¼ �
uTð1 � FÞ

Kλo
: (19) 

The above corresponds to Darcy’s law, where the water flux is con
stant equal to uTF and the mobilities vary along the core according to the 
steady state saturation distribution found from (18). System (18) can be 
solved by separation into a space coordinate integral and a saturation 
integral: 

vT
ffiffiffiφ
K

p

σow

Zx’¼L

x

dx’ ¼

Z sw;eq

sw

J’
�
s’

w

�

F
λwðs’

wÞ
� 1� F

λoðs’
wÞ

ds’
w ¼

ZSeq

S

J’ðS’Þ
F

λwðS’Þ
� 1� F

λoðS’Þ

dS’: (20) 

Although the former is trivial, the latter in most cases requires nu
merical methods. Note that the saturation integral above also has been 
expressed using normalized saturation S which also facilitates the J’ 

notation as follows: 

S¼
sw � swr

1 � sor � swr
; ds ¼

dsw

dS
dS; Seq ¼

sw;eq � swr

1 � sor � swr
; (21)  

J’ðswÞ¼
dJ
dsw
¼

dJ
dS

dS
dsw
¼ J’ðSÞ

dS
dsw

: (22)  

2.4. Analytical solutions for steady state 

We will consider function forms that can solve the above integral 
analytically. Simple functions with few parameters allow us to illustrate 
the system behavior and controlling features. We will let both the 
J-function and the relative permeabilities be linear functions as follows: 

J¼
�
S � Seq

�
J’; krw ¼ k*

wS; kro¼ k*
oð1 � SÞ; (23)  

where J’ < 0 and k*
w; k*

o > 0 are all constants. These functions capture 
that the mobility of a phase increases with its saturation and that the 
capillary pressure between oil and water decreases with water satura
tion. Especially, the capillary pressure crosses the saturation axis at a 
specified value and is given a coefficient J’ to describe the magnitude of 
capillary forces. 

It is convenient to introduce Sr, which denotes the reference scaled 
saturation that is obtained uniformly in the core at steady state if no end 
effects are present. At steady state, the fractional flow function in the 
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core must be identical to the injection flow fraction. This condition 
defines the saturation in the core: 

fwðSrÞ¼
1

1þ 1
M

1� Sr
Sr

¼F; M¼
k*

wμo

k*
oμw

; (24)  

Sr ¼ f � 1
w ðFÞ¼

F�
k*
w

μw

�

F�
k*
w

μw

�þ
ð1� FÞ�

k*
o

μo

�
¼

F
F þ ð1 � FÞM

: (25) 

Applying these functions in (20) gives: 

vT L
ffiffiffiφ
K

p

J’σow

�
1 �

x
L

�
¼

ZSeq

S

1
μwF
k*

wS’ �
μoð1� FÞ
k*

oð1� S’Þ

dS’: (26) 

It is convenient to introduce the notations: 

y¼ L � x; A¼
μwF
k*

w
; B¼

μoð1 � FÞ
k*

o
; N0¼

vT L
ffiffiffiφ
K

p

ð� J’Þσow
: (27)  

with this notation we observe that the reference scaled saturation in (25) 
is equivalent to: 

Sr ¼
A

ðAþ BÞ
: (28) 

The integral equation (26) can then be expressed as: 

� N0
y
L
¼

ZSeq

S

1
A
S’ �

B
1� S’

dS’: (29) 

The integrand can be reformulated as: 

1
A
S �

B
ð1� SÞ
¼

1
ðAþ BÞ

�

S � ð1 � SrÞ �
Srð1 � SrÞ

S � Sr

�

; (30)  

which can easily be integrated. The solution is then written in terms of 
the scaled distance from the outlet Y ¼ y=L as function of normalized 
saturation and a dimensionless capillary number N: 

Y ¼
1
N

�

�
1
2

�
S2

eq � S2
�
þð1 � SrÞ

�
Seq � S

�
þ Srð1 � SrÞln

�
Seq � Sr

S � Sr

��

;

(31)  

