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Summary

1. Animals are embedded in dynamically changing networks of relationships with con-

specifics. These dynamic networks are fundamental aspects of their environment, creating

selection on behaviours and other traits. However, most social network-based approaches in

ecology are constrained to considering networks as static, despite several calls for such analy-

ses to become more dynamic.

2. There are a number of statistical analyses developed in the social sciences that are increas-

ingly being applied to animal networks, of which stochastic actor-oriented models (SAOMs)

are a principal example. SAOMs are a class of individual-based models designed to model

transitions in networks between discrete time points, as influenced by network structure and

covariates. It is not clear, however, how useful such techniques are to ecologists, and whether

they are suited to animal social networks.

3. We review the recent applications of SAOMs to animal networks, outlining findings and

assessing the strengths and weaknesses of SAOMs when applied to animal rather than human

networks. We go on to highlight the types of ecological and evolutionary processes that

SAOMs can be used to study.

4. SAOMs can include effects and covariates for individuals, dyads and populations, which

can be constant or variable. This allows for the examination of a wide range of questions of

interest to ecologists. However, high-resolution data are required, meaning SAOMs will not

be useable in all study systems. It remains unclear how robust SAOMs are to missing data

and uncertainty around social relationships.

5. Ultimately, we encourage the careful application of SAOMs in appropriate systems, with

dynamic network analyses likely to prove highly informative. Researchers can then extend the

basic method to tackle a range of existing questions in ecology and explore novel lines of

questioning.

Key-words: animal communities, dynamics, individual-based models, network-based diffusion

analysis, social networks, transmission

Introduction

social networks in ecology

Animals compete, cooperate and reproduce with con-

specifics, and so are engaged in a network of social inter-

actions. These networks represent the social environment

of individuals, which influences various evolutionary and

ecological processes (Proulx, Promislow & Phillips 2005;

Bascompte 2007; Kurvers et al. 2014). By simultaneously

considering both the traits of the individuals in these net-

works and their patterns of interactions, networks have

been used to study diverse subject areas, such as disease

epidemiology and individuality (Weber et al. 2013), and

the dynamics of group formation (Wilson et al. 2014).

The importance of links between individual variation and

group-level processes is increasingly appreciated (Farine,

Montiglio & Spiegel 2015), and networks are especially

useful as a tool to quantify the social environment to

which animals are presumed to be adapted. For instance,*Correspondence author: E-mail: davidnfisher@hotmail.com
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by quantifying an individual’s social network we gain

insights into the social information available to it (Aplin

et al. 2012; Atton et al. 2012; Farine et al. 2015), the dis-

eases it is exposed to (Hamede et al. 2009; Bull, Godfrey

& Gordon 2012), the intensity of local competition it

experiences (Oh & Badyaev 2010; Formica et al. 2011;

Fisher, Rodr�ıguez-Mu~noz & Tregenza 2016a) and the

strength of its cooperative relationships (Voelkl & Kasper

2009; Apicella et al. 2012).

Typically, these networks of relationships are analysed

as being static, i.e. a network is built that summarises a

period of time, and this network is related to the pro-

cesses of interest. However, this ignores the fact that indi-

viduals may change their interaction patterns over time

(Blonder & Dornhaus 2011; Blonder et al. 2012). If a rela-

tionship between two flexible traits exists (e.g. social con-

nectedness and individual dominance) change in one

could drive change in the other, but it is difficult to tease

apart which trait drives this relationship when only

observing the product. This is true of many processes; for

instance, if infected individuals show different levels of

behaviour, are they infected because of their behaviour or

did the infection change their behaviour or that of those

around them? Without an experiment, inference of causal-

ity is difficult, but strong evidence can be provided where

a process or behaviour is observed to consistently happen

before, and lead to a change in, another process or beha-

viour. This is beyond the reach of static network analyses

as it requires time-ordering to be incorporated into the

analyses (Blonder et al. 2012; Pinter-Wollman et al.

2013). By modelling change in a network over time, it is

possible to identify not only how social and non-social

processes drive each other (Burk, Steglich & Snijders

2007) but also what processes govern the development of

network structure (Kossinets & Watts 2006). Further-

more, transmission dynamics, such as the spread of infor-

mation or disease across a population, can be examined,

allowing us to identify factors important for the contrac-

tion and transmission of information or disease (Weber

et al. 2013; Van der Waal et al. 2014; Adelman et al.

2015; Aplin et al. 2015a).

