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Abstract
Hybrid electromagnetism-like mechanism and migration strat-
egy (EM-MS) algorithm is a recently developed optimization 
method which tries to benefit from both electromagnetism-like 
mechanism (EM) algorithm and migration strategy (MS). The 
EM algorithm is a population-based meta-heuristic method 
that simulates the attraction and repulsion mechanism between 
the charged particles to move them around the solution space. 
In the EM-MS method, the EM algorithm has a role of the global 
optimizer, while migration strategy (MS) helps the particles to 
exploit search space efficiently. In the current study, this hybrid 
method is utilized for optimum design of pin jointed structures 
under stress and deflection constraints. The efficiency of the 
EM-MS algorithm is demonstrated through four benchmark 
design examples. The results obtained confirm the potential 
and effectiveness of the EM-MS algorithm compared to other 
methods published in the recent state-of-the art literatures for 
the optimum design of pin jointed structures under stress and 
deflection constraints.

Keywords 
electromagnetism-like mechanism, migration strategy, opti-
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1 Introduction
Attaining optimum designs for structures has been in the focus 

of wide attention over past years and has established its position 
as one of the main optimization problems in structural engineer-
ing domain. However it is very widely believed that, for many 
structures with the large number of elements, searching optimum 
designs is very extreme hardness and sometimes completely time 
consuming procedure. Hence, extensive studies have been car-
ried out to develop different optimization methods, ranging from 
gradient-based search techniques to derivative-free global opti-
mization algorithms. As an alternative to the classical optimiza-
tion approaches, meta-heuristic optimization techniques such as 
harmony search (HS) algorithm [1], particle swarm optimization 
(PSO) [2], big bang-big crunch (BB-BC) [3] algorithm, teaching-
learning-based optimization (TLBO) [4], Biogeography-Based 
Optimization (BBO) [5], League Championship Algorithm (LCA) 
[6], and Cultural Algorithm (CA) [7] have been widely utilized and 
improved to solve structural optimization problems characterized 
by non-convex, dis-continuous, and non-differentiable [8–16].

The meta-heuristic algorithms have some advantages such 
as a simple framework and ease of implementation. Therefore, 
these algorithms have been adopted by researchers so far and are 
well suited to solve various structural optimum design problems 
including the sizing, layout, and topology optimization prob-
lems [17–21]. Due to probabilistic nature of the meta-heuristics, 
they do not guarantee finding global optimum solutions for any 
kind of the problems. However, if they properly implemented, 
meta-heuristics can provide near-optimal or optimal solutions 
with higher qualities. In designing efficient meta-heuristic algo-
rithms, the exploration and exploitation are extremely important 
mechanisms. The exploration mechanism is related to the abil-
ity of exploring many and different regions of the search space, 
while the exploitation mechanism is related to the reduction of 
the diversity by focusing on the individuals with higher fitness 
to obtain high quality solutions. Therefore, the adequate balance 
between the exploration and exploitation mechanisms is a vital 
issue for these algorithms to be effectively executed. To this 
end, numerous standard and hybrid meta-heuristic algorithms 
have been applied and developed to optimum design of struc-
tures. Some of them will be mentioned below.
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The harmony search (HS) algorithm was first introduced to 
optimize various mathematical functions by Geem et al. [1]. 
This algorithm simulates the improvisation process that occurs 
when a musician searches for a better state of harmony. Lee and 
Geem [22] developed a structural optimization method based on 
the HS algorithm. In another work, Degertekin [23] proposed 
efficient HS algorithm (EHS) and self-adaptive HS algorithm 
(SAHS) for sizing optimization of pin jointed structures.

The particle swarm optimizer (PSO) originally developed 
by Kennedy and Eberhart [2] is inspired by social behavior of 
bird flocking or fish schooling. Based on this algorithm, Li et 
al. [24] proposed a heuristic particle swarm optimizer (HPSO) 
for optimization of pin connected structures. The method is 
based on the particle swarm optimizer with passive congrega-
tion (PSOPC) and a harmony search (HS) scheme.

The big bang-big crunch (BB-BC) algorithm was proposed by 
Erol and Eksin [3]. It is based on the theory of the evolution of the 
universe; namely, the big bang and big crunch theory. Camp [25] 
utilized standard BB-BC algorithm to sizing of truss structures. 

Teaching-learning-based optimization (TLBO) was intro-
duced by Rao et al. [4]. It is a relatively new population-based 
optimization algorithm which is inspired by the social interaction 
between the teacher and the learners in a class. Togan [26] uti-
lized this algorithm to design of planar frame structures. Recently, 
Degertekin and Hayalioglu [27] employed the TLBO algorithm to 
sizing of pin jointed structures and the numerical results showed 
that it is a promising method for benchmark design examples.

