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Abstract

Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all

smokers develop T2D. It is unknown whether genetic factors partially explain this variation.

We performed genome-environment-wide interaction studies to identify loci exhibiting

potential interaction with baseline smoking status (ever vs. never) on incident T2D and fast-

ing glucose (FG). Analyses were performed in participants of European (EA) and African

ancestry (AA) separately. Discovery analyses were conducted using genotype data from

the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5

cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189).

Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in

Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replica-

tion estimates, 5 SNPs met at least one criterion for potential interaction with smoking on

incident T2D at p<1x10-7 (adjusted for multiple hypothesis-testing with the IBC array). Two

SNPs had significant joint effects in the overall model and significant main effects only in

one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only

among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant

main effect only among nonsmokers. Three additional SNPs were identified as having

potential interaction by exhibiting a significant main effects only in smokers: rs1801232

(CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670

(TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking

on baseline FG. The identification of these loci provides evidence for genetic interactions

with smoking exposure that may explain some of the heterogeneity in the association

between smoking and T2D.

Introduction

Cigarette smoking and type 2 diabetes (T2D) are both costly burdens on human health in the

United States and worldwide [1–4]. These public health threats are interrelated: smoking is a
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dose-dependent risk factor for incident T2D, independent of potential confounders including

physical activity and body-mass index (BMI) [5]. Moreover, smoking raises fasting glucose

(FG) [6, 7] itself a predictor of incident T2D [8–10]. Experimental studies point to plausible

biologic mechanisms through which smoking may directly cause T2D, such as the impairment

of insulin-mediated glucose transport [11], insulin sensitivity [12–18], and insulin secretion

[19–21].

Not every individual who smokes develops T2D, and the relationship between smoking and

T2D has considerable heterogeneity. This variation suggests the possibility of genetic modifiers

of the effect of smoking on T2D risk. Genetic studies of smoking behavior [22–27] and T2D

and FG [28–36] have separately uncovered hundreds of loci associated with these traits, but no

genome-wide association study to date has sought genetic loci that modify the relationships

among them. We conducted gene-environment-wide interaction studies (GEWIS) to identify

potential gene-by-smoking interactions for both T2D risk and FG among 97,773 cohort study

participants of European (EA) and African ancestry (AA).

Materials and methods

Study design overview

We conducted two-stage GEWIS analyses to identify potential genotype-smoking interactions

for two related traits: incident T2D and baseline FG. Smoking status was dichotomized as indi-

viduals who were current or former smokers at baseline (ever smokers) and individuals with

no current or past smoking history (never smokers). The discovery stage analyses leveraged

data from 5 cohort studies from the Candidate Gene Association Resource (CARe) Consor-

tium. Single-nucleotide polymorphisms (SNPs) that had significant association with a trait in

meta-analysis of the discovery cohort data were carried forward for replication in up to 16

cohorts from the Cohorts for Heart & Aging Research in Genomic Epidemiology (CHARGE)

Consortium Gene-Lifestyle Interactions Working Group and combined discovery plus repli-

cation meta-analysis. The Partners Human Research Committee approved this study.

Cohort descriptions and sample sizes

In the discovery stage, we analyzed data from five cohorts from the CARe Consortium [37]:

The Atherosclerosis Risk in Communities Study (ARIC), the Coronary Artery Risk Develop-

ment in Young Adults Study (CARDIA), the Cardiovascular Health Study (CHS), the Fra-

mingham Heart Study (FHS), and the Multi-Ethnic Study of Atherosclerosis (MESA) (S1

Table) [37]. The total sample size of these five discovery stage cohorts was 23,189, including

18,365 European American (EA) and 4,824 African American (AA). Among 23,189 CARe par-

ticipants, 10,120 were never smokers and 13,069 were ever smokers, as assessed at their base-

line study examinations. In the replication stage, 74,584 individuals from up to 16 cohorts in

the Cohorts for Heart & Aging Research in Genomic Epidemiology (CHARGE) Consortium

Gene-Lifestyle Interactions Working Group were included, comprised of 61,397 EA partici-

pants and 13,187 AA participants. A total of 40,819 and 33,765 were never and ever smokers,

respectively (S1 Table) [38]. All five discovery cohorts contributed data for both traits of inter-

est: incident T2D and baseline glucose. Eight replication cohorts contributed data for the inci-

dent T2D analyses, and 15 replication cohorts contributed data for the fasting glucose analyses