Despite the evident potential in the dynamic network

analysis approach, applications in ecology remain rela-

tively limited (but see Blonder & Dornhaus 2011; Jeanson

2012; Wilson et al. 2014; Ilany, Booms & Holekamp

2015; Aplin et al. 2015a; Borgeaud et al. 2016; Pasquar-

etta et al. 2016). Recent calls for the implementation of

dynamic network analyses (e.g. Pinter-Wollman et al.

2013; Croft, Darden & Wey 2016) provided theoretical

impetus for the use of dynamic networks, but little discus-

sion of appropriate analytical techniques. Furthermore,

contemporary introductions to social network analysis for

ecologists state that ‘temporal dynamics represent a signif-

icant analytical challenge’ and that tools developed by

computer scientists ‘are not realistic for many animal

social networks’ (Farine & Whitehead 2015). This indi-

cates that we require more accessible methods. Here, we

review recent applications of a method for the dynamic

analysis of networks: stochastic actor-oriented models

(SAOMs). In the Supporting Information, we provide a

practical guide outlining the data requirements, the pro-

cess of model fitting and how to interpret the results. We

also provide a full worked-through example, complete

with an annotated R script and a data set, to allow read-

ers to implement a SAOM.

the stochastic actor-oriented model

SAOMs are a class of individual-based models character-

ising the behaviour of each actor (individual) in the sys-

tem, rather than calculating an average effect over a

population. The latter approach can be problematic if

even small nonlinear dynamics occur (Lehmann 2009).

Additionally, linear-modelling based approaches are often

inappropriate for network-based analyses, as the assump-

tion of independence of residuals is clearly violated when

individuals are embedded in an entire network of connec-

tions (Croft, James & Krause 2008; Whitehead 2008;

Croft et al. 2011; Snijders 2011). It is therefore preferable

to use a statistical tool specifically designed to model rela-

tionships between individuals, and the non-independence

this implies. For a more detailed mathematical description

of SAOMs, we refer readers to the RSiena user manual

(Ripley et al. 2015). Alongside our guide in the Support-

ing Information, further information on data require-

ments, model fitting and statistical inference is also

available in previous papers that have used SAOMs in

animals (e.g. Ilany, Booms & Holekamp 2015; Borgeaud

et al. 2016; Pasquaretta et al. 2016). We will mainly dis-

cuss the application of SAOMs as implemented through

the program SIENA (Steglich, Snijders & West 2006; Sni-

jders, van de Bunt & Steglich 2010) and the R package

RSiena (Ripley et al. 2015) as this program allows the full

breadth of effects we describe to be implemented and

comes with a large body of examples, R code and user

guides (see: http://www.stats.ox.ac.uk/� snijders/siena/ for

these and http://r-forge.r-project.org/R/?group_id=461

for the package itself).

SAOMs model gradual change in the network and

traits of the individuals across discrete time points using

hidden Markov models. Individuals may possess consis-

tent positions in their social networks (Blumstein, Petelle

& Wey 2013; Brent et al. 2013; Jacoby et al. 2014; Aplin

et al. 2015b; Formica et al. 2016), and the networks them-

selves have been shown to be quite consistent across con-

texts (Dey et al. 2015; Firth & Sheldon 2015, 2016), time

(Dey et al. 2013; Shizuka et al. 2014; Ilany, Booms &

Holekamp 2015) and even generations (Fisher,

Rodr�ıguez-Mu~noz & Tregenza 2016b), so gradual change

may be reasonably expected. Individuals are recorded as

associating or not at each time point, i.e. the networks

are binary. The duration of each time period will be

determined by the study system, the questions and pro-

cesses being investigated and the resolution of the data
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available, and/or through pilot-analyses to determine the

most appropriate resolution (e.g. Pasquaretta et al. 2016).

Some studies of human associations have used up to

yearly censuses (e.g. Steglich, Snijders & West 2006),

although shorter time frames are more likely to be used

for animal social networks (for instance we used 8 days

for the example in our Supporting Information).