In some cases, researchers have been utilized novel optimi-
zation algorithms such as ray optimization (RO) [28] and col-
liding bodies optimization (CBO) [29], to optimum design of 
pin jointed structures. Kaveh and Khayatazad [30] employed 
RO to size and shape optimization of truss structures. In RO, 
each solution is modeled as a ray of light that moves in the 
search space in order to find optimum solution.  In another 
work, Kaveh and Mahdavi [31] utilized CBO algorithm to size 
optimization of pin jointed structures. The method is based on 
one-dimensional collisions between two bodies, where each 
agent solution is modeled as the body [31].

The electromagnetism-like mechanism (EM) algorithm is a 
population-based meta-heuristic method developed by Birbil 
and Fang [32] based on the behavior of the charged particles 
in the electromagnetism field. It simulates the attraction and 
repulsion mechanism between the charged particles in the field 
of the electromagnetism to find optimal solutions, in which 
each particle is a solution candidate for the optimization prob-
lem. Recently, authors proposed a hybrid EM and migration 
strategy (EM-MS) algorithm for layout and size optimization 
of pin-jointed structures with frequency constraints [19]. In the 
EM-MS algorithm, the EM algorithm has a role of the global 
optimizer, while migration strategy (MS) helps the particles to 
exploit search space efficiently.

Following previous successful application of the EM-MS 
algorithm to solve layout and size optimization of truss struc-
tures under frequency constraints [19], this study utilizes the 
EM-MS algorithm to design optimization of pin jointed struc-
tures with stress and deflection constraints. As mentioned 
before, this algorithm benefits from both exploration and 
exploitation abilities of the EM algorithm and migration strat-
egy. A set of four well-known design examples are considered 
to validate the efficiency of the EM-MS algorithm. The numer-
ical results validate the efficiency of this hybrid approach in 
obtaining optimal designs as compared with other methods.

The remainder of the paper is organized as follows. Section 2 
formulates the optimum design problem of pin jointed structures. 
In Section 3, the EM algorithm is introduced and then the EM-MS 
algorithm will be described in detail. The numerical examples are 
solved by the hybrid EM-MS algorithm and the results obtained 
are given in Section 4. Finally, Section 5 concludes the paper.

2 Mathematical description of the optimum design 
problem 

The main aim of optimum design problem of a pin jointed 
structure is to minimize the weight of the structure while satis-
fying some constraints on stresses and deflections. In this class 
of the optimization problems, cross-sectional areas are taken as 
design variables. The optimal design of a pin jointed structure 
can be formulated as follows:

Find X x x xnd= …[ ] 
1 2
, , ,
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where X is the vector containing the design variables; nd is 
the number of design variables; m is the number of members 
making up the structure; W(.) demonstrates the weight of the 
structure; γi is the material density of member i; xi is the cross-
sectional area of the member i which is between xmin and xmax; Li 
is the length of the member i; σi is the existing axial stress in the 
member i; σ ti and σ ci are the allowable tension and compressive 
stresses for member i, respectively; δk is the displacement of 
node k; δmin and δmax are the lower and upper limits for displace-
ment at node k, and n is the number of nodes.

As demonstrated above, the optimal design of a pin jointed 
structure should satisfy some constraints on stress and deflec-
tion. In this study, the constraints of the problem are handled by 
using a simple penalty function method. So, for each solution 
candidate, following penalized weight is calculated:
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where:

where Wp(.) is the penalized wieght, fpenalty is the penalty func-
tion, nc is the number of constraints, and φ is the penalty factor 
which is related to the violation of constraints. In order to obtain 
the values of the penalty function for each solution, the axial 
stresses and nodal displacements of the structure are compared 
to the corresponding upper or lower bounds as follows.

As it can be seen from Eq.(4) and Eq.(5), if the constraints 
are not violated, the value of the penalty function will be zero. 
Otherwise, it has a positive value for penalization of objective 
function. In addition, in Eq.(3), the values of parameters ε1 and 
ε2 are selected by considering the exploration and exploitation 
mechanisms. In this study ε1 is taken as unity, and ε2 starts from 
1.5 and gradually increases to 2.5.

3 Optimization technique
In this section, the electromagnetism-like mechanism algo-

rithm and migration strategy are briefly described, and then 
details of the EM-MS method will be discussed.

3.1 The electromagnetism-like mechanism (EM) 
algorithm

The EM algorithm is a nature inspired optimization tech-
nique which is introduced by Birbil and Fang [32]. The EM 
algorithm is a population-based meta-heuristic algorithm moti-
vated by the electromagnetism theory of physics, in which each 
electrically charged particle is a solution candidate for the opti-
mization problem. The algorithm simulates the attraction and 
repulsion mechanism between the charged particles to move 
particles around the solution space.