N¼ðAþBÞN0¼ðFþð1 � FÞMÞN1; N1¼
μwvT L

ffiffiffiφ
K

p

k*
wð� J’Þσow

: (32) 

Note that the capillary number N here is defined as a ratio of viscous 
to capillary forces. From the above equation (31) we see that the scaled 
position of a saturation from the outlet, YðSÞ, will depend only on the 
three parameters Seq; Sr;N. As seen from (31), when N is large, all sat
urations will be pressed towards the outlet ðY¼ 0Þ indicating strong 
advective dominance over the capillary forces. The saturation at Y ¼ 1, 
denoted S1, is of special importance and is defined from (31) by solving: 

1¼
1
N

�

�
1
2

�
S2

eq � S2
1

�
þð1 � SrÞ

�
Seq � S1

�
þ Srð1 � SrÞln

�
Seq � Sr

S1 � Sr

��

:

(33) 

It is important to note that S1 is not an input, but an output from the 
solution. Although this equation cannot be solved explicitly, the loga
rithmic term can be extracted: 

lnðS1 � SrÞ¼ ln
�
Seq � Sr

�
�

�

N þ 1
2

�
S2

eq � S2
1

�
� ð1 � SrÞ

�
Seq � S1

�
�

Srð1 � SrÞ
: (34) 

The average saturation can then be calculated as follows: 

S¼
Z 1

Y¼0
SðYÞdY ¼

Z S1

S¼Seq

S
dY
dS

dS; (35)  

S
dY
dS
¼

1
N

�

S2 � ð1 � SrÞS � Srð1 � SrÞ � S2
r ð1 � SrÞ

1
S � Sr

�

; (36)  

S¼
1
N

�
1
3
S3 �

1
2
ð1 � SrÞS2 � Srð1 � SrÞS � S2

r ð1 � SrÞlnðS � SrÞ

�S1

Seq 

¼ Sr þ
1
N

�
1
3

�
S3

1 � S3
eq

�
�

1
2

�
S2

1 � S2
eq

��

: (37) 

Note that the logarithmic term (34) has been used to simplify the 
expression. Next, from (19) and (23) we calculate pressure gradients for 
each phase as follows: 

dpw

dx
¼

dpw

LdY
dy
dx
¼ �

uT μwF
Kk*

wS
;

dpw

dY
¼

LuT μwF
Kk*

wS
> 0; (38)  

dpo

dx
¼

dpo

LdY
dy
dx
¼ �

uT μoð1 � FÞ
Kk*

oð1 � SÞ
;

dpo

dY
¼

LuT μoð1 � FÞ
Kk*

oð1 � SÞ
> 0: (39) 

The pressure gradients can be integrated over the core to give the 
pressure drop of the water phase: 

Δpw¼

Z 1

Y¼0

LuT μwF
Kk*

wS
dY ¼

LuT μwF
Kk*

w

Z SðY¼1Þ

Seq

1
S

dY
dS

dS; (40)  

1
S

dY
dS
¼

1
N

�

1 �
ð1 � SrÞ

S � Sr

�

; (41)  

Δpw¼
LuT μwF
NKk*

w
½S � ð1 � SrÞlnðS � SrÞ�

S1
Seq

(42)  

¼
LuT μwF
SrKk*

w

�

1þ
1
N

�
1
2

�
S2

eq � S2
1

�
�
�
Seq � S1

�
��

:

and the oil phase: 

Δpo¼

Z 1

Y¼0

LuT μoð1 � FÞ
Kk*

oð1 � SÞ
dY ¼

uT Lμoð1 � FÞ
Kk*

o

Z SðY¼1Þ

Seq

1
ð1 � SÞ

dY
dS

dS; (43)  

1
1 � S

dY
dS
¼ �

1
N

�

1þ
Sr

S � Sr

�

; (44)  

Δpo¼
uT Lμoð1 � FÞ

Kk*
o

�

�
1
N
½S þ Sr lnðS � SrÞ�

S1
Seq

�

¼
uT Lμoð1 � FÞ
Kk*

oð1 � SrÞ

2

6
41þ

1
2

�
S2

eq � S2
1

�

N

3

7
5:

(45)  

2.5. Comparison with reference behavior (no end effects) 

As mentioned, if there are no capillary forces the (uniform) satura
tion Sr is obtained in the core according to equality between the flowing 
fraction and the injected fraction. Applying this result in (42) and (45) 
the pressure drops (marked by r to denote reference behavior) become: 

Δpr
w¼

LuT μwF
Kk*

wC
¼

LuT

K
ðAþBÞ; (46)  

Δpr
o¼

LuT μoð1 � FÞ
Kk*

oð1 � CÞ
¼

LuT

K
ðAþBÞ; (47)  

which are equal to each other. This is expected when capillary forces can 
be neglected. Both will simply be denoted Δpr. Summarized, the solu
tions for average saturation and pressure drop can then be expressed as: 
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S¼ Sr þ
1
N

�
1
3

�
S3

1 � S3
eq

�
�

1
2

�
S2

1 � S2
eq

��

; (48)  

Δpw

Δpr ¼ 1þ
1
N

�
1
2

�
S2

eq � S2
1

�
�
�
Seq � S1

�
�

; (49)  

Δpo

Δpr ¼ 1þ
1
N

�
1
2

�
S2

eq � S2
1

��

: (50) 

Further, the difference between the scaled pressure drops can be 
calculated: 

Δpo � Δpw

Δpr ¼
poðY ¼ 1Þ � pwðY ¼ 1Þ

Δpr ¼
PcðS1Þ

Δpr ¼
1
N
�
Seq � S1

�
: (51) 

When the capillary end effect region is confined within the core we 
have S1 ¼ Sr which gives the following relations: 

S¼ Sr þ
1
N

�
1
3

�
S3

r � S3
eq

�
�

1
2

�
S2

r � S2
eq

��

; (52)  

Δpw

Δpr ¼ 1þ
1
N

�
1
2

�
S2

eq � S2
r

�
�
�
Seq � Sr

�
�

; (53)  

Δpo

Δpr ¼ 1þ
1
N

�
1
2

�
S2

eq � S2
r

��

: (54) 

For this situation, everything within the square brackets is constant 
and all relations are directly linear with 1=N (or by implication the in
verse rate 1=vT). This proves the intercept method for steady state ex
periments provided the saturation functions are of the simple form in 
(23). 

3. Results and discussion 

As input parameters we select values representative of water and n- 
decane, σow from Zeppieri et al. (2001) and permeable sandstone (Peksa 
et al., 2015). J’ðSeqÞ was reported by Zhou et al. (2017) as � 0.180 for 
North Sea sandstone and � 0.05 for Liege outcrop chalk, both mixed-wet. 
Tavassoli et al. (2005) reported a value of � 0.19 for the imbibition curve 
of strongly water-wet Berea sandstone. An intermediate value of � 0.10 
was used. The base rate was 1 pore volume (PV) per day and the base 
injected water fraction F was 0.1. All parameters are listed in Table 1. 
From the base parameters, we can calculate characteristic numbers A;B;
Sr; Seq;M;N as listed in Table 2. A comparison of the analytical model 
with numerical solutions from a commercial software can be found in 
the Appendix. 

Although the model apparently requires specification of all the 14 
parameters in Table 1 it is noted that the solution for saturation profile, 
average saturation and scaled pressure drops only depends on the four 
parameters M;N; F; Seq while Sr and S1 are intermediate parameters 
calculated from those four. 

3.1. Saturation profiles 

In this section we show the impact of various parameters on the 
(normalized) saturation profile SðYÞ following from (31). Using base 
case parameters the saturation profiles are plotted in Fig. 1 for a high 

and a low injected fraction; F ¼ 0:9 and F ¼ 0:1, in both cases showing 
nine profiles corresponding to nine total injection rates varied from 1 
PV/d to 100 PV/d with the same factor 100:25 � 1:78. The values of the 
dimensionless number N correspondingly increase from 0.1 to 10. 