Being modelled as a Markov chain means that informa-

tion about the past is not included by default and is

assumed to not bring any additional predictive power

(Burk, Steglich & Snijders 2007; Snijders, van de Bunt &

Steglich 2010). While this may initially seem an oversight,

it should be noted that SAOMs model states, e.g. ‘X and

Y are currently connected’, rather than events, e.g. ‘X

interacted with Y’ (Snijders, van de Bunt & Steglich

2010), so historical information on long-term social asso-

ciates is included in present information. However, even if

researchers have recorded events rather than states, these

data can be used in a SAOM. Events can be aggregated

to infer states (Snijders, van de Bunt & Steglich 2010),

e.g. ‘X and Y were grooming each other 4 days out of 7

this week, suggesting they are socially affiliated’. Between

each time point, it is assumed that individuals optimise

their position in the network according to a utility func-

tion, with this function determined by their links with

others in the network and the links between these others,

short-term preferences and unknown tendencies (modelled

as residual/random deviance; Burk, Steglich & Snijders

2007). The process of change between each time-step con-

sists of the objective function and the rate function. The

objective function determines the manner of the change

occurring, e.g. which individuals form social relationships,

while the rate function models the speed of change of

relationships, e.g. if individuals slowly form bonds that

last a long time, or rapidly form short-term relationships.

Each of these functions can be influenced by covariates

related to individuals or the environment. Two further

assumptions worth highlighting in our description of the

modelling framework are that (i) it is assumed that each

individual controls it outgoing interactions, and (ii) that

each individual has complete information about the net-

work. However, neither of these assumptions is overly

restrictive. For the former, in directed networks, outgoing

interactions are typically defined as those the individual

initiates, while for undirected networks, SAOMs allow

multiple definitions of interaction that can correspond to

the studied system, for example a relationship formed

either by the actions of a single individual or the mutual

agreement of both individuals in a dyad (Ripley et al.

2015). Regarding complete knowledge of the network,

individuals typically only need limited information to act

as they do, as the local network is typically the main dri-

ver of network change (Snijders, van de Bunt & Steglich

2010). Therefore, findings are generally robust to minor

violations of this assumption.

SAOMs model network change in a series of network

snapshots, including each member of the population

and their observed social associations at each time

point. Change in the network can be modelled in

response to connections in the network and in response

to a range of covariate types. Furthermore, SAOMs

can include traits of individuals as response variables,

which may be modelled to vary due to covariates or

covary with social relationships. We describe each of

these below. Figure 1 provides a pictorial representation

of a SAOM, indicating the breadth of effects that can

be specified. Descriptions of some of the network and

trait processes that SAOMs can model of interest to

ecologists are provided in Table 1, with some imple-

mented in our worked example in the Supporting Infor-

mation. A more complete list is available in the RSiena

manual (Ripley et al. 2015).

The SAOM framework can estimate the importance

of a variety of structural network processes (e.g. the

tendency of individuals to form associations with indi-

viduals with whom they already share a mutual associ-

ate: ‘triadic closure’) on network change. Modelling

these kinds of structural processes allows the researcher

to determine how particular aspects of individuals’

social environments, such as the presence of a mutual

associate, influence their choice of association partners.

Such effects also enable researchers to control for struc-

ture in the data or biases generated by the method of

data collection (see below).

The inclusion of covariates (at both individual and

dyadic levels) enables the assessment of the role of indi-

vidual traits and other relationships between individuals

in influencing network structure. Individual traits can be

included as constant actor covariates over the time per-

iod (e.g. sex) and, equivalently, fixed dyadic traits (e.g.

relatedness) can be included as constant dyadic covari-

ates. Additionally, dynamic covariates can also be

included, either for changing individual traits (e.g. body

condition), changing environmental conditions (e.g. rain-

fall) or changing dyadic covariates (e.g. spatial proxim-

ity). Interactions between network effects and covariates

can also be specified. For instance, in some social sys-

tems it might be hypothesised that males are more

likely to form coalitions than females. One would then

specify an interaction between sex and triadic closure,

and evaluate its importance.

Finally, behaviours or traits, as long as they change in

a similar time frame to social relationships, can be consid-

ered as response variables alongside network change,

allowing their change to be directly modelled alongside

the change in social relationships. If the trait does not

vary at a similar temporal scale as the variation in the

social network, then their relationship cannot be assessed,

as SAOMs model network dynamics and trait changes on

the same temporal scale. By modelling how an individ-

ual’s trait changes over time, affected by the trait values

of those it interacts with, one can also model the spread

of information, a cultural trait or disease across a popula-

tion (see Example research area 1 below).
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previous applications of saoms

SAOMs were initially developed in the social sciences,

and have been used extensively to study human beha-

viour. Example research questions include how music

preferences and drug taking habits develop within and

among friendship groups (Steglich, Snijders & West 2006)

and how unethical behaviour can spread within organisa-

tions (Zuber 2014), see W€olfer, Faber & Hewstone (2015)

for a review. Such questions have clear analogies for non-

human animal behaviour (such as the spread of a novel

foraging technique through a group; Boogert et al. 2008;

Allen et al. 2013; Aplin et al. 2015a). To date however,

there have been only limited applications of SAOMs by

those investigating animal interactions, although this has

started to change in the last few years.