In order to better explain, the detailed steps of the basic EM 
algorithm can be summarized as below:

Step 1: Initialization of the particles:
Define the problem as: minimize f(x). Every particle xi(i = 1, 

2,…, Np) is a n-dimensional vector, where n denotes the dimen-
sion of the problem. Initialize the positions of the Np particles 
randomly within the given search space.

Fig. 1 The simple linear migration model

Step 2: Evaluation of the objective function for each particle:
Calculate the objective function for each particle and also 

calculate the best objective function value related to the best 
particle as follows.

where best(t) is the best objective function value that 
obtained by particles at iteration t.

Step 3: Computation of the charge and total force for each 
particle:

Compute the charge of each particle and the total force acted 
on particle i, using the following equations.

where n is the dimension of the problem; qi and qj denote the 
charges for particles i and j at iteration t. According to the Eqs. 
(7–8) following points can be concluded:
• It can be seen from Eq. (7), the particle with better objective 

function value has a bigger charged value.
• According to the Eq. (8), the particle with the better objec-

tive function value attracts others with the worse objective 
function, whereas the particle with the worse objective func-
tion repulses others with the better objective function.

• The particle with the best objective function value in the 
population attracts other particles, while it is never attracted 
or repulsed by the others. 
Step 4: Position update of particles:
Update the positions of particles for next iteration (t + 1) by 

employing the following equation:
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where xik
t is the kth variable of ith particle at iteration t; u and 

l are the upper and lower bounds for the variables, respectively; 
λ is assumed to be uniformly distributed between 0 and 1.

Step 5:
Repeat from Steps 2–4 until iterations reaches their maximum 

limit or the stopping criterion is met and output the best solution.

3.2 The migration strategy
An important issue in providing better exploitation ability is 

which particles from the population should be selected to undergo 
local improvement. To this end, a migration strategy is used in 
this study. The main idea of the migration strategy is borrowed 
from the biogeography-based optimization (BBO) method. The 
BBO is a simple and efficient optimization algorithm originally 
proposed and shown effective for finding global optima for some 
optimization problems by Simon [5]. In fact, BBO is a popu-
lation-based meta-heuristic algorithm motivated by migration 
behavior of species between the habitats in the nature, in which 
each habitat is a solution candidate for the problem.

In the BBO, the emigration and immigration processes are 
done by migration operator between the good and poor habitats 
to share information about the appropriate habitats. This infor-
mation sharing depends on the immigration rate λi and emigra-
tion rate μi of each habitat, which are functions of the fitness 
values. Fig. 1 illustrates a simple linear migration model. As 
it can be seen from Fig.1, the habitat which has worse fitness 
(poor solution) like S1 has a low emigration rate and a high 
immigration rate. This means that, the habitat with worse fit-
ness value have a greater chance to take information about the 
good habitats. On the other hand, the habitat which has bet-
ter fitness value (good solution) like S2 has a low immigration 
rate and a high emigration rate. In this way, the habitat with 
better fitness value tends to share its good information among 
the other habitats. Moreover, the particle with medium fitness 
value, like point S0, both immigration and emigration rates are 
equal, in which the probability of taking or giving information 
from or to other habitats is equal. In fact, the point S0 is the 
equilibrium point. The migration process for the ith habitat can 
be described as follows: 

where xi and xj are kth variable of the immigrating and emi-
grating habitats, respectively. The emigrating habitat is the 
probabilistically selected habitat based on the emigration rates. 
Fig. 2 depicts the migration procedure of the BBO algorithm. It 
is worth mentioning that the roulette wheel selection method is 
implemented to select emigrating habitat.

3.3 The EM-MS algorithm
In this section, the procedures of the electromagnetism-like 

mechanism with migration strategy (EM-MS) algorithm for 
optimal design of pin jointed structures are described in detail. 
In the EM-MS algorithm, the required balance between explo-
ration and exploitation mechanisms is achieved by using the 
modified electromagnetism-like mechanism (EM) algorithm 
as a global optimizer for global exploration and the migration 
strategy (MS) as an auxiliary tool for the local exploitation. 
This hybrid algorithm effectively uses the advantages of both 
the EM and MS techniques and avoids their weaknesses.

