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The engagement of the cerebellum VI in reading was reported in both typically
developing and dyslexic readers. However, it is still not clear how the cerebellum
VI contributes to reading. Here we have examined the correlation of intrinsic
cerebro-cerebellar functional connectivity with two critical reading-related skills—
phonological awareness (PA) and rapid automatized naming (RAN)—with fMRI
technology. Specifically, we tested the hypothesis that the cerebellum may contribute
to reading either by phonological skills or by automatizing skills. We chose the left and
right cerebellum VI as ROIs, and we calculated the intrinsic cerebro-cerebellar functional
connectivity during a resting state. We further explored whether and how cerebro-
cerebellar resting state functional connectivity (RSFC) is associated with individuals’
reading-related skills including PA and RAN. The results showed that the functional
connectivity between the left supramarginal gyrus and bilateral cerebellum VI was related
to RAN, and the connectivity between the left insula and right cerebellum VI was
related to PA. However, the effect of PA did not survive after the RAN was regressed
out. Control analyses further confirmed that it was the intrinsic cerebro-cerebellar
functional connectivity rather than the local cerebellar functionality that associated
with phonological awareness ability and rapid automatized naming ability. For the first
time, the relationship between cerebro-cerebellar resting state functional connectivity
and specific reading-related skills has been explored, and this has deepened our
understanding of the way the cerebellum VI is involved in reading.

Keywords: cerebellum VI, resting state functional connectivity, fMRI, phonological awareness, rapid automatized
naming

INTRODUCTION

Increasing evidence has shown that the cerebellum is engaged in high-level cognitive processing,
particularly, in reading (Baillieux et al., 2008; Stoodley and Stein, 2011, 2013; Argyropoulos, 2016;
Sokolov et al., 2017). For example, numerous studies have reported that the cerebellum was
involved in a variety of reading tasks, including phonological processing, visual letter recognition, as
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well as semantic processing (McDermott et al., 2003; Turkeltaub
et al., 2003; Booth et al., 2007; King et al., 2019). Particularly, the
bilateral cerebellum VI, a middle part of the cerebellum, plays a
more essential role than other parts in reading. A voxel-based
morphometry study found a significant negative correlation
between the gray matter volume of the left cerebellum VI
(lobule VI/Crus I) and reading accuracy in normal readers
(Jednorog et al., 2015). A meta-analysis also found that the right
cerebellum VI was consistently activated during reading-related
tasks (Martin et al., 2015). Although these findings suggest a
relationship between the bilateral cerebellum VI and reading, it
remains unclear how the cerebellum VI contributes to reading.

The involvement of the cerebellum in high-level cognitive
processing could be attributed to the structural and functional
cerebro-cerebellar connection (Sokolov et al., 2017). As a support,
Booth et al. (2007) observed that the cerebellum VI functionally
connected with cerebral regions during reading, including the
left fusiform gyrus, the left inferior frontal gyrus, and the left
lateral temporal cortex. Feng et al. (2017) further found that
abnormality of cerebro-cerebellar connections was associated
with reading impairment, suggesting that variation of cerebro-
cerebellar functional connectivity is associated with differences in
reading ability.

A previous study indicated that an intrinsic network
organization underlying cognitive processes can be reflected
by resting state functional connectivity (RSFC) (Lohmann
et al., 2009). For example, RSFC is associated with individual
differences in several cognitive domains, including executive
control, episodic memory, and learning (Wang et al., 2010;
Xu et al., 2014; Chai et al., 2016). Compared to functional
connectivity during certain cognitive task, RSFC indicates
intrinsic, task-independent features of brain function (Biswal
et al., 1995; Fox et al., 2005). Importantly, task-induced BOLD
activity could be predicted by RSFC (Mennes et al., 2010; Shah
et al., 2016), and the reading network can also be investigated
during the resting state (Koyama et al., 2010). Koyama et al.
(2011) found that reading competence positively related to RSFC
between the left precentral gyrus and other motor regions as
well as between the pars opercularis of the left inferior frontal
gyrus and the posterior part of the left superior temporal gyrus,
suggesting that reading can be facilitated by stronger connectivity
among motor regions and between language regions. Besides, it
was proposed that RSFC was associated with Chinese reading
abilities (Wang et al., 2012; Zhang et al., 2014; Qian et al.,
2016). A recent study further observed that the strength of RSFC
between the left thalamus and the right cerebellum, which are
thought to be associated with attention, is positively correlated
with phonological fluency (Miro-Padilla et al., 2017). However,
up until now, no study has directly explored whether RSFC
between the cerebellum and cerebrum is associated with reading.

As to the mechanism of how the cerebellum is engaged
in reading, the cerebellar deficit hypothesis proposed that
articulatory processing and automatizing processing were two
key components that the cerebellum possibly contributes toward,
the deficit of which can lead to subsequent problems when
learning how to read (Nicolson et al., 2001). Moreover, lack of
articulatory fluency will finally lead to difficulties in phonological

awareness (Nicolson et al., 2001). Evidence to support this
hypothesis comes from two aspects. Firstly, cerebellum was
indeed engaged in phonological (Raschle et al., 2012; Meng
et al., 2016) and automatizing processing (Norton et al.,
2014; Cummine et al., 2015). Secondly, phonological skill and
automatizing skill are closely related to reading. For example,
phonological awareness (PA) and rapid automatized naming
(RAN, a way to estimate automatizing skill) have been confirmed
as significant predictors of reading performance across languages
(Parrila et al., 2004; Ziegler et al., 2010; Yeung et al., 2011).
A meta-analysis further revealed that PA and RAN were
correlated to reading accuracy and reading fluency, respectively
(Song et al., 2015). These two skills have frequently been used to
evaluate reading abilities (Qian et al., 2015, 2016) and distinguish
between dyslexic and normal readers (Norton et al., 2014).

The cerebellar deficit hypothesis also indicated that reading
impairment can be caused by cerebellar deficits showing up
before reading acquisition, and the cerebellum plays a vital role
in the initial stage of reading (Nicolson et al., 2001). A meta-
analysis has reported both common and divergent reading-
related activation in children and adults (Martin et al., 2015),
and a previous study also proposed that reading competence was
related to different RSFC patterns in children and adults (Koyama
et al., 2011). Koyama et al. (2011) demonstrated that better
reading performance was associated with stronger functional
coupling between the fusiform gyrus and phonology-related
regions/default mode network in adults but not in children.
The research to date has tended to focus on RSFC-reading
relationships in adults (Wang et al., 2012; Zhang et al., 2014; Qian
et al., 2016). However, far too little attention has been paid to
the relationship between RSFC and reading in children (Alcauter
et al., 2017). Given reading skills are not yet fully matured during
childhood, studies based on children can investigate the way the
cerebellum affects reading in the developmental stages.