(S1 Table). Across the discovery and replication cohorts, there were 4,040 T2D cases and

48,521 controls among EA participants and 717 cases and 7,180 controls among AA

participants.
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Description of phenotype and covariates

We considered two traits: incident T2D and baseline FG. Presence of T2D was defined by any

one of the following criteria: 1) FG� 7 mmol/L; 2) on diabetes treatment or HbA1c� 6.5%;

3) 2-hr oral glucose tolerance test�11.1 mmol/L; 4) random/non-fasting glucose� 11.1

mmol/L; 5) physician diagnosis of diabetes; or 6) self-reported diabetes (S1 Table). For the

analysis of incident T2D, participants meeting the T2D definition at baseline were excluded.

For the remaining participants, time-to-T2D was defined as the time from the date of the base-

line examination to the date the T2D case definition was met or, for controls, to the last date of

follow-up. For the FG analyses, participants with T2D were excluded, and FG was identified

from the baseline measurement taken after a fast of 8 hours or more (S1 Table).

Genotyping

Participants in the CARe Consortium were genotyped with the custom ITMAT-Broad-CARe

(IBC) genotyping array (IBC v2 chip), which contains around 50,000 SNPs across 2,000 loci selected

for their relationship to cardiovascular disease and its risk factors. Details about SNP selection crite-

ria and genotyping quality control (QC) procedures have been described [39]. Details of the geno-

typing methods used in the individual CHARGE replication cohorts are presented in S1 Table.

Cohort-level statistical analysis

We performed ancestry-stratified analyses for the two traits within each discovery and replica-

tion cohort. Smoking-stratified analyses were also conducted separately in each of the four

trait-ancestry combinations. In total, we performed four models for each of four trait-ancestry

combinations: an interaction model regressing the trait (incident T2D or FG) on the genetic

variant, smoking status, and their interaction term (Model 1); a main effect-only model

(Model 2); and two smoking-stratified models, regressing incident T2D or FG on the genetic

variant predictor in smokers (Model 3) and nonsmokers (Model 4) separately. All models

were covariate-adjusted as described below.

We analyzed incident T2D using Cox proportional hazards models and robust sandwich vari-

ance estimators. For cohorts with related individuals, each family was treated as a cluster. Models

were adjusted for age, BMI, and the genetic principal components associated with incident T2D

at p<0.05. Models were not adjusted for sex in the discovery cohorts due to insufficient numbers

of incident T2D cases in all sex/ancestry categories; models were conducted with or without sex

adjustment in the replication analyses, depending on the sample size of stratified samples.

For baseline FG, we used linear regression for cohorts with independent samples. For

cohorts with family structures, we used generalized estimating equations (GEE) to obtain esti-

mates for Model 1, assuming an exchangeable working correlation matrix, since the GEE

model with an interaction term provides robust standard error estimates. Linear mixed effects

models were used to evaluate Models 2–4, with random effects to account for family structures.

All FG analyses were adjusted for age, sex, BMI and the genetic principal components associ-

ated with FG at p<0.05.

Meta-analysis

For both traits, we obtained summary statistics of association from each cohort and then con-

ducted fixed-effect meta-analysis to combine the results. For each trait (incident T2D and FG),

we meta-analyzed the results across the cohorts using inverse variance weighting, in EA and

AA separately. We defined a potential interaction effect between a locus and smoking if at least

one of the following criteria was met: 1) significant SNP-by-smoking interaction; 2) significant
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joint 2-degree-of-freedom test of interaction and main effect, excluding SNPs with significant

main effects; or 3) significant SNP effect in only one smoking stratum (never or ever smokers).

In the discovery stage, significance was defined as p<10−3; we selected all SNPs significant for

at least one of these 3 criteria as candidate SNPs. Candidate SNPs were then carried forward

for replication in the cohorts of the CHARGE Consortium. We performed meta-analyses with

summary statistics from the discovery and replication stages, defining significance as

p< 1×10−7 for at least one of the 3 criteria above. We selected this significance threshold to

conservatively account for multiple hypothesis-testing, since p< 2×10−6 is commonly used for

studies with the 50,000-SNP IBC genotyping array [40, 41] and we performed a total of 20 tests

(5×2×2), comprised of 5 models (main effect, interaction effect, joint effect, and 2 smoking

stratified analyses) for 2 traits in 2 ancestry groups for each variant.