Fig. 2 The migration procedure of the BBO algorithm

 
3.3.1 The modified EM algorithm 

At the initial steps of the optimization process, meta-heu-
ristic algorithm needs to explore the whole search space and 
identify the optimal regions (exploration mechanism), while 
whatever the algorithm closes to the final iterative process, the 
algorithm should search to find the solutions with the higher 
qualities (exploitation mechanism). In the EM-MS algorithm, 
the modified electromagnetism-like mechanism is utilized as an 
exploration tool to explore search space effectively. In the EM 
algorithm, the movement formula has a major effect in con-
vergence behavior of this algorithm. The basic EM algorithm 
utilizes Eq. (9) to move particles in search space, which often 
implies a rapid loss of diversity in the population. In order to 
enhance the exploration ability of the standard EM algorithm, 
the following movement formula is proposed [19].

where t is the iteration number. As it can be seen, in initial 
steps of optimization process, the particles move with a bigger 
step size and this value is decreased to zero as the iteration 
process gets closer to final steps. It is important to note that, 
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responding lower or upper bound.

x
x F

F
u x F

x F
F

x l F
ik
t

ik
t ik

i
ik
t

ik

ik
t ik

i
ik
t

ik

+ =

+ −( ) >

+ −( ) ≤



1

0

0

λ

λ

;

;








x xik jk←

x x F
F

U L
tik

t
ik
t ik

i

k k+ = +
−( )1 λ �

(9)

(10)

(11)



784 Period. Polytech. Civil Eng. S. Jalili, Y. Hosseinzadeh

Fig. 4 Schematic of the 22-bar spatial truss structure

Fig. 3 The flowchart of the EM-MS algorithm
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3.3.2 The migration strategy (MS)
In order to simulate the migration procedure between the par-

ticles in the solution space, the immigration λi and emigration 
μi rates are defined for each particle based on the simple linear 
migration model shown in Fig. 1. According to the simple migra-
tion operator of the BBO algorithm which is described as Eq. (10), 
the new position of a particle would be generated by moving the 
previous one towards another solution selected randomly from 
the population based on the emigration rate. However, this sim-
ple migration operator may leads to weak exploitation ability. In 
order to get a better performance including the better exploita-
tion ability, following migration scheme is used [19]:

where xik and xjk are kth variable of the immigrating and emi-
grating particles, respectively, and Pbest,jk is kth variable of the best 
position experienced by the emigrating particle. According to this 
migration scheme, both of the current and best positions of the 
emigrating particle affect the migration process. This modifica-
tion has a significant role in enhancing exploitation ability.

Fig. 3 shows the flowchart of the EM-MS algorithm [19]. 
Based on the flowchart of the EM-MS algorithm, following 
points can be stated:
• The EM-MS algorithm has two main mechanisms to update 

the position of each particle in the solution space: modified 
EM algorithm and migration strategy (MS).

• Each particle migrates toward another particle with the 
probability of λi. 

• The immigration (λi) and emigration (μi) rates for each particle 
are calculated based on the objective function values. So, the 
quality of particles is considered during migration process.

• Since the immigration rate λi is inversely proportional to the 
objective function value, the particles with worst objective 
function values have more chance to migrate toward another 
particle.

• When the migration condition for a particle is not satisfied, 
its new position will be determined by the modified EM 
algorithm.

• In fact, the migration strategy treats as a local exploiter, 
while the modified EM algorithm provides a global opti-
mizer mechanism to prevent premature convergence to the 
local optimums.

• The EM-MS algorithm has no any internal parameter to 
adjust expect the number of particles (Np).

4 Design examples
In this section, four design examples have been conducted to 

assess the performance of the EM-MS algorithm for the opti-
mum design of pin-jointed structures: 22-bar spatial truss, 25-bar 
spatial truss, 72-bar spatial truss, and 582-bar tower truss. In the 
all design examples, the number of particles (Np) is set to 30. In 
order to assess the effect of different initial solution vector on the 

final result and because of the random nature of the algorithm, 
all design examples are independently optimized 30 times and 
the best, worst, average, and the standard deviation of trial runs 
are given in the tables. As it mentioned in introduction, meta-
heuristics do not guarantee finding exact optimal solution for the 
problem at hand. Hence, the best reported results are not neces-
sary exact optimal solutions for the investigated problems. Each 
run stops when the maximum structural analyses are reached. 
The maximum structural analyses are set to 20,000 for the 
first three examples and 6000 for the last design example. The 
EM-MS algorithm and direct stiffness method for the analysis 
of pin jointed structures was coded in Matlab program and all 
executions were made on a Dell Vostro 1520 with Intel Core2 
Duo CPU T9550 @ 2.66 GHz.

4.1 A 22-bar spatial truss structure
The 22-bar spatial truss shown in Fig. 4 is the first design exam-

ple. The Young’s modulus and material density of truss members 
are 104 ksi and 0.1 lb/in3, respectively. This structure is subjected 
to three loading conditions as shown in Table 1.The members of 
the structure are categorized into seven groups. For each group 
element, the allowable tension and compressive stresses are listed 
in Table 2. In addition, the maximum nodal displacements in the 
all directions are limited to ±2.0 in for the all free nodes and the 
minimum permitted cross-sectional area is 0.1 in2.