Jones (2011) investigated patterns of interactions in

farmed salmon Salmo salar, and found that fish were

either consistent givers or receivers of aggression, suggest-

ing social personality types (Krause, James & Croft 2010;

Wilson et al. 2012; Aplin et al. 2015b). More recently,

Ilany, Booms & Holekamp (2015) investigated the long-

term dynamics of spotted hyena Crocuta crocuta social

networks. Some of their key findings were that structural

constraints, individual’s traits and environmental condi-

tions all shape network dynamics, and that female hyenas

are more flexible in their social bonding tendencies, possi-

bly reflecting their dominance in hyena groups (Ilany,

Booms & Holekamp 2015). SAOMs have also been used

to investigate social information transmission in Droso-

phila melanogaster (Pasquaretta et al. 2016), showing that

uninformed flies tend to change social contacts faster.

Boucherie et al. (2016) used SAOMs to explore changes

in relationships in captive rooks Corvus frugilegus. Rooks

preferentially interacted with paired congeners and were

more likely to develop a relationship with connections of

a social partner. They also found that sex had no signifi-

cant effect on social dynamics. Finally, Borgeaud et al.

(2016) investigated the dynamics of multiple social groups

of vervet monkeys Chlorocebus pygerythrus, and found

that some processes (e.g. triadic closure) were key to all

groups, while others varied in their importance.

These studies provide fundamental insights into how

and why animal groups from a range of taxa possess their

observed structure, in particular highlighting the varying

importance sex plays in different social systems and the

importance of accounting for topological network effects

on social relationships. Each of these studies had access

Fig. 1. Pictorial representation of a SAOM, to illustrate the kind of effects that can be modelled. Note that our recommendations on

network size still apply (see Supporting Information). Here there are three time periods, where five individuals change (or not) their

social associations over time. Simultaneously, there is another dependant variable (a trait value, e.g. aggression) changing across each of

the three time periods. Processes depicted model effects of: the social structure at one time point depending on the social structure at

previous time points (lines labelled ‘Ss’); social structure influencing the value of traits at the next time point (lines labelled ‘St’); the trait

at one time point influencing the trait at the next time point (lines labelled ‘Tt’); the trait influencing how the social structure changes

from one time point to the next (lines labelled ‘Ts’) and some changing actor variable (e.g. condition) influencing the social structure

change from one time point to the next (lines labelled ‘Cs’). Here the network is undirected/symmetrical, so only the above-diagonal of

the association matrices are shown at time points two and three, but full association matrices would be entered as data for all.
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to a large enough population of animals that were reliably

individually recognisable, where social relationships could

be clearly defined and when (relatively) complete covariate

data were available. The same will need to be true for

other studies that attempt to utilise SAOMs. In fact, the

data requirements may be even more severe to fully

exploit SAOMs. Specifically, as we have highlighted in the

preceding section, SAOMs can model multiple traits

changing over time, not just social relationships, and the

individual or environmental covariates that affect them.

Furthermore, it is possible to model the effect of greater

network structure (beyond immediate connections) on the

formation of new ties. These elements will require high-

resolution data on the changing social relationships and

traits of a whole population of individuals at multiple

time points, which will prove a challenge for the applica-

tion of SAOMs to typical data sets in ecology.

In summary, this approach allows researchers to model

the combination of the change in a trait over time, social

relationships, group behaviour and transmission

Table 1. A list of possible effects of particular interest to ecologists that can be modelled with SAOMs in the SIENA software. In

general, a positive value for the effect indicates the process outlined is occurring, but if otherwise this will be described. Effect type indi-

cates whether the effect is a structural term, a covariate influencing the network, or if it involves the relationship between tie formation

and the change in a trait, and whether the effect is relevant for undirected and/or directed networks. ‘Ego’ refers to the individual who

is initiating the interaction, ‘alter’ to the receiver of the interaction

Effect name Effect type Description of effect Behavioural process

Ego/alter effects on

tie formation

Covariate, directed and undirected Traits of the individual on the ties

it sends/receives

Traits of individuals, e.g. their sex

or age influencing the likelihood

to form ties

Ego/alter effects on

rate

Covariate, directed and undirected Traits of an individual on rate of

change of relationships

Individuals of different sex, age or

personality forming or dissolving

ties at different rates

Ego-alter trait

interactions

Covariate, directed and undirected Properties of both individuals on

the chance of tie formation

between them

Positive: ties form within classes/

homophily, e.g. intra-sex

aggression

Negative: ties form between

classes, e.g. producer-scrounger

Outdegree Structural term, directed Number of existing associations

of an individual on its tendency

to form new associations

Positive: Social behavioural types,

e.g. consistently social or non-

social individuals

Negative: optimising group size

Popularity/indegree Structural term, directed and

undirected

Tendency for individual to

associate with others who

already have a large number of

associates

Attractive/susceptible phenotypes

for affiliative/aggressive

interactions

Triadic closure Structural term, directed and

undirected

Tendency of individuals to

associate with ‘friends of friends’