The current study has aimed to examine whether and
how the intrinsic cerebro-cerebellar functional connectivity
(RSFC) associates with the two important reading-related
skills—phonological and automatizing skills—in children. For
this purpose, we have analyzed the correlation between
intrinsic cerebro-cerebellar functional connectivity with PA
and RAN, both of which are important predictors of reading
performance. Given the convergent evidence, which showed
that the cerebellum VI was consistently involved in reading,
we chose bilateral cerebellum VI as regions of interest (ROIs).
We hypothesized that reading-related cognitive processes were
supported by the cooperation of the cerebellum and cerebrum.
Specifically, both PA and RAN scores were associated with
the intrinsic functional connectivity between the cerebellum VI
and cerebral areas.

MATERIALS AND METHODS

Participants
Fifty-seven typically developing children without reading
disorders [31 males and 26 females, mean age = 10.19 years,
standard deviation (SD) = 0.96] took part in the experiment.
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All participants were native speakers of Mandarin and
were recruited and screened from several primary schools
in Beijing from grades three to six. They were all right-
handed and had normal IQs (Raven Percentiles ≥50, Raven’s
Standard Progressive Matrices: Raven, 1998) with normal
or corrected-to-normal vision. In addition, children with
attention deficit hyperactivity disorder (ADHD, Feng et al.,
2017), neurological disease, or psychiatric disorders were
excluded. All the 57 participants meet the criteria of head
motion not exceeding 3 mm or 3◦. This study was approved
by the Institutional Reviews Board of the State Key Laboratory
of Cognitive Neuroscience and Learning at Beijing Normal
University, and written consent was obtained from the children
and their parents.

Behavior Measures
Raven’s Standard Progressive Matrices was applied to test the
children’s IQ. A Chinese phonological awareness test (Shu et al.,
2006, 2008) and a rapid automatized naming test (Feng et al.,
2017) were then used to evaluate the children’s phonological and
automatizing skills. Details of the two tests are described below.

Chinese Phonological Awareness (PA) Test
The Chinese phonological awareness test consists of four subtests:
phoneme deletion, tone detection, onset detection, and rime
detection. In the phoneme deletion test, the participants were
asked to pronounce a given word after deleting a phoneme,
for example, “shua3” after removing “a” should be pronounced
as “shu3.” In the tone/onset/rime deletion test, the participants
were asked to find the one word, out of four words, that
differed (by the tone, onset, or rime level). For example,
when it comes to the tone level, such as [ba4, san4, bei4,
bo1], the different one is bo1; for the onset detection, [ba3,
san1, bei4, bo1], the correct answer is san1; and for the
rime detection, [ban3, san1, ban4, bo1], bo1 was the different
one. The number of correct answers was recorded as a raw
score. Raw scores were firstly converted into Z scores in each
grade and then into standard scores with a mean of 100 and
SD of 15. Averaged Z scores of the four tests indicated the
phonological processing ability. The higher the score, the better
the phonological awareness.

The Rapid Automatized Naming (RAN) Test
The rapid automatized naming test was used to measure
automatization ability (Raberger and Wimmer, 2003). When
performing this task, participants were required to read out
visually-presented Arabic numbers as quickly and accurately as
possible. The participants did the test twice, and the total time
to read all digits was recorded each time. The average time was
calculated and translated into Z scores in each grade. The Z scores
were then multiplied by −1, and they were then converted into
standard scores with a mean of 100 and SD of 15; higher scores
represented better performances.

Imaging Procedure and Acquisition
Resting-state images were acquired with a 3T Siemens scanner
at Beijing Normal University. Before the formal experiment,

the participants participated in 20 min of training in a mock
scanner in order to familiarize themselves with the environment
and the requirements. The resting-state MRI scanning session
lasted for 8 min. The participants were informed to close
their eyes, keep their head and body still, and to think of
nothing to avoid inner language disturbances. A T2-weighted
gradient-echo EPI sequence was used to acquire functional
images, and the acquisition parameters were TR = 2400 ms,
TE = 30 ms, flip angle = 81◦, FOV = 192 × 192 mm,
slice number = 40 slices, slice thickness = 3 mm, and voxel
size = 3 × 3 × 3 mm. We used Sequential scanning.
For better image registration, we also collected T1-weighted
images, TR = 2300 ms, TE = 4.18 ms, flip angle = 9◦,
FOV = 256 × 256 mm, slice number = 176 slices, slice
thickness = 1 mm, and voxel size = 1 × 1 × 1 mm.

Data Analysis
Preprocessing
Functional MRI scans were preprocessed with DPABI
software1 (Yan et al., 2016). The resting state functional
image preprocessing included several steps: (1) the first 10
time points were deleted; (2) the slice-timing was corrected
with the middle slice as the reference slice and realignment; (3)
all functional images were co-registered to the corresponding
anatomical image; (4) functional images were normalized to
Montreal Neurological Institute (MNI) space; (5) the spatial was
smoothed with 4 mm FWHM Gaussian kernel; (6) linear trends
were removed, and band-pass temporal filtering (0.01–0.08 Hz)
was applied. In addition, we regressed out six motion parameters,
the white matter signal, and the cerebrospinal fluid signal to
reduce motion and physiological signal interference.

Cerebellum ROI
Coordinates of the bilateral cerebellum VI were chosen based on a
previous meta-analysis (Keren-Happuch et al., 2014). The sphere
of the left cerebellum VI was centered at MNI coordinate (−22,
−68, −20) and the right cerebellum VI was centered at MNI
coordinate (24, −66, −24, Figure 1A). For each ROI, a sphere
was created with a radius of 6 mm.

In addition, we chose the cerebellum V (MNI coordinate
[6, −64, −10], Figure 1B; Stoodley and Schmahmann, 2009),
related to motor function, as another ROI to use to perform a
control analysis (for detailed information, see section “Control

1http://rfmri.org/dpabi

FIGURE 1 | The location of ROIs. (A) The coordinate of the left cerebellum VI
is [–22, –68, –20] and the right cerebellum VI is [24, –66, –24]. (B) The
location of control ROI. The right cerebellum V [6, –64, –10], a motion-related
region, is used for a control analysis.
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analyses”). For the display, the cerebellum ROIs were overlaid
onto the suit template2 with the software MRIcron3.

Correlation of Cerebro-Cerebellar RSFC and
Reading-Related Skills
We firstly extracted and averaged the BOLD signal of all voxels
within each ROI (i.e., left or right cerebellum VI) used as the
seed region for functional connectivity analysis. The time-series
correlation of average BOLD signal between each seed region and
each voxel in the bilateral cerebrum was calculated with SPM124.
The correlation coefficients were transformed into Fisher’s Z
scores as an index for cerebro-cerebellar RSFC. Finally, we
calculated the correlation between Z scores and the phonological
or rapid naming test performances in each seed region.