The results obtained by the EM-MS algorithm are summa-
rized in Table 3 and compared to those reported previously. 
From Table 3, it can be concluded that the EM-MS algorithm 
gives lightest design as compared to the results obtained by Refs 
[22, 33, 34], and relatively same design when compared with 
the PSO [35], MSPSO [35] and HPSSO [36] methods. Although 
the EM-MS algorithm requires more structural analyses than 
the MSPSO [35] and HPSSO [36] methods, but the EM-MS 
algorithm is more efficient than these methods in terms of stand-
ard deviation value and stability of results. In addition, Table 
3 shows that the average and worst weights obtained by the 
EM-MS algorithm are much better than the same values for the 
PSO [35], MSPSO [35], and HPSSO 36] methods. Moreover, 
the convergence behavior of the EM-MS algorithm is presented 
in Fig. 5. As it can be seen, the EM-MS algorithm reaches to the 
vicinity of the final result after about 10,000 analyses.

4.2 A 25-bar spatial truss structure
The second design example deals with the size optimization 

of a 25-bar spatial truss structure shown in Fig. 6. The Young’s 
modulus and material density of truss members are 104 ksi and 
0.1 lb/in3, respectively. The twenty five members are catego-
rized into eight groups, as follows:

A1, (2) A2 – A5, (3) A6 – A9, (4)A10 – A11, (5)A12 – A13, (6) 
A14 – A17, (7) A18 – A21, and (8) A22 – A25.

The spatial truss structure is subjected to the multiply load-
ing conditions as shown in Table 4. The maximum nodal 

x x rand x x rand xik ik jk ik best jk ik← + −( ) + −( )P , (12)
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Table 1 Multiply loading conditions for the 22-bar spatial truss structure.

Node Condition 1   Condition 2  Condition 3

PX PY PZ PX PY PZ PX PY PZ

1 -20.0 0.0 -5.0 -20.0 -5.0 0.0 -20.0 0.0 35.0

2 -20.0 0.0 -5.0 -20.0 -50.0 0.0 -20.0 0.0 0.0

3 -20.0 0.0 -30.0 -20.0 -5.0 0.0 -20.0 0.0 0.0

4 -20.0 0.0 -30.0 -20.0 -50.0 0.0 -20.0 0.0 -35.0

Table 2 Allowable stress values for the 22-bar spatial truss structure

Element group  Allowable tension stress (ksi) Allowable compression stress (ksi)

1 A1-A4 24.0 36.0

2 A5-A6 30.0 36.0

3 A7-A8 28.0 36.0

4 A9-A10 26.0 36.0

5 A11-A14 22.0 36.0

6 A15-A18 20.0 36.0

7 A19-A22 18.0 36.0

Table 3 Comparison of optimum designs obtained by various methods for 22-bar spatial truss structure.

Design variable (in2) Lee and 
Geem [22]

Khan et al. 
[33]

Sheu and 
Schmit [34] Li et al. [24] Talatahari et al. [35] Kaveh et al. 

[36] Present work

HS HPSO PSO MSPSO HPSSO EM-MS

1 2.588 2.5630 2.629 1.657 2.580 2.632 2.620593 2.64791

2 1.083 1.5530 1.162 0.716 1.131 1.195 1.206836 1.17990

3 0.363 0.2810 0.343 0.919 0.347 0.354 0.355719 0.35681

4 0.422 0.5120 0.423 0.175 0.421 0.415 0.419223 0.42000

5 2.827 2.6260 2.782 4.576 2.833 2.764 2.783028 2.76075

6 2.055 2.1310 2.173 3.224 2.095 2.030 2.082686 2.07069

7 2.044 2.2130 1.952 0.450 2.021 2.091 2.029553 2.04131

Best weight (lb) 1022.23a 1,034.74 1024.8 1057.14 1024 1024 1023.9857 1023.99

Mean weight (lb) N/A N/A N/A N/A 1033.790 1028.550 1027.599 1025.76

Standard deviation (lb) N/A N/A N/A N/A 17.29 6.63 6.357 2.16

No. of analyses 10,000 N/A N/A N/A 25,000 12,500 14,406  17,000

Worst weight (lb) N/A N/A N/A N/A 1093.120 1049.180 1052.048 1032.61
aSome of constraints are violated

Fig. 5 The convergence diagrams of the EM-MS algorithm for the 22-bar spatial truss structures.
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displacements in all directions are limited to ±0.35 in for all free 
nodes and the allowable stresses are different for each design 
group as shown in Table 5. In addition, the range of cross sec-
tional areas varies from 0.01 in2 to 3.4 in2.