Coalition/clique formation

Reciprocity Structural term, directed Individuals repeat interactions

with those that interact with

them

Preferred associations, tit-for-tat

cooperation

Balance Structural term, directed and

undirected

Tendency to have/lack the same

ties as another associate

Partner choice copying,

community formation

Three cycles Structural term, directed Directed social interactions, e.g.

grooming or aggression, from X

to Y, Y to Z and Z to X

Positive: generalised reciprocity

Negative: linear dominance

hierarchies

Influence Network-behaviour co-dynamic,

directed and undirected

Changes in individuals’ traits due

to the behaviour of their

associates

Social learning and information

or disease transmission

Selection Network-behaviour co-dynamic,

directed and undirected

Forming ties due to the behaviour

of the other individuals

Positive: partner choice based on

phenotype

Negative: avoidance of

aggressive or diseased individuals

Dyadic covariates Covariate, directed and undirected Properties of a relationship

between two individuals, e.g.

distance

Accounting for separation in

space, time or degree of genetic

relatedness between individuals

Degree on behaviour Network-behaviour co-dynamic,

directed and undirected

Influence of number of

relationships on behaviour

Social behaviour carry-overs to

non-social contexts, e.g.

Winner-loser effects

Behaviour on degree Network-behaviour co-dynamic,

directed and undirected

Influence of behaviour level on

formation of new ties

Behavioural carry-overs to social

contexts, e.g. boldness covaries

with frequency of aggressive

interactions
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dynamics. Having outlined the opportunities that exist

when using SAOMs (above and Table 1), we now

describe some of the challenges that still need to be

addressed. The data requirements for a SAOM will be the

major challenge for ecologists wishing to use this method

(see Supporting Information for technical detail). We then

provide examples of research areas SAOMs seem particu-

larly suited to tackle and discuss the modelling and simu-

lation work needed to establish the performance of

SAOMs with data sets more typical of those in ecology.

Challenges when using SAOMs to study
animal networks

Above we highlighted the diversity of effects that SAOMs

can model, and the recent applications in a range of

organisms. This should make clear the opportunities to be

exploited when using SAOMs to investigate dynamic net-

work processes. However, as touched upon above, there

are significant challenges when applying SAOMs to ani-

mal network data. Five principal concerns are that: (i)

SAOMs only model relationships as existing or not, i.e.

they cannot accept relationships of different strengths, (ii)

they are not designed to deal with situations where there

is uncertainty surrounding network edges, (iii) missing

individuals (i.e. those not identifiable in the population)

or interactions can lead to problems with estimation, (iv)

methods of data collection may bias the network and (v)

adequate controls for spatial proximity for non-social

reasons are required.

binary networks and the inclusion of
interaction strength

SAOMs are designed to study change in the presence and

absence of social relationships, i.e. binary networks.

Reducing weighted networks to binary descriptions can

have major implications in animal social network analysis,

for instance if weak ties are important for processes such

as information transmission (Granovetter 1973) and may

result in incorrect network metrics (Franks, Ruxton &

James 2009; Farine 2014). As SAOMs split the data col-

lected into distinct time periods, some information on

repeated associations is retained in the form of relation-

ships being present in multiple time periods rather than a

single interaction with a weight. Furthermore, through

the use of ‘ordered’ networks, RSiena can model relation-

ships from a small range of different strengths. Essen-

tially, a binary network of ‘strong’ associations among a

population is entered alongside another binary network of

‘weak or stronger’ associations (theoretically three or

more levels of association strength could be used,

although the tractability of the subsequent model may

limit such extensions). The SAOM then estimates what

influences weak association formation and dissolution,

and what predicts the transitions between weak and

strong associations. This avoids some of the problems

associated with ‘filtering’, where ties below a certain

threshold are removed, as ties can be represented as

belonging to a small set of different strengths. Determin-

ing these association strengths still requires a degree of

thresholding however, so the problems mentioned above

are still present to some degree. Therefore, SAOMs are

likely to be most appropriate when the key biological

implications of the interaction depends on whether it hap-

pened or not (e.g. sharing a nest or roost, creating the

opportunity for direct transmission of a parasite), with

limited additional information provided by assigning a

range of weights to relationships. Methods to analyse net-

works with edge weights drawn from a greater range

through (the related) exponential random graph models

are being developed (Krivitsky 2012), so in the future,

SAOMs may be able to include such information.