All the correlation maps were corrected for multiple
comparisons by Gaussian random field (GRF) correction (voxel-
level p < 0.001 and cluster-level p < 0.05, two-tailed) with
DPABI software (see text Footnote 1; Yan et al., 2016).
GRF corrections were widely used to control the family-
wise error rate (FWER) of testing multiple hypothesis in
neuroimaging. Chen et al. (2018) confirmed that the FWER
can reach the nominal 5% level if the threshold was set
voxel-wise p < 0.0005 and cluster-wise p < 0.025 to perform
two one-tailed tests, which is equivalent to the threshold in
our study (voxel-level p < 0.001 and cluster-level p < 0.05,
two-tailed). This multiple comparison correction method was
recommended when considering the FWER (Chen et al., 2018).
In addition, the peak voxel in each cluster was reported
based on the Automated Anatomical Labeling (AAL) template
(Tzourio-Mazoyer et al., 2002). All threshold brain images
were overlaid onto the Brainmesh_ICBM152_smoothed.nv surf
template with the software BrainNet Viewer (Xia et al., 2013)5

for display.
In our study, we were primarily concerned with how the

cerebro-cerebellar RSFC associates with phonological skills and
automatizing skills, as indicated by the measures of PA and RAN.
We then first calculated the correlation between the cerebro-
cerebellar RSFC with each skill separately. Given that there is
potential correlation between Raven’s IQ, PA, and RAN, we
additionally performed a partial correlation analysis. For details,
when we calculated the correlation between cerebro-cerebellar
RSFC and RAN, either the Raven’s IQ, the scores of PA, or both
were used as the covariate(s). When we calculated the correlation
between cerebro-cerebellar RSFC and PA, the Raven’s IQ, the
scores of RAN, or both were used as the covariate(s).

Control Analyses
We further performed two control analyses to exclude potential
confounds or other possibilities. Firstly, given the RSFC might
be confounded by the local functionalities of the cerebellum, we
calculated the amplitude of low frequency fluctuation (ALFF),
a representative index of local brain functionalities in the

2http://www.diedrichsenlab.org/imaging/suit.htm
3www.nitrc.org/projects/mricron
4http://www.fil.ion.ucl.ac.uk/spm/
5www.nitrc.org/projects/bnv/

resting state fMRI (Zang et al., 2007), and explored whether the
ALFF of bilateral cerebellum VI correlated to the two reading-
related skills. The amplitude of low frequency fluctuation (ALFF)
measures the spontaneous activity of the specific brain area in
order to reflect the local functionality property. We followed the
calculation procedure used in previous studies (Deluca et al.,
2014). Fast Fourier transform (FFT) was used to transform the
time series to frequency domain. After calculating the power
spectrum, it was square rooted, and the square root across
0.01–0.08 Hz was then averaged at each voxel, and this was
taken as the ALFF. The ALFF of each voxel was divided by
the mean ALFF value for standardization. At last, the averaged
ALFF of each ROI was extracted for further correlation analysis.
The significance of correlation was estimated by Bonferroni
correction for multiple comparisons.

Secondly, we tested whether the cerebellum V, a region related
to motor function, also showed correlation between intrinsic
cerebro-cerebellar RSFC and PA/RAN. During this analysis, we
extracted the averaged BOLD signal of cerebral regions whose
RSFC with the bilateral cerebellum VI correlated with PA or
RAN. Then we calculated the RSFC between the cerebellum
V and these cerebral regions to explore whether this intrinsic
RSFC was associated with the two reading-related skills. This
analysis aimed to answer whether the association between
intrinsic cerebro-cerebellar RSFC and reading-related skills is just
a feature of the cerebellum VI or could be generalized to other
cerebellum regions, such as the cerebellum V. In this analysis, we
replaced the cerebellum VI with cerebellum V. The significance
of correlation was also estimated by Bonferroni correction for
multiple comparisons.

RESULTS

Behavior Results
Table 1 shows the demographic information and the results
of reading-related tests. The scores of both the phonological
awareness test and the rapid automatized naming test followed
the normal distribution. The correlation between the scores of PA
and RAN was significant (r = 0.41, p = 0.002) with the Bonferroni
correction. The correlation was marginally significant between

TABLE 1 | Characteristics of participants.

Participants (n = 57)

Mean (SD) Score range

Age 10.19 (0.95) 8–12

Gender (male/female) 31:26

Grade (3/4/5/6) 9/25/17/6

Handedness All right-handed

Raven’s IQa 78.68 (12.96) 50–95

Chinese reading-related testsb

Phonological awareness test (PA) 103.23 (8.89) 81.10–118.57

Rapid automatized naming test(RAN) 98.46 (8.33) 72.67–117.10

SD = standard deviation. aPercentiles.bStandard scores.
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Raven’s IQ and PA (r = 0.232, p = 0.082) and not significant
between Raven’s IQ and RAN (r = 0.220, p = 0.101).

Correlation of Cerebro-Cerebellar RSFC
and Reading-Related Skills
When the left cerebellum VI was used as a seed region, the RSFC
of this ROI and the left supramarginal gyrus (extended to the
postcentral gyrus) was significantly correlated with RAN scores
(cluster-level GRF corrected p < 0.05, voxel-level p < 0.001;
cluster size = 91, Table 2 and Figure 2A), which revealed
that better RAN performance related to stronger functional
connectivity. No significant correlation was observed between the
PA scores and the RSFC (cluster-level GRF corrected p < 0.05,
voxel-level p < 0.001).

When the right cerebellum VI was used as a seed, the RSFC
between the ROI and the left insula (extended to the superior
temporal gyrus) was found to be correlated with PA (cluster-level
GRF corrected p < 0.05, voxel-level p < 0.001, cluster size = 80,
Table 2 and Figure 2B), suggesting that better PA performance
also related to stronger functional connectivity. No significant
correlation between RAN scores and RSFC was observed at this
stringent threshold. However, we did observe a tendency for
the RSFC between the ROI and the left supramarginal gyrus
(extended to the postcentral gyrus) to correlate with RAN, which
could survive with a loose threshold (voxel-level p < 0.001,
uncorrected, cluster size = 62, Table 2 and Figure 2C).

In order to exclude the potential effect of IQ on the results,
we re-did the above brain and behavior correlation analyses with
Raven’s IQ as the covariate. When Raven’s IQ was regressed out,
the performance on RAN still correlated with the RSFC between
the left cerebellum VI and left postcentral gyrus (extended to
the supramarginal gyrus) and between the right cerebellum VI
and left supramarginal gyrus (extended to the postcentral gyrus),
using the corrected threshold as in the above analysis. But we
can only observe the correlation of PA and RSFC between the
right cerebellum VI and the left insular at a looser threshold
(voxel-level p< 0.001, uncorrected, Supplementary Table S1 and
Supplementary Figure S1).

Furthermore, when PA was regressed out, the performance
on RAN was correlated with the RSFC between the left
cerebellum VI and left supramarginal gyrus (extended to the
postcentral gyrus) and between the right cerebellum VI and
left supramarginal gyrus (extended to the postcentral gyrus)
at the threshold of voxel-level p < 0.001, uncorrected. When

RAN was used as a covariate, the correlation between PA
and RSFC of the right cerebellum VI with the left insula did
not survive, even with an uncorrected threshold (voxel-level
threshold p < 0.001, uncorrected, Supplementary Table S2 and
Supplementary Figure S2).