Power calculations

Power analyses were performed for a significance level of α = 1x10-7 to detect a potential inter-

action effect on both T2D and FG. For T2D, we approximated the power analysis to detect

potential interaction with logistic regression. Under the assumption that the effect size for

interaction is similar to the effect size of the main SNP effect, the sample sizes of 4,040 EA

cases and 717 AA cases enabled 80% power to detect an odds ratio (OR) of 1.39 in EA and 1.76

in AA, using an unmatched population-based case-control design under an additive genetic

model and assuming MAF = 0.3 with 10% T2D prevalence and 30% smoking prevalence. For

FG, the sample sizes of 58,783 EA and 17,675 AA enabled 80% power to detect SNPs with R2
GE

� 0.06% EA and� 0.2% AA for SNP�interaction effect in interaction testing, using an additive

genetic model and assuming variants with R2
G = 0.1%

Conditional analysis

We performed conditional analyses for the two significant variants identified in TCF7L2 in the

T2D analysis. In each corhort, we ran the joint (Model 1) and main effect only models (Model

2) described above for rs4132670 conditioned on the most significant variant, rs12243326. The

cohort-level conditional analyses were meta-analyzed to obtain overall summary statistics.

Locus characterization

We queried the National Human Genome Research Institute (NHGR)–European Bioinfor-

matics Institute (EBI) GWAS Catalog for any published trait associations with SNPs achieve-

ing GEWIS significance in this study [42]. We also examined the overlap between these SNPs

and genomic annotation using HaploReg [43], which collects information from multiple func-

tional annotation resources and reports information about queried SNPs such as genomic

position, protein-coding impact, available expression quantitative trait locus (eQTL) data,

overlap with known transcription factor binding sites or predicted transcription factor binding

motifs, and overlap with DNAse hypersensitivity sites or histone marks associated with pro-

moters and enhancers. In addition, we queried each GEWIS-significant SNP in RegulomeDB

[44], a database of known and predicted regulatory elements in human intergenic regions, and

in the Genotype-Tissue Expression project (GTEx) portal to obtain additional eQTL data [45].

Results

Incident T2D

A total of 371 SNPs met the p<10−3 threshold for incident T2D in discovery stage analyses and

were carried forward to the replication stage. Of these, 171 were identified among EA
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individuals and 200 were identified in AA individuals; no SNP was identified in both sub-

groups (S2 Table).

In meta-analysis of discovery and replication estimates, five SNPs were significant for

potential interaction at p<1×10−7 by at least one criterion, and two of these were significant by

two criteria (Table 1). Two SNPs had significant joint effects in the overall model and signifi-

cant main effects in only one smoking stratum in stratified analyses: rs140637 (FBN1 on chro-

mosome 15, MAF = 0.13) among AA smokers and rs1444261 (closest gene C2orf63 on

chromosome 2, MAF = 0.05) among EA nonsmokers. Among AA participants, rs140637 in

FBN1 was consistently associated with lower T2D risk among smokers only. In the discovery,

replication, and combined stage meta-analyses, the per-allele HR for T2D was 0.34 (95%

CI = 0.23, 0.51, p = 8.8 x 10−8), 0.39 (95% CI = 0.20, 0.76, p = 5.3 x 10−3), and 0.34 (95%

CI = 0.24, 0.49, p = 2.9 x 10−9), respectively. For rs1444261 near C2orf63, in the discovery

stage, the per-allele hazard ratio (HR) for T2D was 0.64 (95% CI = 0.51, 0.82, p = 3.7 x 10−4)

among never smokers, but the direction of effect reversed in the replication stage (HR 1.24,

95% CI = 1.18, 1.29, p = 3.1 x 10−21) and overall meta-analysis (HR 1.21, 95% CI = 1.16, 1.26,

p = 5.1 x 10−18).