edge uncertainty

Animal networks typically contain greater uncertainty

than human networks, as we must infer unobservable

social states from observable behaviours. Ideally, we

would use SAOMs when limited inference of unobserved

social relationships is required (e.g. when two primates

are observed to groom one another). However, if associa-

tion-based methods are used (i.e. social relationships are

inferred from repeated spatio-temporal co-occurrence, e.g.

Sundaresan et al. 2007; Shorrocks & Croft 2009; Aplin

et al. 2012; Allen et al. 2013; Ilany, Booms & Holekamp

2015) during network construction then a high level of

confidence that these data represent true states of associa-

tion is required. For some study systems and some meth-

ods, this may require a large number of observations

(Lusseau, Whitehead & Gero 2008; Franks, Ruxton &

James 2009; Farine & Strandburg-Peshkin 2015). This

however does not preclude their use (e.g. Ilany, Booms &

Holekamp 2015) as long as the inference of associations is

a confident one. To increase confidence in the results, one

can use multiple thresholds to construct binary networks,

and then to model network dynamics using each data set

to evaluate the sensitivity of the results to a given thresh-

old. Assuming any major biases are accounted for, transi-

tions from one network to the next should still

approximate real changes in the animals’ social environ-

ments. RSiena parameter estimates are provided with

standard errors, which will be large if the studied effects

are weak or highly variable. As mentioned above, if you

cannot reliably infer states of association from your data,

we do not recommend the use of SAOMs.

the impact of missing indiv iduals and
interactions

Animal networks typically contain both missing individu-

als (e.g. when an individual was not observed for the

entirety of the study period) and missing edges (e.g. an

association between two individuals was missed).
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Individuals appearing or disappearing from the network

during a study can be accounted for in the modelling pro-

cess. In RSiena, the absence of an association due to miss-

ing data can be entered so that the absence of the

relationship will not inform parameter estimates (see the

Supporting Information and Ripley et al. 2015), which we

feel is an acceptable solution. However, individuals or

edges that are never detected throughout the entire study

period represent uncertainty that cannot be addressed in

this way. In general, this is a problem that applies across

statistical approaches to network analysis rather than to

just SAOMs (Kossinets 2006), the consequences of which

depend on the proportion of individuals missing and

whether they were missing at random or not (Smith &

Moody 2013; Silk et al. 2015; Smith, Moody & Morgan

2017). Missingness can affect parameter estimates through

a reduction in network size, which has knock-on effects on

network parameters, and non-random missingness related

to variables of interest that may bias results (Huisman &

Steglich 2008). Hipp et al. (2015) found that some parame-

ters in a SAOM are robust no matter how missing data

are dealt with, but other parameters are dependent on how

missingness is handled. Methods of imputation of this

missing data are viable, provided that the method is mind-

ful of the study design (e.g. the ‘Held-Out Predictive Eval-

uation’ of Wang et al. 2016). Methods that generate

uncertainty around observations of animal networks (e.g.

Farine & Strandburg-Peshkin 2015) and simulation studies

that explore the effect of missing information on the out-

come of analytical approaches (e.g. Silk et al. 2015; Smith,

Moody & Morgan 2017) will be essential for exploring

how robust SAOMs are to the kinds of missing data

common in ecological rather than sociological data sets.

biases introduced by the method of data
collection

The method of data collection may influence the network

structure, creating spurious patterns. For example, indi-

viduals will be assigned many mutual associations if all

individuals in a group are linked when they are observed

together (the ‘gambit of the group’; Whitehead & Dufault

1999). This gives strong importance to the effect of triadic

closure, as individuals will be connected to all their group-

mates as well as to each other (Franks, Ruxton & James

2009). Performing enough censuses or surveys can amelio-

rate this problem (Franks, Ruxton & James 2009). Fur-

thermore, there are additional features of SAOMs that

allow the control of various factors that may bias results

if they are known: particular structural network terms, or

covariates, can be used to model aspects of the social net-

work that may stem from the method of data collection.