It is seen that for a given F, at low rates the end effects strongly affect 
the saturation profiles over the entire core. At higher rates the inlet 
saturation stabilizes to the value of Sr (which is rate independent, see 
(25)) and even higher rates cause this saturation to cover more of the 
core. The saturation profiles in all cases converge to SðY¼ 0Þ ¼ Seq at 
the outlet. It is also seen that the magnitude of N reflects the extent of 
end effects. For small values N < 0:1 the terms associated with deviation 
from Sr become large and end effects greatly affect the entire core. For 
N � 1 (the curves with this value are highlighted) the terms have similar 
magnitude as the constant terms and the behavior near the inlet is little 
affected by the end effects. For large values N > 10 the terms repre
senting end effects approach negligible and only a small region near the 
outlet is affected. 

Next we show an example where the oil viscosity is increased to 10 
cP, while the other parameters are kept the same as in the previous 
example. The resulting saturation profiles are depicted in Fig. 2. Notably 
the higher oil viscosity has led to a lowering of the profiles. This is 
because a more unfavorable mobility ratio raises the fractional flow 
function. The saturation giving same fractional flow as the injected 
fraction must therefore be lower when the oil viscosity is increased. The 
new values of Sr follow from Eq. (27) and are 0.47 for F ¼ 0:9 and 0.011 
for F ¼ 0:1. 

From (32) the dimensionless number N is seen to be proportional to 
Aþ B. This sum, but not the remaining factor of N, called N0, see (27), 
depends on flow fraction and viscosities. When the two fluids have 
different mobilities, more viscous force will follow by increasing the 
fraction of the less viscous (lower mobility) fluid. This increases the 
magnitude of N and for the same rates of 1–100 PV/d the range of N now 
corresponds to 0.2 to 20 for the high fraction F ¼ 0:9 and 0.94 to 94 for 

Table 1 
Reference input parameters.  

φ  0.20 σow  50 mN/m J’ðSeqÞ � 0.10 

K  1000 mD vT  10 cm/d k*
w  0.1 

μw  1 cP swr  0.25 k*
o  0.1 

μo  1 cP sor  0.25 F  0.1 
L  10 cm sw;eq  0.60    

Table 2 
Characteristic numbers corresponding to the reference parameters.  

A  1⋅10� 3 Pa ​ s  Sr  0:10  M  1  

B  9⋅10� 3 Pa ​ s  Seq  0:7  N  0:10   

Fig. 1. Spatial distributions of scaled saturation S against scaled distance from 
outlet Y for low ðF¼ 0:1Þ and high ðF¼ 0:9Þ injected fractions where the total 
injection rate has been varied by factors of 100:25 from reference (1 PV/d) and 
upwards (until 100 times the base rate). Higher rate corresponds to higher N 
with increasing direction indicated by the arrows. The curves with N � 1 are 
highlighted with bold. 
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the low fraction F ¼ 0:1. This high increase compared to 0.1 to 10 for 
the base case is most significant for the low fractions since the flow is 
dominated by a greater content of low mobility fluid (oil in this case). 
Consistent with the description of the previous example, this shift has 
led all the profiles of the low fraction case to have end effects limited to 
only a portion of the core while the inlet (and almost half the core for the 
lowest rate case) obtain saturations equal to Sr, not affected by the end 
effects. For the high injected fraction where the range of N still covers 
values significantly below 1 the saturation profiles still include cases 
with all saturations along the core differing greatly from Sr. In both cases 
the value N � 1 seems to reflect a state where a significant part of the 
core is affected by end effects, while a significant part is little affected 
ðS� SrÞ. For a given injected fraction, the greatest extent of end effects is 
seen for the lowest total injection rate of 1 PV/d, corresponding to N ¼
0:2 for F ¼ 0:9 and N ¼ 0:94 for F ¼ 0:1. 