To show the effectiveness of the EM-MS algorithm, the 
obtained results for the 25-bar spatial truss are compared with 
those reported in the literature like the PSO [24], PSOPC [24], 
HPSO [24], BB-BC [25], EHS [23], SAHS [23], TLBO [27], 
and HPSSO [36] methods. From Table 6, it is evident that the 
EM-MS yields better design than the PSO [24], PSOPC [24], 
HPSO [24], BB-BC [25], EHS [23], SAHS [23], and HPSSO 
[36] methods and slightly heavier design than the TLBO [27] 
method.  In addition, it can be clearly seen form Table 6 that the 
EM-MS algorithm yields less standard deviation value. This 

issue shows that the EM-MS algorithm has a relatively stable 
behavior during 30 independent runs. Moreover, the conver-
gence diagrams of the best result and average of 30 independ-
ent runs are illustrated in Fig. 7. It can be seen that the EM-MS 
algorithm converges to the near-optimum design after about 
14,000 analyses.

4.3 A 72-bar spatial truss structure
A 72-bar spatial truss shown in Fig. 8 is the third design 

example. The Young’s modulus and material density of truss 
members are 104 ksi and 0.1 lb/in3, respectively. The 72 mem-
bers of this spatial truss are divided into 16 groups using sym-
metry, as follows:

Fig. 6 Schematic of the 25-bar spatial truss structure.

Fig. 7 The convergence diagrams of the EM-MS algorithm for the 25-bar spatial truss structure.
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(1) A1 – A4, (2) A5 – A12, (3) A13 – A16, (4) A17 – A18, (5) A19 
– A22, (6) A20 – A30, 
(7) A31 – A34, (8) A35 – A36, (9) A37 – A40, (10) A41 – A48, (11) 
A49 – A52, (12) A53 – A54, (13) A55 – A58, (14) A59 – A62, (15) 
A63 – A70, (16) A71 – A72.
The spatial truss structure is subjected to the loading con-

ditions given in Table 7. The maximum nodal displacements 
in all directions are limited to ±0.25 in for all free nodes. In 
addition, the minimum and maximum cross-sectional areas are 
considered as 0.1 in2 and 4 in2, respectively. 

The optimum designs obtained by the EM-MS algorithm 
and some other previous studies reported in the literature such 
as the PSO [37], BB-BC [25], RO [30], EHS [23], SAHS [23], 
TLBO [27], and CBO [31] methods are presented in Table 8. 
From the comparison, it is noticed that the EM-MS algorithm 
gives better design as compared to the PSO [37], BB-BC [25], 
RO [30], EHS [23], SAHS [23], and CBO [31] , but slightly 
heavier design when compared with the TLBO [27] method. 
However, the number of structural analyses for the EM-MS 
algorithm is relatively less than the TLBO [27] method. In addi-
tion, the EM-MS algorithm is much better than all other meth-
ods in terms of average, standard deviation, and worst results. 
As it can be seen, the worst design yielded by the EM-MS 
algorithm is also lighter than the designs obtained by the PSO 
[36], BB-BC [25], RO [30], EHS [23], and SAHS [23] methods.  

This issue demonstrates that this algorithm is more stable and 
reliable than other methods. Also, the convergence diagrams of 
best run for two cases are presented in Fig. 9.

Table 4 Multiply loading conditions for 25-bar spatial truss structure.

Node 
Condition 1 ( kips ) Condition 2 (kips ) 

 Px  Py  Pz  Px  Py  Pz

1 0.0 20.0 -5.0 1.0 10.0 -5.0 

2 0.0 -20.0 -5.0 0.0 10.0 -5.0 

3 0.0 0.0 0.0 0.5 0.0 0.0

6 0.0 0.0 0.0 0.5 0.0 0.0

Table 5 Allowable stress values for the each element group of 25-bar spatial 
truss structure. 

Element group Allowable compressive 
stress (ksi)

Allowable tension 
stress  (ksi)

1 35.092 40.0 

2 11.590 40.0 

3 17.305 40.0

4 35.092 40.0

5 35.092 40.0

6 6.759 40.0

7 6.959 40.0

8 11.082 40.0

Table 6 Comparison of optimum designs obtained by various methods for 25-bar spatial truss structure.

Design variables (in2)  
 

Li et al. [24] Camp [25] Degertekin [23] Degertekin and 
Hayalioglu [27]

Kaveh et al. 
[36]