For example, when modelling networks constructed using

a group-based approach, the estimate for triadic closure

could be considered to be (at least in part) controlling for

this effect rather than being a parameter of interest. Addi-

tionally, dummy variables that interact with certain effects

can be used to control for the confounding effect of a

methodological bias, e.g. higher detection rate and so a

higher frequency of interactions in certain study areas.

This then allows conclusions about hypotheses of interest

to be made having accounted for the confounding factors.

The type of controlling factor specified will depend on the

likely biases a particular method of data collection intro-

duces, provided this is known. If the biases a method

introduces are not known, then simulations may need to

be performed to determine what the null expectations in

the system are, to compare to the observed outcome.

the effect of spatial structure in networks

Spatial factors can influence the likelihood of two individ-

uals interacting in a wide range of animal networks (Fr�ere

et al. 2010; Carter et al. 2013; Best et al. 2014). This raises

the possibility that we are studying co-choice of spatial

location rather than choice of social partners, as certain

patterns of resource exploitation can create the impression

of complex social behaviour (Ramos-Fern�andez, Boyer &

G�omez 2006). Therefore, we need to account for animals’

space use when assessing their choice of interaction part-

ners. Within a SAOM, this issue can be tackled through

the use of dyadic covariates in the model. Shared group

membership or a spatial relationship such as the distance

between locations at the start of each time point can be

entered as a dyadic covariate which accounts for the fact

that individuals in the same group or near each other are

more likely to interact. This effectively incorporates an

appropriate null model into the analysis, as the signifi-

cance of other parameters in the model is calculated along-

side the influence of these spatial control terms. Therefore,

preference for associating with (for example) individuals of

the opposite sex can be estimated given the degree to

which the sexes use the same space. A similar approach is

advocated by Whitehead & James (2015), who suggest cal-

culating ‘generalised affiliation indices’ (GAIs) that repre-

sent relationships that occur beyond what is expected

based on factors such as spatio-temporal overlap to enter

into further network analyses. Such GAIs could be entered

into a SAOM, but we recommend using the original asso-

ciation data and the factors that need controlling for

within the SAOM. Spiegel et al. (2016) have recently

developed a modelling strategy to separate spatial proxim-

ity from social associations, using randomisations of

movement patterns within individuals with particular time

periods. The resulting ‘expected’ patterns of social associa-

tion could then be entered as changing dyadic covariates

into a SAOM, as described above. An outstanding prob-

lem for these approaches is the degree to which the spatial

position of individuals itself represents social behaviour,

so should not be ‘accounted for’ and discarded from infer-

ences on social behaviour. Assessing how different con-

trols for spatial location influence our inferences about

social behaviour in different systems should inform us on

how problematic this issue is.
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Example research area 1: SAOMs and
transmission dynamics

A primary interest for those studying epidemiology is

how individual behaviour relates to infection at the indi-

vidual and the population level (Tompkins et al. 2011). If

a disease is transmitted directly, its spread depends on the

social relationships of the entire population, making it a

network-based problem. With a SAOM, being infected or

not can be modelled as a dynamically changing trait with

multiple levels (e.g. uninfected, infected but dormant,

infective). This can then be influenced by (i) individual

characteristics (e.g. sex, condition), (ii) network position

(e.g. connectedness) and (iii) the characteristics of associ-

ates, including their own disease state. This allows the

tendency to be infected to be influenced by the infection

status of social partners, allowing the spread of a disease

across the dynamically changing network to be modelled.

The researcher can then explore whether the infection sta-

tus alters the rate or choice of interactions, or the ten-

dency to be targeted with interactions. As well as

modelling disease status as more complicated than

infected/uninfected, differences between classes (e.g. sex)

in infection or transmission rates can be examined

(McDonald et al. 2014). Furthermore, the change in infec-

tion status could be constrained to becoming infected,

with returns to an uninfected state being impossible

(Greenan 2015; Ripley et al. 2015). A similar framework

can be applied to information transmission, modelling the

spread of information across a population (Greenan

2015). This has previously been investigated in animals

using network-based diffusion analysis (NBDA; Aplin

et al. 2012, 2015a; Atton et al. 2012; Allen et al. 2013;

Boogert et al. 2014; Farine et al. 2015) with Hobaiter

et al. (2014) extending traditional NBDA to account for

the build-up of relationships over time. However, SAOMs

explicitly model both the change in the network and in

the trait over time as mutually connected dependant vari-

ables. This allows the extent and direction of any causal

relationship(s) and the effect of external variables on the

change in both networks and the trait to be modelled.

This gives different information to NBDA, which may

instead be used to estimate the transmission speed across

different parts of and the whole of the network.