Finally, when PA and Raven’s IQ were regressed out,
the correlation of RAN and the RSFC between the left
cerebellum VI and left supramarginal gyrus (extended to the
postcentral gyrus) and between the right cerebellum VI and
left supramarginal gyrus (extended to the postcentral gyrus)
could be observed with an uncorrected threshold (voxel-level
p < 0.001, uncorrected). When RAN and Raven’s IQ were
regressed out, the correlation between PA and RSFC did
not survive even with an uncorrected threshold (voxel-level
threshold p < 0.001, uncorrected; Supplementary Table S3 and
Supplementary Figure S3).

Based on the above results, it is likely that the RSFC of the
cerebellum VI does not directly contribute to PA. Instead, RSFC
might be affected by PA via RAN. We then further conducted a
mediation analysis to test this possibility. However, we did not
observe a significant mediation effect of RAN for the cerebellum
VI functional connectivity. Detailed information is displayed in
the Supplementary Figure S4.

Control Analyses
For ALFF, no significant correlation was found between either the
left or right cerebellum VI and reading-related skills in our study
(ps > 0.2). Detailed correlation coefficients (r) and p values are
presented in Figure 3A.

Additionally, the RSFCs of cerebellum V (MNI coordinate [6,
−64, −10]) and cerebral regions, including the supramarginal
gyrus (MNI coordinate [−63, −21, 27] and [−57, −18, 24])
and the left insular (MNI coordinate [−57, −3, 3]), were
not significantly correlated with either reading-related skills
(ps > 0.1, Figure 3B).

DISCUSSION

In the current study, we have aimed to investigate the way
in which the cerebellum VI contributes to reading. More
specifically, we tested whether the cerebro-cerebellar functional
connectivity during a resting state (RSFC) was associated with
two essential reading-related skills: phonological awareness and

TABLE 2 | The correlation between the cerebro-cerebellar resting-state functional connectivity and PA/RAN.

Seed regions Reading-related tests Cerebral cortex Lateral MNI coordinates T value Voxels

x y Z

Left cerebellum VI RAN Supramarginal gyrus Left −63 −21 27 5.13 91

Left cerebellum VI PA /

Right cerebellum VI PA Insula Left −57 −3 3 4.69 80

Right cerebellum VI RAN *Supramarginal gyrus Left −57 −18 24 5.40 62

T-value, and MNI coordinate are for the peak voxel in each cluster only. Results were reported at a threshold of an individual voxel-level p < 0.001, cluster-level p < 0.05,
corrected by GRF. *a loose threshold of an individual voxel p < 0.001 uncorrected. RAN = rapid automatized naming, PA = phonological awareness.
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FIGURE 2 | Significant correlation between cerebro-cerebellar functional connectivity and PA/RAN. (A) Functional connectivity between left cerebellum VI and left
SMG was positively correlated with RAN. (B) Functional connectivity between right cerebellum VI and left INS was positively correlated with PA. (C) Functional
connectivity between right cerebellum VI and left SMG was positively correlated with RAN under a loose threshold. L.SMG, the left supramarginal gyrus; L.INS, the
left insula; RAN, rapid automatized naming; PA, phonological awareness.

rapid automatized naming. To this end, we chose the left
and right cerebellum VI as ROIs based on a meta-analysis,
and we calculated the correlation of cerebro-cerebellar RSFC
and phonological awareness or rapid automatized naming.
Our study showed that the connectivity between the left
supramarginal gyrus and bilateral cerebellum VI was related to
rapid automatized naming, and the connectivity between the
left insula and right cerebellum VI was related to phonological
awareness. But the latter effect did not survive after the rapid
automatized naming was regressed out. The control analyses
further showed there is no significant correlation between
the local functionality of the cerebellum VI (indicated with
ALFF) and both reading-related skills, confirming the association
between the intrinsic cerebro-cerebellar functional connectivity
and reading-related skills cannot be interpreted by the local
functionality of the cerebellum VI. The control analyses also
showed that reading-related skills were not correlated with the
RSFC between the cerebellum V and cerebral regions, illustrating
how the observed intrinsic cerebro-cerebellar RSFC and reading-
related skills were just features of the cerebellum VI. For the first
time, we tested the hypothesis that the cerebellum contributes to

reading, either by phonological skills or by automatizing skills
through RSFC, which provided new findings as to how the
cerebellum VI contributes to reading.

It is worth noting that reading is a complex process,
including not only the more basic levels of linguistic functions
(phonological processing and lexical access) involved in reading
but also the levels of conceptualization and situation model
building (Zacks and Ferstl, 2016). Our study only focused on the
former level. Previous studies frequently found the cerebellum
VI is involved in reading (Booth et al., 2007; Stoodley and
Stein, 2013; Martin et al., 2015; Hancock et al., 2017). More
specifically, the association between the cerebellum and rapid
automatized naming has been reported in previous studies
(Norton et al., 2014), and the abnormity in the cerebellar-
frontal circuit was found to be related to rapid automatized
naming (Eckert et al., 2003). Rapid automatized naming was
also associated with Chinese reading accuracy and fluency (Liao
et al., 2007, 2015). Moreover, Cummine et al. (2015) has shown
that RAN and reading rely on similar brain regions. Here we
have illustrated that the cerebellum VI is involvd in reading
through cerebro-cerebellar connections. Specifically, we found
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FIGURE 3 | (A) The correlations between ALFF intensity in the cerebellum and reading-related skills. (B) The correlations between cerebellum V–cerebrum RSFC
and the reading-related skills. L.SMG, the left supramarginal gyrus; L.INS, the left insula; RAN, rapid automatized naming; PA, phonological awareness; RSFC,
resting state functional connectivity. The p value in the picture is the uncorrected p value.

a positive relationship between cerebro-cerebellar RSFC and
individuals’ performance in RAN. Our findings have provided the
first evidence that the intrinsic connectivity during a resting state
could be a predictive index for rapid automatized naming skills.

The results of a partial correlation analysis were similar
to that of the main analysis when Raven’s IQ was used as
a covariate, suggesting such correlations were not affected by
Raven’s IQ. We found that the correlation between the left
cerebellum VI-left supramarginal gyrus RSFC and PA can
survive when PA was regressed out at the threshold voxel-level
(p < 0.001 uncorrected). Importantly, when PA was regressed
out, we also found RAN correlated with RSFC between the
right cerebellum VI and left supramarginal gyrus (voxel-level
p < 0.001, uncorrected), although such an effect was unable
to survive after a GRF multiple comparison correction in the
main analysis. These findings suggest that there is a relationship
between the bilateral cerebellum VI and the RAN. Importantly,
when both the RAN and Raven’s IQ were regressed out, we
did not observe PA correlated with RSFC between the right
cerebellum VI and left insula, even at an uncorrected threshold
(voxel-level p < 0.001). As proposed by the double-deficit
hypothesis, PA and RAN would play a relatively independent role
in reading (Wolf and Bowers, 1999). Our findings did not support
that the cerebellum VI was equally associated with PA and RAN.
After all, the correlation between RSFC of the cerebellum and
PA would not survive if RAN was used as a covariate, and
we also did not observe if the RSFC of the cerebellum VI can
be affected by PA via RAN. However, the possibility cannot
be excluded that there might be some common components

between these two abilities, which are associated with both
articulation and automatization.