3.2. Factors influencing the inlet saturation 

The inlet saturation S1 is indicative of the extent of end effects and is 
the first saturation to approximate Sr, the saturation representative of no 

end effects. When S1 � Sr the end effect region is limited to within the 
core and the intercept method becomes valid. It is critical when this 
value is obtained since it indicates when representative values of the 
measurement exist in parts of the core. 

In Fig. 3 we show the inlet saturation S1 plotted as function of 
capillary number N for different mobility ratios M ¼ 0:01; 1; 100 with 
fractions F ¼ 0:1 and F ¼ 0:6 where the left figure assumes Seq ¼ 0:7 
(mixed-wet) and the right assumes Seq ¼ 0:99 (strongly water-wet). For 
ease of comparison the results are plotted relative to Seq and Sr with the 
fraction S1 � Seq

Sr � Seq 
such that a value of 0 indicates S1 ¼ Seq (completely 

capillary controlled) and 1 indicates S1 ¼ Sr (this point is unaffected by 
end effects). In all cases it is seen that when N passes � 1, S1 � Sr. For 
Seq ¼ 0:7 the dependence of F and M is not strong and the curves overlap 
to great extent. Sr is obtained for 0:3 < N < 1:5. For the case with Seq ¼

0:99 there is more spread between the curves and especially mobility 
ratio matters in addition to N. It should be noted that for the combina
tions of parameters with high F and low M, a high value of Sr is obtained. 
Particularly, for M ¼ 0:01 we obtain Sr ¼ 0:9934 for F ¼ 0:6 and Sr ¼

0:9174 for F ¼ 0:1. These cases that deviate most from the trend with N 
hence also appear to be cases where end effects matter the least as they 
have relatively narrow saturation intervals (ΔS ¼ 0:0034 and 0:0726, 
respectively). 

3.3. Average saturation and pressure drops 

The inlet saturation is necessary input for calculation of average 
saturation and phase pressure drops according to formulas (48), (49) 
and (50). Based on these formulas we plot S � Sr;

Δpw
Δpr ;

Δpo
Δpr vs 1

N in Fig. 4, 
Fig. 5 and Fig. 6, respectively and compare with the linear equations 
(52)–(54) obtained by the assumption of S1 ¼ Sr. 

In the three figures it is seen that when 1
N→0 the three parameters 

follow a linear trend with 1N in line with the intercept theory. Especially, 
they overlap with the lines where we have set S1 ¼ Sr. The transition to 
linear behavior takes place for 1

N � 1:5 to 5 for the different cases, 
consistent with when S1 approaches Sr as discussed in the previous 
example. 

As seen in Fig. 4, the average saturation with end effects can be 
higher or lower than the saturation without end effects. If Seq > Sr the 
saturation distribution will be lifted towards higher values than Sr, and 
opposite. Similarly, in Figs. 5 and 6 we note that the pressure drop of a 
given phase with end effects can both be higher or lower than if end 
effects were not present. Mainly, end effects will cause a nonuniform 
saturation and mobility distribution for a given phase. When the end 
effects shift phase saturations up towards higher phase mobility the 

Fig. 2. Spatial distributions of scaled saturation S against scaled distance from 
outlet Y for low ðF¼ 0:1Þ and high ðF¼ 0:9Þ injected fractions where the total 
injection rate has been varied by factors of 100:25 from reference (1 PV/d) and 
upwards (until 100 times the base rate). Higher rate corresponds to higher N 
with increasing direction indicated by the arrows. The curves with N � 1 are 
highlighted with bold. 

Fig. 3. Inlet saturation S1 (relative to Seq and Sr) plotted vs capillary number N for different mobility ratios (0.01, 1 and 100) and injected fractions (0.1 and 0.6). The 
left figure shows results for Seq ¼ 0:7 and the right for Seq ¼ 0:99. 
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Fig. 4. Average saturation minus Sr plotted against inverse capillary number 1=N for Seq ¼ 0:7 and different mobility ratios using injected fractions F ¼ 0:1 (left) and 
F ¼ 0:6 (right). Full lines correspond to the analytical solutions, while the dashed lines correspond to the intercept method. 