Example research area 2: Behavioural types
and networks

Social network analyses determine how specifics of indi-

viduals’ social environments, as measured by network

traits such as degree or betweenness, are related to other

aspects of their ecology. This indicates that individual-

level behavioural traits are important for ecological and

evolutionary processes. This conclusion has become an

established orthodoxy in behavioural ecology (Koolhaas

et al. 1999; Dall, Houston & McNamara 2004; R�eale

et al. 2007), with within-population, among-individual

differences in behaviour observed to be widespread (Bell,

Hankison & Laskowski 2009), linked to fitness (Smith &

Blumstein 2008) and various ecological and evolutionary

dynamics (Wolf & Weissing 2012). By modelling both as

responses, SAOMs allow the integration of these two

branches of individual specific behaviours from social and

non-social domains, studying their codependent change

over time. For instance, one could model how the level of

risk-taking behaviour relates to the number of social asso-

ciates. This would allow ecologists to determine whether

there are social ‘personality’ types (Krause, James & Croft

2010; Wilson et al. 2012), and whether they are associated

with a suite of non-social behavioural traits, i.e. as part of

a ‘behavioural syndrome’ (Sih et al. 2004; Sih, Chang &

Wey 2014) or associated with ‘social carry-over effects’

(Niemel€a & Santostefano 2015). Furthermore, it has been

observed that animal social groups show assortativity,

where individuals of similar behavioural types are more

likely to associate (Aplin et al. 2013; Wilson et al. 2014;

Carter et al. 2015). This could result from ‘selection’

where individuals choose associates of a similar beha-

vioural type, or ‘influence’ where individuals change their

behavioural type to match that of their associates (Ste-

glich, Snijders & West 2006; Burk, Steglich & Snijders

2007; Steglich, Snijders & Pearson 2010). Identifying

exactly which processes are more influential will indicate

the cognitive process occurring and therefore the selection

pressures at work, yet cannot happen unless the change in

traits is ordered in a dynamic analysis. Furthermore,

assortativity can arise as a byproduct of triadic closure

(Ilany & Akcay 2016), suggesting that proper control for

this effect is necessary. Finally, the social niche hypothesis

suggests that repeated social interactions lead to an

increase in within-individual consistency (Bergm€uller &

Taborsky 2010; Montiglio, Ferrari & Reale 2013). Evi-

dence is mixed however (Laskowski & Bell 2014; Las-

kowski & Pruitt 2014; Modlmeier et al. 2014).

Investigating this question further with SAOMs will allow

broader trends to be identified.

Future work

It is clear that SAOMs have great potential to inform the

study of animal networks, but have potentially problem-

atic assumptions and significant limitations. For many of

these potential drawbacks, there is currently a lack of pre-

cise understanding of the impact they might have. There-

fore, a fundamental next step is to test the susceptibility of

SAOMs to type I and II errors in networks with a range

of structures and constructed with a range of different

interaction definitions, for a variety of missing levels of

information. This work could use simulation-modelling to

determine the ability of SAOMs to detect a signal in simu-

lated network data sets with different degrees of missing

data (e.g. Huisman & Steglich 2008; Hipp et al. 2015).

It is also apparent that some of the current problems

for using SAOMs with animal networks could be
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addressed by continued development of the modelling

framework, or by making use of major advantages of

SAOMs (e.g. the individual-based approach) to develop

or adapt alternative approaches specifically designed for

animal networks. Many of the statistical processes used

within a SAOM, such as Markov chains, are becoming

increasingly familiar to ecologists and there is no reason

why extensions, such as the ability to incorporate edge

weights into the models, could not be developed specifi-

cally for animal networks. We hope that by highlighting

this methodological tool we can stimulate further develop-

ments to enhance its utility.

Summary

SAOMs are a potentially useful tool for studying animal

social networks, and their use in ecology is increasing

rapidly. By providing a review of their uses, and a prac-

tical guide in the Supporting Information, we hope to

aid those interested in applying it to their own data.

Appreciating the range of effects that can and have been

implemented in SAOMs in other fields should enable

ecologists to ask new questions of existing data sets or

formulate new questions surrounding social and non-

social behaviour. However, there are still a number of

key challenges that must be addressed. First, how well

the key assumptions of SAOMs are satisfied in different

animal study systems, and second, how SAOMs can be

modified to improve their applicability to the types of

data sets generated in ecological research. Satisfying

these concerns, while exploring a range of network-based

questions in ecology promises to provide new insights

into the relationships between social systems and broader

evolutionary and ecological processes.
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