The examination of RAN and PA provide insights into
the understanding of the cerebellar deficit hypothesis of
dyslexia, which has proposed that cerebellar deficit could cause
both phonological and automatization deficits at the cognitive
level (Nicolson et al., 2001). Functional imaging studies have
investigated the double-deficit hypothesis of developmental
dyslexia by using the phonological awareness and rapid
automatized naming (Norton et al., 2014), which found that
children with only phonological awareness deficits showed less
activation in the left inferior frontal and inferior parietal regions
compared to typically developing readers, and children with only
a rapid naming deficit showed less activation in the cerebellum
compared to typically developing readers. The current study
further showed that the RAN–reading relationship may manifest
through the RSFC between the cerebellum and cerebral regions,
which is consistent with the established role of the speedy
processing of the cerebellum. Actually, it has been frequently
proposed that the relationship between RAN and reading should
be observed (Eckert et al., 2003; Turkeltaub et al., 2003; He et al.,
2013; Norton et al., 2014).

Notably, although PA and RAN are predictors of reading
abilities, they are also associated with other cognitive functions,
such as attention, working memory, and mathematics (Welsh
et al., 2010; Pham et al., 2011; Koponen et al., 2013; Yang
et al., 2014). Yang et al. (2014) observed the predictive
relation between PA and executive attention in Chinese-English
bilingual children, thus suggesting the relationship between

Frontiers in Psychology | www.frontiersin.org 7 March 2020 | Volume 11 | Article 420

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00420 March 19, 2020 Time: 16:54 # 8

Ang et al. Reading-Related Cerebro-Cerebellar RSFC

PA and executive function. Moreover, RAN was considered
to mediate the relationship between attention and reading
fluency (Pham et al., 2011), suggesting that the attention
ability may be associated with RAN. Other researchers
have also proposed that the relationship between RAN
and reading is due to executive functions, such as
working memory and inhibition (Amtmann et al., 2006).
Accordingly, it is unclear whether our correlated functional
connectivity via PA/RAN could be specifically dedicated
to reading alone.

In addition, we obtained the findings by studying Chinese
children learning to read Mandarin. An interesting issue is
whether the correlation between the cerebro-cerebellar RSFC
and RAN could be generalized to alphabetic language. We
have speculated that the answer is yes. RSFC exhibited
significant positive correlations with reading abilities for
Chinese children (Wang et al., 2012; Zhang et al., 2014;
Qian et al., 2016). As for alphabetic language, Koyama
et al. (2011) also observed that reading competence in
children correlated positively with RSFC between the left
precentral gyrus and other motor regions as well as between
Broca’s and Wernicke’s areas. Even though these studies did
not directly examine the relationship between the RSFC
of the cerebellum and reading competence, it has been
reported that the cerebellum also played an essential role in
phonological processing for alphabetic language (Booth et al.,
2007; Stoodley and Stein, 2013).

Finally, our findings have provided new evidence for the
functional segregation of the cerebellum. Recent studies have
shown that the anterior part of the cerebellum is responsible
for movement and other low-level processing, while the
posterior part of the cerebellum is mainly responsible for
high-level cognitive functions, including language, memory,
emotion, and so on (Stoodley and Schmahmann, 2009),
which suggests that there is a functional segregation of
cerebellum. Here we found that the cerebro-cerebellar functional
connectivity of the cerebellum VI but not cerebellum V
correlated with certain reading-related skill(s), thus confirming
the functional differentiation between the cerebellum VI and
V. Future studies may be required to comprehensively examine
how cerebellum is functionally segregated, and how the
different subregions cooperate with cerebrum in reading or
other high-level cognitive processing through cerebro-cerebellar
functional connectivity.

There are some limitations in our study. Firstly, we performed
resting-state functional connectivity rather than task-based,
which may not be able to reliably generalize the findings
based on RSFC to encompass task-related neural activity; we
should be cautious when assessing the relationship between
RSFC and reading-related skills (Brock, 2013). Future studies
are required to examine the association between task-related
cerebro-cerebellar functional connectivity and these reading-
related skills. Secondly, a recent meta-analysis has shown that
the reliability of RSFC is rather mediocre (Noble et al., 2019),
and our results need to be further validated by carrying out
more research in the future. In addition, we only looked at RAN

and PA without other reading-relevant cognitive factors, and
these two tests were associated with other cognitive functions
besides reading. The association of the connectivity between
brain regions and the cognitive task has to be interpreted
cautiously, as other factors may influence this association. Finally,
our study is cross-sectional with a specific population of Chinese
children learning to read Mandarin, a language substantially
different form the western languages; whether the results can
be generalized to encompass an alphabetic language requires
further investigation.

In conclusion, we found that the intrinsic functional
connectivity between bilateral cerebellum VI and the left
supramarginal gyrus was associated with RAN, and this
correlation was not affected by the phonological awareness
ability. These findings suggested that the relationship between
the cerebellum and reading may have been related to the
automatizing skill.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Institutional Reviews Board of the State
Key Laboratory of Cognitive Neuroscience and Learning
at Beijing Normal University. Written informed consent to
participate in this study was provided by the participants’ legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

GD, XM, CA, and LL carried out the study conception and design.
MT, XF, MZ, and HL carried out the acquisition of data. CA and
JZ carried out the analysis and interpretation of data. CA, JZ, and
GD carried out the drafting of the manuscript. GD, XM, HL, and
MC carried out the critical revision.

FUNDING

This work was supported by grants from the National
Natural Science Foundation of China (NSFC: 31971036,
31971039, and 31571158).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2020.00420/full#supplementary-material

Frontiers in Psychology | www.frontiersin.org 8 March 2020 | Volume 11 | Article 420

https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00420/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00420/full#supplementary-material
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00420 March 19, 2020 Time: 16:54 # 9

Ang et al. Reading-Related Cerebro-Cerebellar RSFC

REFERENCES
Alcauter, S., García-Mondragón, L., Gracia-Tabuenca, Z., Moreno, M. B., Ortiz,

J. J., and Barrios, F. A. (2017). Resting state functional connectivity of
the anterior striatum and prefrontal cortex predicts reading performance
in school-age children. Brain Lang. 174, 94–102. doi: 10.1016/j.bandl.2017.
07.007

Amtmann, D., Abbott, R. D., and Berninger, V. W. (2006). Mixture growth models
of RAN and RAS row by row: insight into the reading system at work over time.
Read. Writ. 20, 785–813. doi: 10.1007/s11145-006-9041-y