Present 
work

PSO PSOPC HPSO BB-BC EHS SAHS TLBO HPSSO EM-MS

1 A1 9.863 0.010 0.010 0.010 0.010 0.010 0.0100 0.0100 0.0100

2 A2 – A5 1.798 1.979 1.970 2.092 1.995 2.074 2.0712 1.9907 2.0159

3 A6 – A9 3.654 3.011 3.016 2.964 2.980 2.961 2.9570 2.9881 3.0170

4 A10 – A11 0.100 0.100 0.010 0.010 0.010 0.010 0.0100 0.0100 0.0100

5 A12 – A13 0.100 0.100 0.010 0.010 0.010 0.010 0.0100 0.0100 0.0100

6 A14 – A17 0.596 0.657 0.694 0.689 0.696 0.691 0.6891 0.6824 0.6994

7 A18 – A21 1.659 1.678 1.681 1.601 1.679 1.617 1.6209 1.6764 1.6384

8 A22 – A25 2.612 2.693 2.643 2.686 2.652 2.674 2.6768 2.6656 2.6450

Best weight (lb) 627.08 545.27 545.19 545.38 545.49 545.12 545.09 545.164 545.10

Average weight (lb) N/A N/A N/A 545.78 546.52 545.94 545.41 545.556 545.42

Standard deviation (lb) N/A N/A N/A 0.491 1.05 0.91 0.42 0.432 0.37

 No. of structural analyses 150,000 150,000 125,000 20,566 10,391 9051 15,318 13,326 13,980

Worst weight (lb) N/A N/A N/A N/A 548.04 546.60 546.33 546.990 546.46

Table 7 Multiply loading conditions for the 72-bar spatial truss structure.

Node
Condition 1 (kips) Condition 2 (kips)

 Px  Py  Pz  Px  Py  Pz

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0  0.0 0.0 -5.0
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4.4. A 582-bar tower truss structure
The last design example is the size optimization of a 582-bar 

tower truss shown in Fig. 10. Hasancebi et al. [17] has been 
done some studies to optimize this design example with dis-
crete variables. However, Kaveh and Mahdavi [31] optimized 
this design example with continuous sizing variables. As seen 
in Fig. 10, the elements of the structure are categorized in 32 
groups with respect to symmetry. The Young’s modulus is 
29,000 ksi and the yield stress of steel is 36 ksi.  The tower 
is subjected to the single load condition as follows: 1.12 kips 
acting in the X and Y directions and -6.74 kips acting in the Z 
direction at all free nodes of the tower. In addition, the range of 
cross sectional areas varies from 3.1 in2 to 155 in2. The stress 
and displacement constraints are considered as follows:

(1) Stress constraint  (according to the AISC ASD code [38]):

where σi
– is calculated according to the slenderness ratio:

where E = the modulus of elasticity; Fy = the yield stress 
of steel; Cc = the slenderness ratio (λi) dividing the elastic and 
inelastic buckling regions C E fc y=( )2

2π / ;  λi  = the slender-
ness ratio (λi=kLi / ri); k = the effective length factor; Li = the 
member length; and ri = the radius of gyration. 

Fig. 8 Schematic of the 72-bar spatial truss structure: (a) Top and side view (b) Element and nodal numbering patterns for first story.

Fig. 9 The convergence diagrams of the EM-MS algorithm for the 72-bar spatial truss structure.
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Table 8 Comparison of optimum designs obtained by various methods for 72-bar spatial truss structure.

Design variables (in2)
Perez and 

Behdian [37] Camp [25] Kaveh and  
Khayatazad [30] Degertekin [23] Degertekin and 