Three additional SNPs were significant by one criterion only, namely, significant main

effect only among smokers in stratified analyses. Among EA smokers, these included

rs4132670 (MAF = 0.30) and rs12243326 (MAF = 0.26), both in the well-described T2D-asso-

ciated gene TCF7L2. Among AA smokers, rs1801232, a missense SNP in CUBN on chromo-

some 10 (MAF = 0.12), exhibited a significant main effect (S1 Fig). We observed the largest

effect size for potential interaction at this CUBNmissense variant, where the per-allele hazard

ratio for T2D was 2.78 (95% CI = 1.92, 4.03, p = 5.5 x 10−8) among smokers and 1.01 (95%

CI = 0.58, 1.77, p = 0.97) among non-smokers (pjoint = 1.3 x 10−7).

We provide regional plots for rs1224336 in TCF7L2 in Fig 1 because the discovery stage,

replication stage, and combined meta-analysis showed chip-wide significance for joint effect

and main effect in smokers among EA participants. Among smokers and non-smokers, the

per-allele HR for T2D in the discovery plus replication meta-analysis was 0.90 (95% CI = 0.86,

0.93, p = 3.2 x 10−8) and 0.96 (95% CI = 0.94, 0.98, p = 7.5 x 10−5), respectively. In analyses con-

ditioned on rs12243326, rs4132670 (r2 = 0.72 and D’ = 0.95) was no longer significantly associ-

ated with main effect with T2D (all p>0.4).

Fasting glucose

In the discovery stage analysis for baseline FG among 23,189 participants, we observed 343

SNPs meeting the significance threshold of p<10−3 in at least one of the three planned strate-

gies for potential interaction: 175 among EA participants and 168 among AA participants.

Again, no locus was identified in both ancestral subgroups (S3 Table). Meta-analysis identified

rs4132670 in TCF7L2 (MAF = 0.30) as the most significant variant for the joint effect analysis

in EA participants only (p = 4.6 x10-8), but it did not meet the criteria for potential interaction

because its main effect association was also significant (p = 2.8 ×10−10)

Locus characterization

Of the five SNPs at four loci achieving statistical significance in the GEWIS analyses (TCF7L2,

CUBN, FBN1, and near C2orf63), only rs12243326, an intronic variant in TCF7L2, has trait

associations in the NHGRI-EBI GWAS Catalog, with the glycemic traits of 2-hour glucose

challenge, fasting insulin, FG, and BMI interaction on FG. Of the five SNPs at four loci achiev-

ing statistical significance in the GEWIS analyses (TCF7L2, CUBN, FBN1, and near C2orf63),

only the missense CUBN SNP is a nonsynonymous variant. All five GEWIS-significant SNPs
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overlap with at least one promoter or enhancer regulatory mark in at least one tissue with rele-

vance to diabetes, including brain, muscle, gastrointestinal tract, pancreas, adipose, and liver

(S4 Table). SNPs at three of the four loci (C2orf63, TCF7L2, and CUBN) had eQTL associa-

tions, and SNPs at all four loci overlap with either a DNA-binding site or alter a predicted

DNA-binding motif (S4 Table).

Discussion

Using data from 61,164 participants from 19 cohort studies, we performed two GEWIS to

identify potential SNP-by-smoking interactions in the risk of T2D and baseline FG. We identi-

fied potential interactions between smoking status and five SNPs at or near four genes

(TCF7L2, CUBN, C2orf63 (closest gene), and FBN1) on the risk of incident T2D in EA or AA

participants. We identified no significant SNP-smoking interactions for FG.

The relationship between smoking and T2D is complex and likely results from both con-

founding and true causal relationships [46]. Smokers are less likely to be physically active [47]

Fig 1. Regional plots for the association of rs1224336 in TCF7L2 with T2D.

https://doi.org/10.1371/journal.pone.0230815.g001
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and more likely to have unhealthier dietary intake [48, 49]. Still, a meta-analysis of 25 prospec-

tive studies by Willi found that smokers had a risk ratio for incident T2D of 1.44 (95% CI 1.31,

1.58) over 5 to 30 years of follow-up after adjustment, when possible, for BMI, physical activity,

and other potential confounders. Individuals with the greatest smoking exposure had the

greatest T2D risk [5]. Moreover, experimental data suggest plausible causal pathways between

smoking and T2D. First, smoking generates reactive oxygen species (ROS) [50], which

decrease in vitro insulin-mediated glucose transport [11]. Second, smoking stimulates the sym-

pathetic system and cortisol release, increasing central obesity and insulin resistance [12–14].