Argyropoulos, G. P. D. (2016). The cerebellum, internal models and prediction
in ‘non-motor’ aspects of language: a critical review. Brain Lang. 161, 4–17.
doi: 10.1016/j.bandl.2015.08.003

Baillieux, H., De Smet, H. J., Paquier, P. F., De Deyn, P. P., and Marien, P. (2008).
Cerebellar neurocognition: insights into the bottom of the brain. Clin. Neurol.
Neurosurg. 110, 763–773. doi: 10.1016/j.clineuro.2008.05.013

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo−planar
MRI. Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Booth, J. R., Wood, L., Lu, D., Houk, J. C., and Bitan, T. (2007). The role of the
basal ganglia and cerebellum in language processing. Brain Res. 1133, 136–144.
doi: 10.1016/j.brainres.2006.11.074

Brock, J. (2013). Connectivity and cognition in autism spectrum disorders: where
are the links? Proc. Natl. Acad. Sci. U.S.A. 110:E3973. doi: 10.1073/pnas.
1311907110

Chai, X. J., Berken, J. A., Barbeau, E. B., Soles, J., Callahan, M., Chen, J. K.,
et al. (2016). Intrinsic functional connectivity in the adult brain and success in
second-language learning. J. Neurosci. 36, 755–761. doi: 10.1523/JNEUROSCI.
2234-15.2016

Chen, X., Lu, B., and Yan, C. G. (2018). Reproducibility of R−fMRI metrics on the
impact of different strategies for multiple comparison correction and sample
sizes. Hum. Brain Mapp. 39, 300–318. doi: 10.1002/hbm.23843

Cummine, J., Chouinard, B., Szepesvari, E., and Georgiou, G. K. (2015). An
examination of the rapid automatized naming-reading relationship using
functional magnetic resonance imaging. Neuroscience 305, 49–66. doi: 10.1016/
j.neuroscience.2015.07.071

Deluca, C., Golzar, A., Santandrea, E., Lo Gerfo, E., Estocinova, J., Moretto, G., et al.
(2014). The cerebellum and visual perceptual learning: evidence from a motion
extrapolation task. Cortex 58, 52–71. doi: 10.1016/j.cortex.2014.04.017

Eckert, M. A., Leonard, C. M., Richards, T. L., Aylward, E. H., Thomson, J.,
and Berninger, V. W. (2003). Anatomical correlates of dyslexia: frontal and
cerebellar findings. Brain 126, 482–494. doi: 10.1093/brain/awg026

Feng, X., Li, L., Zhang, M., Yang, X., Tian, M., Xie, W., et al. (2017). Dyslexic
children show atypical cerebellar activation and cerebro-cerebellar functional
connectivity in orthographic and phonological processing. Cerebellum 16, 496–
507. doi: 10.1007/s12311-016-0829-2

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and
Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678.
doi: 10.1073/pnas.0504136102

Hancock, R., Richlan, F., and Hoeft, F. (2017). Possible roles for fronto-striatal
circuits in reading disorder. Neurosci. Biobehav. Rev. 72, 243–260. doi: 10.1016/
j.neubiorev.2016.10.025

He, Q., Xue, G., Chen, C., Chen, C., Lu, Z. L., and Dong, Q. (2013). Decoding
the neuroanatomical basis of reading ability: a multivoxel morphometric study.
J. Neurosci. 33, 12835–12843. doi: 10.1523/JNEUROSCI.0449-13.2013

Jednorog, K., Marchewka, A., Altarelli, I., Monzalvo Lopez, A. K., van Ermingen-
Marbach, M., Grande, M., et al. (2015). How reliable are gray matter disruptions
in specific reading disability across multiple countries and languages? Insights
from a large-scale voxel-based morphometry study. Hum. Brain Mapp. 36,
1741–1754. doi: 10.1002/hbm.22734

Keren-Happuch, E., Chen, S.-H. A., Ho, M.-H. R., and Desmond, J. E. (2014). A
meta-analysis of cerebellar contributions to higher cognition from PET and
fMRI studies. Hum. Brain Mapp. 35, 593–615. doi: 10.1002/hbm.22194

King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., and Diedrichsen,
J. (2019). Functional boundaries in the human cerebellum revealed by a multi-
domain task battery. Nat. Neurosci. 22, 1371–1378. doi: 10.1038/s41593-019-
0436-x

Koponen, T., Salmi, P., Eklund, K., and Aro, T. (2013). Counting and RAN:
predictors of arithmetic calculation and reading fluency. J. Educ. Psychol. 105,
162–175. doi: 10.1037/a0029285

Koyama, M. S., Di Martino, A., Zuo, X. N., Kelly, C., Mennes, M., Jutagir, D. R.,
et al. (2011). Resting-state functional connectivity indexes reading competence
in children and adults. J. Neurosci. 31, 8617–8624. doi: 10.1523/JNEUROSCI.
4865-10.2011

Koyama, M. S., Kelly, C., Shehzad, Z., Penesetti, D., Castellanos, F. X., and Milham,
M. P. (2010). Reading networks at rest. Cereb. Cortex 20, 2549–2559. doi:
10.1093/cercor/bhq005

Liao, C. H., Deng, C., Hamilton, J., Lee, C. S., Wei, W., and Georgiou, G. K. (2015).
The role of rapid naming in reading development and dyslexia in Chinese.
J. Exp. Child Psychol. 130, 106–122. doi: 10.1016/j.jecp.2014.10.002

Liao, C. H., Georgiou, G. K., and Parrila, R. (2007). Rapid naming speed and
Chinese character recognition. Read. Writ. 21, 231–253. doi: 10.1007/s11145-
007-9071-0

Lohmann, G., Hoehl, S., Brauer, J., Danielmeier, C., Bornkessel-Schlesewsky, I.,
Bahlmann, J., et al. (2009). Setting the frame: the human brain activates a basic
low-frequency network for language processing. Cereb. Cortex 20, 1286–1292.
doi: 10.1093/cercor/bhp190

Martin, A., Schurz, M., Kronbichler, M., and Richlan, F. (2015). Reading in
the brain of children and adults: a meta−analysis of 40 functional magnetic
resonance imaging studies. Hum. Brain Mapp. 36, 1963–1981. doi: 10.1002/
hbm.22749

McDermott, K. B., Petersen, S. E., Watson, J. M., and Ojemann, J. G. (2003).
A procedure for identifying regions preferentially activated by attention to
semantic and phonological relations using functional magnetic resonance
imaging. Neuropsychologia 41, 293–303. doi: 10.1016/s0028-3932(02)00162-8

Meng, X., You, H., Song, M., Desroches, A. S., Wang, Z., Wei, N., et al. (2016).
Neural deficits in auditory phonological processing in Chinese children with
English reading impairment. Biling. Lang. Cogn. 19, 331–346. doi: 10.1017/
s1366728915000073

Mennes, M., Kelly, C., Zuo, X.-N., Di Martino, A., Biswal, B. B., Castellanos, F. X.,
et al. (2010). Inter-individual differences in resting-state functional connectivity
predict task-induced BOLD activity. Neuroimage 50, 1690–1701. doi: 10.1016/j.
neuroimage.2010.01.002