Hayalioglu [27]
Kaveh and 

Mahdavi [31]
Present 
work

PSO BB-BC RO EHS SAHS TLBO CBO EM-MS

1     A1 – A4 1.7427 1.8577 1.83649 1.967 1.860 1.90640 1.9028 1.8973

2     A5 – A12 0.5158 0.5059 0.502096 0.510 0.521 0.50612 0.5180 0.5079

3     A13 – A16 0.1000 0.1000 0.100007 0.100 0.100 0.10000 0.1001 0.1002

4     A17 – A18 0.1000 0.1000 0.10039 0.100 0.100 0.10000 0.1003 0.1001

5     A19 – A22 1.3079 1.2476 1.252233 1.293 1.271 1.26170 1.2787 1.2580

6     A20 – A30 0.5193 0.5269 0.503347 0.511 0.509 0.51110 0.5074 0.5202

7     A31 – A34 0.1000 0.1000 0.100176 0.100 0.100 0.10000 0.1003 0.1000

8     A35 – A36 0.1000 0.1012 0.100151 0.100 0.100 0.10000 0.1003 0.1003

9     A37 – A40 0.5142 0.5209 0.572989 0.499 0.485 0.53170 0.5240 0.5065

10     A41 – A48 0.5464 0.5172 0.549872 0.501 0.501 0.51591 0.5150 0.5222

11     A49 – A52 0.1000 0.1004 0.100445 0.100 0.100 0.10000 0.1002 0.1002

12     A53 – A54 0.1095 0.1005 0.100102 0.100 0.100 0.10000 0.1015 0.1000

13     A55 – A58 0.1615 0.1565 0.157583 0.160 0.168 0.15620 0.1564 0.1568

14     A59 – A62 0.5092 0.5507 0.52222 0.522 0.584 0.54927 0.5494 0.5454

15     A63 – A70 0.4967 0.3922 0.435582 0.478 0.433 0.40966 0.4029 0.4011

16     A71 – A72 0.5619 0.5922 0.597158 0.591 0.520 0.56976 0.5504 0.5674

Best weight (lb) 381.91 379.85 380.458 381 380.62 379.63 379.6943 379.69

Average Weight (lb) N/A 382.08 382.5538 383.5 382.42 380.20 379.8961 379.72

Standard deviation (lb) N/A 1.912 1.2211 1.92 1.38 0.41 0.0791 0.03

No. of analyses N/A 19,621 19,084 15,044 13,742 19,778 15,600  17,100

Worst weight (lb) N/A N/A N/A 385.50 383.89 380.83 N/A 379.79

Fig. 10 Schematic of the 582-bar tower truss structure: 3D, Side and top views.
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Table 9 Comparison of optimum designs obtained by various methods for 582-bar tower truss structure.

Design variables (cm2) Kaveh and Mahdavi [31] Present work Design variables (cm2) Kaveh and Mahdavi [31] Present work

CBO EM-MS CBO EM-MS

1 20.5526 20.0000 17 155.6601 143.7971

2 162.7709 164.4115 18 21.4951 20.1022

3 24.8562 20.4508 19 25.1163 20.0000

4 122.7462 134.7547 20 94.0228 93.8866

5 21.6756 20.6472 21 20.8041 20.1140

6 21.4751 20.0000 22 21.2230 20.0914

7 110.8568 112.0897 23 53.5946 55.6278

8 20.9355 20.3045 24 20.6280 20.0734

9 23.1792 20.0094 25 21.5057 20.0476

10 109.6085 95.0446 26 26.2735 26.9963

11 21.2932 20.2939 27 20.6069 20.0392

12 156.2254 158.4182 28 21.5076 20.0000

13 159.3948 167.1142 29 24.1394 20.1617

14 107.3678 114.1851 30 20.2735 20.0366

15 171.9150 179.7715 31 21.1888 20.4490

16 31.5471 28.2502 32 29.6669 20.3688

Best volume (m3) 16.152 15.88

Mean (m3) N/A 15.898

Standard deviation (m3) N/A 0.0106

Worst (m3) N/A 15.922

  No. of analyses 20,000 10,000

Fig. 11 Comparison of existing and allowable displacements in X, Y and Z directions in the 582-bar tower truss structure.

Fig. 12 The stress ratio of members in 582-bar tower truss structure.
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(2) Displacement constraint: 
For all free nodes, the maximum nodal displacements are 

limited to 3.15 in in all directions.
Table 9 compares the optimum designs obtained by the 

EM-MS and CBO [31] methods. The CBO [31] method devel-
oped a minimum volume of 16.1520 m3 after 20,000 structural 
analyses while the EM-MS algorithm obtained the same volume 
after 4500 analyses. It is worth mentioning that the EM-MS 
obtains better designs than the CBO [31] in all independent 
runs. Moreover, the standard deviation of the final results dur-
ing 30 independent runs is 0.0106 m3, which is about %0.07 
of structural volume. It means that the EM-MS algorithm can 
provide higher quality and more robust designs.

Fig. 11 compares the existing values and allowable values 
of the displacement constraints at nodes. As it can be seen, the 
displacement at top node of the tower in X direction controls 
the optimization process and the nodal displacements in Y and 
Z directions have not major effect. The value of maximum 
displacement in X direction is 7.9985 cm. Also, Fig. 12 shows 
the stress ratio in the members of the structure. The maximum 
stress ratio in the members is equal to 0.4296. In addition, Fig 
.13 shows the convergence curves of the EM-MS algorithm.

5 Concluding remarks
In this paper, a hybrid electromagnetism-like mechanism 

with migration strategy (EM-MS) algorithm is applied for opti-
mum design of pin jointed structures under stress and deflec-
tion constraints. In the EM-MS algorithm, the adequate balance 
between exploration and exploitation mechanisms is achieved 
by using the electromagnetism-like mechanism (EM) algorithm 
as a global optimizer for the global exploration and the migra-
tion strategy (MS) as an auxiliary tool for the local exploita-
tion. The performance of the EM-MS algorithm is evaluated 
using a set of four well-known benchmark design examples. 
The EM-MS algorithm has no any internal parameter to adjust 
except the number of particles (Np), and it needs not any sensi-
tivity analysis. In the all design examples, the number of parti-
cles is set to 30. The numerical results show the efficiency and 
capabilities of the EM-MS algorithm in finding better designs 
for the examined pin jointed structures. Moreover, in most 

cases, the average and standard deviation of 30 independently 
runs are relatively small when compared with those reported 
in literature. This means that the EM-MS algorithm has a rela-
tively stable convergence behavior than other methods.
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