Nicotine may mediate these pathways, as it increases insulin resistance [15–18], possibly

through increased ROS production and TNF-α expression [18]. Nicotine also decreases insu-

lin secretion from pancreatic β-cells [19], and fetal and neonatal exposure to nicotine results in

β-cell dysfunction and apoptosis [20,21]. GEWIS might help elucidate additional biological

pathways to explain the relationship between smoking and T2D. A linkage disequilibrium

regression score study of 276 genetic correlations among 24 traits found no genetic correlation

between smoking status and either T2D or FG [51], but one small study has reported that

smoking status accounted for 22% of the gene-environment variance in β-cell function, as

measured by the homeostatic model assessment (HOMA-β) [52].

We observed the largest potential interaction effect size at the missense SNP rs1801232 in

the CUBN gene in individuals of African ancestry, where the per-allele hazard ratio for T2D

was 2.78 (95% CI = 1.92, 4.03, p = 5.5 x 10−8) among smokers and 1.01 (95% CI = 0.58, 1.77,

p = 0.97) among non-smokers (pjoint = 1.3 x 10−7). Cubilin is a component of the vitamin

B12-intrinsic factor complex receptor in the ileal mucosa [53], and it is expressed in the apical

brush border of the renal proximal tubule, where it participates in receptor-mediated endocy-

tosis of low-molecular-weight proteins [54]. Defects in the CUBN gene have been associated

with both vitamin B12 deficiency and proteinuria, and the absence of cubilin results in the

autosomal recessive condition Imerslund-Gräsbeck syndrome, characterized by B12 malab-

sorption and variable levels of proteinuria from impaired renal protein reabsorption [55].

Mice heterozygous for CUBN deletion have increased albuminuria and decreased levels of

blood albumin and high-density lipoprotein (HDL) cholesterol [56]. The CKDGen consor-

tium meta-analysis identified a missense SNP in CUBN (rs18801239) associated with urinary

albumin/creatinine ratio and clinical microalbuminuria in the general population, an associa-

tion replicated in an AA cohort with type 1 diabetes [57] and later in the Framingham Off-

spring Study [58]. This SNP appears independent from the CUBN SNP identified in the

present analysis: in conditional analyses on rs18801239 in the discovery cohort, we found that

rs18801232 remained significantly associated with incident T2D among AA smokers only.

These CUBN observations point to plausible mechanisms, namely depressed levels of vitamin

B12 and HDL cholesterol, through which smoking might interact with cubilin to cause T2D.

Cigarette smoking impairs cubilin-mediated renal protein reabsorption through cadmium

and other contaminants, which form complexes with proteins that have high affinity for cubi-

lin and accumulate in the proximal tubule [59]. A mendelian randomization study found an

association between a genetic instrument for low vitamin B12 levels (including one CUBN var-

iant) and higher fasting glucose levels and lower pancreatic beta-cell secretory function, as

measured by HOMA-β, but not with higher odds of T2D [60]. Mendelian randomization stud-

ies have been inconsistent in whether genetic instruments for low HDL are associated with

increased T2D risk [61–64]. Whether CUBN defects and smoking interact to cause T2D

through these or other mechanisms merits further investigation.

We observed more modest potential interaction effects at four other SNPs. Among AA par-

ticipants, one SNP in FBN1 was associated with T2D only in smokers. The glycoprotein fibril-

lin-1 is a component of microfibrils in the extracellular matrix, which contribute to the
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elasticity of skin, blood vessels, and other tissues. Variants in FBN1 are associated with Marfan

syndrome, an autosomal dominant connective tissue disorder characterized by ocular, skeletal,

and cardiovascular abnormalities, including aortic dilatation and cardiac valve regurgitation

[65]. Among EA participants, one locus near C2orf63, which encodes a neurite outgrowth

inhibitor, was associated with T2D only in never smokers. This observation may suggest either

a protective role of smoking in the association of C2orf63 and T2D or an C2orf63-T2D associa-

tion otherwise obscured by the association between smoking and T2D. The two remaining loci

we identified were in TCF7L2, a gene whose well-established association with T2D was first

identified in 2006 and which remains the locus with the largest effect on T2D risk [66–68].