Miro-Padilla, A., Bueicheku, E., Ventura-Campos, N., Palomar-Garcia, M. A., and
Avila, C. (2017). Functional connectivity in resting state as a phonemic fluency
ability measure. Neuropsychologia 97, 98–103. doi: 10.1016/j.neuropsychologia.
2017.02.009

Nicolson, R. I., Fawcett, A. J., and Dean, P. (2001). Developmental dyslexia: the
cerebellar deficit hypothesis. Trends Neurosci. 24, 508–511. doi: 10.1016/s0166-
2236(00)01896-8

Noble, S., Scheinost, D., and Constable, R. T. (2019). A decade of test-retest
reliability of functional connectivity: a systematic review and meta-analysis.
Neuroimage 203:116157. doi: 10.1016/j.neuroimage.2019.116157

Norton, E. S., Black, J. M., Stanley, L. M., Tanaka, H., Gabrieli, J. D., Sawyer,
C., et al. (2014). Functional neuroanatomical evidence for the double-deficit
hypothesis of developmental dyslexia. Neuropsychologia 61, 235–246. doi: 10.
1016/j.neuropsychologia.2014.06.015

Parrila, R., Kirby, J. R., and McQuarrie, L. (2004). Articulation rate, naming
speed, verbal short-term memory, and phonological awareness: longitudinal
predictors of early reading development? Sci. Stud. Read. 8, 3–26. doi: 10.1207/
s1532799xssr0801_2

Pham, A. V., Fine, J. G., and Semrud-Clikeman, M. (2011). The influence of
inattention and rapid automatized naming on reading performance. Arch. Clin.
Neuropsychol. 26, 214–224. doi: 10.1093/arclin/acr014

Qian, Y., Bi, Y., Wang, X., Zhang, Y. W., and Bi, H. Y. (2016). Visual dorsal stream
is associated with Chinese reading skills: a resting-state fMRI study. Brain Lang.
160, 42–49. doi: 10.1016/j.bandl.2016.07.007

Qian, Y., Deng, Y., Zhao, J., and Bi, H. Y. (2015). Magnocellular-dorsal pathway
function is associated with orthographic but not phonological skill: fMRI
evidence from skilled Chinese readers. Neuropsychologia 71, 84–90. doi: 10.
1016/j.neuropsychologia.2015.03.024

Raberger, T., and Wimmer, H. (2003). On the automaticity/cerebellar deficit
hypothesis of dyslexia: balancing and continuous rapid naming in dyslexic
and ADHD children. Neuropsychologia 41, 1493–1497. doi: 10.1016/s0028-
3932(03)00078-2

Frontiers in Psychology | www.frontiersin.org 9 March 2020 | Volume 11 | Article 420

https://doi.org/10.1016/j.bandl.2017.07.007
https://doi.org/10.1016/j.bandl.2017.07.007
https://doi.org/10.1007/s11145-006-9041-y
https://doi.org/10.1016/j.bandl.2015.08.003
https://doi.org/10.1016/j.clineuro.2008.05.013
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.brainres.2006.11.074
https://doi.org/10.1073/pnas.1311907110
https://doi.org/10.1073/pnas.1311907110
https://doi.org/10.1523/JNEUROSCI.2234-15.2016
https://doi.org/10.1523/JNEUROSCI.2234-15.2016
https://doi.org/10.1002/hbm.23843
https://doi.org/10.1016/j.neuroscience.2015.07.071
https://doi.org/10.1016/j.neuroscience.2015.07.071
https://doi.org/10.1016/j.cortex.2014.04.017
https://doi.org/10.1093/brain/awg026
https://doi.org/10.1007/s12311-016-0829-2
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1016/j.neubiorev.2016.10.025
https://doi.org/10.1016/j.neubiorev.2016.10.025
https://doi.org/10.1523/JNEUROSCI.0449-13.2013
https://doi.org/10.1002/hbm.22734
https://doi.org/10.1002/hbm.22194
https://doi.org/10.1038/s41593-019-0436-x
https://doi.org/10.1038/s41593-019-0436-x
https://doi.org/10.1037/a0029285
https://doi.org/10.1523/JNEUROSCI.4865-10.2011
https://doi.org/10.1523/JNEUROSCI.4865-10.2011
https://doi.org/10.1093/cercor/bhq005
https://doi.org/10.1093/cercor/bhq005
https://doi.org/10.1016/j.jecp.2014.10.002
https://doi.org/10.1007/s11145-007-9071-0
https://doi.org/10.1007/s11145-007-9071-0
https://doi.org/10.1093/cercor/bhp190
https://doi.org/10.1002/hbm.22749
https://doi.org/10.1002/hbm.22749
https://doi.org/10.1016/s0028-3932(02)00162-8
https://doi.org/10.1017/s1366728915000073
https://doi.org/10.1017/s1366728915000073
https://doi.org/10.1016/j.neuroimage.2010.01.002
https://doi.org/10.1016/j.neuroimage.2010.01.002
https://doi.org/10.1016/j.neuropsychologia.2017.02.009
https://doi.org/10.1016/j.neuropsychologia.2017.02.009
https://doi.org/10.1016/s0166-2236(00)01896-8
https://doi.org/10.1016/s0166-2236(00)01896-8
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/j.neuropsychologia.2014.06.015
https://doi.org/10.1016/j.neuropsychologia.2014.06.015
https://doi.org/10.1207/s1532799xssr0801_2
https://doi.org/10.1207/s1532799xssr0801_2
https://doi.org/10.1093/arclin/acr014
https://doi.org/10.1016/j.bandl.2016.07.007
https://doi.org/10.1016/j.neuropsychologia.2015.03.024
https://doi.org/10.1016/j.neuropsychologia.2015.03.024
https://doi.org/10.1016/s0028-3932(03)00078-2
https://doi.org/10.1016/s0028-3932(03)00078-2
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00420 March 19, 2020 Time: 16:54 # 10

Ang et al. Reading-Related Cerebro-Cerebellar RSFC

Raschle, N. M., Zuk, J., and Gaab, N. (2012). Functional characteristics of
developmental dyslexia in left-hemispheric posterior brain regions predate
reading onset. Proc. Natl. Acad. Sci. U.S.A. 109, 2156–2161. doi: 10.1073/pnas.
1107721109

Raven, J. C. (1998). Raven’s Progressive Matrices and Vocabulary Scales. Oxford:
Oxford Pyschologists Press.