Fig. 5. Scaled water pressure drop Δpw=Δpr plotted against inverse capillary number 1=N for Seq ¼ 0:7 and different mobility ratios using injected fractions F ¼ 0:1 
(left) and F ¼ 0:6 (right). Full lines correspond to the analytical solutions, while the dashed lines correspond to the intercept method. 

Fig. 6. Scaled oil pressure drop Δpo=Δpr plotted against inverse capillary number 1=N for Seq ¼ 0:7 and different mobility ratios using injected fractions F ¼ 0:1 (left) 
and F ¼ 0:6 (right). Full lines correspond to the analytical solutions, while the dashed lines correspond to the intercept method. 
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pressure drop will be lower, and when they shift phase saturations down 
towards lower phase mobility the phase pressure drop will be higher. 

At the other extreme, when N→0 the total injection rate is negligible. 
Setting vT ¼ 0 in (18) gives dxsw ¼ 0, which together with the fixed 
capillary pressure condition results in SðxÞ ¼ Seq. The scaled pressure 
drops at this condition naturally correspond to the mobilities at this 
saturation and defines the stable values that would be approached by the 
full lines in Figs. 5 and 6 if extended to 1

N→∞. 
Finally, we note that the difference in the phase pressure drops (for 

given M;N; F; Seq) corresponds exactly to the capillary pressure at the 
inlet, see (51). If S1 > Seq this corresponds to a negative capillary pres
sure (and a negative capillary pressure distribution in the core), while if 
S1 < Seq a positive capillary pressure is obtained at the outlet and a 
positive capillary pressure distribution in the core. Whether or not the 
capillary pressure at the inlet is positive or negative determines which 
phase has the highest pressure at the inlet. This can have implications for 
interpreting experimental data as usually one pressure drop is reported 
from standard experimental designs and one should then be aware of 
which phase pressure is measured. 

4. Conclusions 

In this paper we have derived an explicit analytical solution for 
coinjection of immiscible phases in a porous medium with capillary end 
effects at steady state, a setup representative for measuring relative 
permeabilities. Explicit expressions of saturation profile, phase pressure 
gradient profiles, average saturation and phase pressure drops were 
obtained.  

� A new capillary number termed N was derived incorporating core 
and fluid parameters, but even more interesting; also the saturation 
function parameters, flow fraction and mobility ratio.  
� The magnitude of the capillary number was very characteristic of end 

effect behavior. For N < 0:1 end effects were dominant across the 
entire core; when N � 1 the inlet saturation obtained the saturation 
representative of no end effect behavior; and when N > 10 most of 

the core displayed saturations representative of no end effect 
behavior.  
� The intercept method was derived analytically. This method states 

that average saturation and pressure drop (scaled by no end effect 
pressure drop) can be plotted linearly against the inverse of total 
injection rate (inverse of capillary number) towards the theoretical 
values unaffected by capillary end effects. Our method also derives 
the slope, and the behavior of these parameters in the region where 
the intercept method (linear behavior) is not valid. The critical value 
of N where the intercept method could be applied was approximately 
1. 
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Appendix. Comparison with a commercial simulator 

In this appendix we show how the analytical solutions compare against numerical solutions from the commercial core scale simulation software 
ProRes Sendra v2018.2.5. The reference parameters in Table 1 were assumed except that six total injection rates were applied; from 1 PV/d and 
increased by factors of 2 up to 32 PV/d. The software was run with sufficient time for each total injection rate that steady state was achieved. The 
scaled saturation profiles are shown in Fig. 7 with circles representing the analytical solution and full lines the numerical solution. Near to perfect 
overlap is obseikrved as expected. Better match could be obtained by tuning the accuracy of the numerical solution.

Fig. 7. Comparison of the analytical solution (circle points) with numerical solutions (full lines) generated by a commercial simulator Sendra. Scaled saturation 
profiles are presented and the reference case input parameters have been used. Six injection rates from 1 PV/d increased by factors of 2 up to 32 PV/d have 
been applied. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.petrol.2020.107249. 
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