Variants in TCF7L2 are associated with decreased pancreatic beta-cell function [69,70] and

incretin sensitivity [71], and their association with increased proinsulin levels suggest defects

in insulin processing and secretion [72]. Experimental models support the role of TCF7L2 var-

iants in developmental beta cell proliferation, proinsulin processing, and insulin vesicle dock-

ing [73].

Examination of the functional genomic annotation of the GEWIS-significant SNPs gener-

ates novel biological hypotheses. For example, allele-specific differential gene expression

impacting glucose homeostasis in smokers versus non-smokers could explain the observed

potential gene-smoking interaction. A mechanism of interaction involving gene expression

would be consistent with all five statistically-significant SNPs being associated with regulatory

histone marks. Even the missense variant in the CUBN gene overlaps with regulatory annota-

tion in numerous tissues, including active enhancer histone marks in muscle, adipose, pan-

creas, and liver, and tags multiple DNA-binding protein sites. Similarly, the intergenic SNP at

the C2orf63 locus overlaps with both active enhancer and promoter histone marks from brain/

neural tissues. The intronic variant in the FBN1 gene overlaps with promoter and/or active

enhancer marks in brain, muscle, adipose, gastrointestinal tract, or pancreatic tissues. Finally,

each of the two intronic SNPs at the TCF7L2 locus has a slightly different pattern of regulatory

annotation. In addition, the pattern of regulatory marks overlapping the two TCF7L2 SNPs

identified in this study differs from the regulatory annotation related to the lead TCF7L2 SNP

associated in T2D case-control GWAS, suggesting multiple, potentially distinct regulatory

mechanisms underlying T2D in smokers and non-smokers. Further work is required to illumi-

nate how smoking might modify biologic pathways, including gene regulation, and may sug-

gest novel targets for diabetes therapy.

Prior studies of gene-smoking interaction for T2D risk have used a candidate gene

approach, focusing on loci associated either with smoking behavior, such as CYP2A6 [74] or

the nicotinic acetylcholine receptor gene (CHRNA4) [75], or with T2D and other metabolic

traits [76], including HNF1A [77] and APOC3 [78]. Our analyses did not replicate the findings

of these small candidate-gene studies at our predefined genome-wide significance thresholds,

highlighting unique contributions using unbiased GEWIS approaches. Limitations of our

study include the dichotomous categorization of the smoking exposure (ever vs. never), which

likely masks some of the effect of smoking dose and duration on our outcomes of interest.

Nonetheless, similar approaches have successfully identified gene-smoking interactions for

traits such as blood pressure [79], pulmonary function [80], and BMI [81]. Second, a locus

identified by the inclusion of a significant joint test as one criterion for potential locus-smok-

ing interaction may actually have a significant main effect, not a significant interaction with

smoking, if the inclusion of smoking in the model explained residual variability in the outcome

and increased power to detect main effects. To limit the impact of this misclassification, we

excluded SNPs with significant main effects from eligibility for this criterion. Third, although

we used data from about 75,000 individuals across the CHARGE Consortium Gene-Lifestyle

Interactions Working Group to replicate our discovery analyses, data from larger cohorts such
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as the UK Biobank and Million Veteran Program now exist and might provide future opportu-

nity for additional replication. Fourth, our discovery analyses only leveraged genotype data

from the IBC array available from the CARe Consortium; the use of increasingly available

sequencing data from large cohort studies might enable the detection of rare variants that

mediate the relationship between smoking and glycemic traits. Fifth, the lack of adequate

numbers of T2D cases in all sex/ancestry groups impeded adjustment for sex in some models.

It is unknown whether this lack of sex adjustment biased the results and, if so, the direction

and magnitude of effect. Larger studies in individuals of non-European ancestry are needed to

address this limitation.

Conclusions

We have demonstrated the feasibility and utility of GEWIS to identify potential gene-smoking

interactions in T2D risk. Future mechanistic study of the loci identified may help untangle the

complex relationship between the dual public health threats of T2D and smoking.
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