Shah, L. M., Cramer, J. A., Ferguson, M. A., Birn, R. M., and Anderson, J. S.
(2016). Reliability and reproducibility of individual differences in functional
connectivity acquired during task and resting state. Brain Behav. 6:e00456.
doi: 10.1002/brb3.456

Shu, H., McBride-Chang, C., Wu, S., and Liu, H. (2006). Understanding Chinese
developmental dyslexia: morphological awareness as a core cognitive construct.
J. Educ. Psychol. 98, 122–133. doi: 10.1037/0022-0663.98.1.122

Shu, H., Peng, H., and McBride−Chang, C. (2008). Phonological awareness in
young Chinese children. Dev. Sci. 11, 171–181. doi: 10.1111/j.1467-7687.2007.
00654.x

Sokolov, A. A., Miall, R. C., and Ivry, R. B. (2017). The Cerebellum: adaptive
prediction for movement and cognition. Trends Cogn. Sci. 21, 313–332. doi:
10.1016/j.tics.2017.02.005

Song, S., Georgiou, G. K., Su, M., and Hua, S. (2015). How well do phonological
awareness and rapid automatized naming correlate with Chinese reading
accuracy and fluency? A meta-analysis. Sci. Stud. Read. 20, 99–123. doi: 10.1080/
10888438.2015.1088543

Stoodley, C. J., and Schmahmann, J. D. (2009). Functional topography in the
human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44,
489–501. doi: 10.1016/j.neuroimage.2008.08.039

Stoodley, C. J., and Stein, J. F. (2011). The cerebellum and dyslexia. Cortex 47,
101–116. doi: 10.1016/j.cortex.2009.10.005

Stoodley, C. J., and Stein, J. F. (2013). Cerebellar function in developmental
dyslexia. Cerebellum 12, 267–276. doi: 10.1007/s12311-012-0407-1

Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., and Eden, G. F. (2003).
Development of neural mechanisms for reading. Nat. Neurosci. 6, 767–773.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

Wang, L., LaViolette, P., O’Keefe, K., Putcha, D., Bakkour, A., Van Dijk, K. R., et al.
(2010). Intrinsic connectivity between the hippocampus and posteromedial
cortex predicts memory performance in cognitively intact older individuals.
Neuroimage 51, 910–917. doi: 10.1016/j.neuroimage.2010.02.046

Wang, X., Han, Z., He, Y., Liu, L., and Bi, Y. (2012). Resting-state functional
connectivity patterns predict Chinese word reading competency. PLoS One
7:e44848. doi: 10.1371/journal.pone.0044848

Welsh, J. A., Nix, R. L., Blair, C., Bierman, K. L., and Nelson, K. E. (2010). The
development of cognitive skills and gains in academic school readiness for

children from low-income families. J. Educ. Psychol. 102, 43–53. doi: 10.1037/
a0016738

Wolf, M., and Bowers, P. G. (1999). The double-deficit hypothesis for the
developmental dyslexias. J. Educ. Psychol. 91, 415–438. doi: 10.1037/0022-0663.
91.3.415

Xia, M., Wang, J., and He, Y. (2013). BrainNet viewer: a network visualization tool
for human brain connectomics. PLoS One 8:e68910. doi: 10.1371/journal.pone.
0068910

Xu, J., Rees, G., Yin, X., Song, C., Han, Y., Ge, H., et al. (2014). Spontaneous
neuronal activity predicts intersubject variations in executive control of
attention. Neuroscience 263, 181–192. doi: 10.1016/j.neuroscience.2014.01.020

Yan, C. G., Wang, X. D., Zuo, X. N., and Zang, Y. F. (2016). DPABI: data processing
& analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351.
doi: 10.1007/s12021-016-9299-4

Yang, H., Yang, S., and Kang, C. (2014). The relationship between phonological
awareness and executive attention in Chinese-English bilingual children. Cogn.
Dev. 30, 65–80. doi: 10.1016/j.cogdev.2013.11.003

Yeung, P.-S., Ho, C. S.-H., Chik, P. P.-M., Lo, L.-Y., Luan, H., Chan, D. W.-O.,
et al. (2011). Reading and spelling Chinese among beginning readers: what skills
make a difference? Sci. Stud. Read. 15, 285–313. doi: 10.1080/10888438.2010.
482149

Zacks, J. M., and Ferstl, E. C. (2016). “Discourse comprehension,” in Neurobiology
of Language, eds G. Hickok and S. L. Small (Amsterdam: Elsevier), 661–673.

Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007).
Altered baseline brain activity in children with ADHD revealed by resting-
state functional MRI. Brain Dev. 29, 83–91. doi: 10.1016/j.braindev.2006.
07.002

Zhang, M., Li, J., Chen, C., Xue, G., Lu, Z., Mei, L., et al. (2014). Resting-state
functional connectivity and reading abilities in first and second languages.
Neuroimage 84, 546–553. doi: 10.1016/j.neuroimage.2013.09.006

Ziegler, J. C., Bertrand, D., Tóth, D., Csépe, V., Reis, A., Faísca, L., et al. (2010).
Orthographic depth and its impact on universal predictors of reading. Psychol.
Sci. 21, 551–559. doi: 10.1177/0956797610363406

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ang, Zhang, Chu, Li, Tian, Feng, Zhang, Liu, Meng and Ding.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Psychology | www.frontiersin.org 10 March 2020 | Volume 11 | Article 420

https://doi.org/10.1073/pnas.1107721109
https://doi.org/10.1073/pnas.1107721109
https://doi.org/10.1002/brb3.456
https://doi.org/10.1037/0022-0663.98.1.122
https://doi.org/10.1111/j.1467-7687.2007.00654.x
https://doi.org/10.1111/j.1467-7687.2007.00654.x
https://doi.org/10.1016/j.tics.2017.02.005
https://doi.org/10.1016/j.tics.2017.02.005
https://doi.org/10.1080/10888438.2015.1088543
https://doi.org/10.1080/10888438.2015.1088543
https://doi.org/10.1016/j.neuroimage.2008.08.039
https://doi.org/10.1016/j.cortex.2009.10.005
https://doi.org/10.1007/s12311-012-0407-1
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.neuroimage.2010.02.046
https://doi.org/10.1371/journal.pone.0044848
https://doi.org/10.1037/a0016738
https://doi.org/10.1037/a0016738
https://doi.org/10.1037/0022-0663.91.3.415
https://doi.org/10.1037/0022-0663.91.3.415
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1016/j.neuroscience.2014.01.020
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1016/j.cogdev.2013.11.003
https://doi.org/10.1080/10888438.2010.482149
https://doi.org/10.1080/10888438.2010.482149
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1016/j.neuroimage.2013.09.006
https://doi.org/10.1177/0956797610363406
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Intrinsic Cerebro-Cerebellar Functional Connectivity Reveals the Function of Cerebellum VI in Reading-Related Skills
	Introduction
	Materials and Methods
	Participants
	Behavior Measures
	Chinese Phonological Awareness (PA) Test
	The Rapid Automatized Naming (RAN) Test

	Imaging Procedure and Acquisition
	Data Analysis
	Preprocessing
	Cerebellum ROI
	Correlation of Cerebro-Cerebellar RSFC and Reading-Related Skills
	Control Analyses


	Results
	Behavior Results
	Correlation of Cerebro-Cerebellar RSFC and Reading-Related Skills
	Control Analyses

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


