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Abstract 

Light irradiation is considered an ideal non-invasive stimulus that enables precise tumor 

treatment with flexible, facile, and spatiotemporal control. Photodynamic therapy (PDT) is an 

important clinically relevant therapeutic modality that has proven to compensate for the 

reduced therapeutic efficacy of conventional chemotherapy. However, oxygen consumption 

during PDT can result in an inadequate oxygen supply which reduces photodynamic efficacy. 

In our quest to circumvent the limitations of chemotherapy and photodynamic therapy, we 

have engineered a robust and smart “all-in-one” nanoparticle-based drug delivery system 

capable of overcoming biological barriers and leveraging on several synergistic cancer cell 

killing mechanisms. The fabricated Targeted Micellar Nanoprobe (TMNP) had exceptionally 

high encapsulation efficiencies of a hydrophobic drug simvastatin (SV) and a photosensitizer 

protoporphyrin IX (PpIX) due to the ℼ-ℼ stacking of the aromatic groups of SV and PpIX 

and strong hydrophobic interactions with the alkyl chains of the carrier. In-vitro results 

demonstrated that TMNP exhibited excellent colloidal stability, biocompatibility and drug 

retaining capability in physiological condition. Under light irradiation, TMNP causes the 

accelerated generation of reactive oxygen species (ROS) which subsequently damages the 

mitochondria. On further evaluation of the mechanisms behind the superior anti-cancer effect 

of TMNP, we concluded that TMNP causes synergistic apoptosis and necrosis along with cell 

cycle arrest at the G1-S phase and elicits anti-angiogenic effects. Taking into consideration 

that these promising results on 2D monolayer cell cultures might not translate into similar 

results in animal models, we developed 3D multicellular tumour spheroids (MCs) as an 

intermediate step to bridge the gap between 2-D cell experiments and in-vivo studies. TMNPs 

showed enhanced penetration and growth inhibition on MCs. In addition, the modelling of 

the transport of TMNP in the tumour exhibited the improved effective delivery volume. 

Overall, TMNPs could potentially be used for image-guided delivery of the therapeutic 

payloads for precise cancer treatment.   
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Introduction 

Currently, glioma patients have one or a combination of three treatment options: radiation 

therapy, chemotherapy or surgery [1]. Although surgical resection of the tumour is the 

preferred option, often it is not possible as the tumours cannot be separated from the 

surrounding tissue or is located near sensitive areas in the brain which makes surgery risky. 

Furthermore, in many cases, even after complete resection, the tumour recurs from the 

resection cavity margin [2]. Hence, chemotherapy is used an adjuvant treatment after surgery. 

However, the clinical efficacy of monotherapy using anti-cancer agents has been limited by 

its systemic toxicity, total dose restrictions, tumour heterogeneity, and inevitable drug 

resistance. To address this issue, combination therapies have been considered as a potential 

strategy for the treatment of gliomas [3]. 

Several studies have shown that drug delivery systems (DDSs) with two or more 

therapeutic components leveraging on different anti-tumour mechanisms provide a 

synergistic chemo-chemo, chemo-radio, chemo-photodynamic, chemo-thermal and chemo-

siRNA effect, which results in enhanced cancer cell apoptosis, reduced tumour progression 

and minimal systemic toxicity. Among these, photodynamic therapy (PDT) has been 

extensively studied as it has several advantages over other treatment modalities such as non-

invasiveness, fast cure process and superior spatiotemporal control [4, 5]. However, its 

therapeutic efficacy is hampered by PDT-mediated hypoxia developed during the treatment. 

To overcome this limitation, integration of PDT with chemotherapy would reduce the O2 

dependence for high therapeutic efficacy. Hence, the combination of photosensitizers with 

chemotherapeutic agents in a rationally designed “all-in-one” DDS to achieve 

chemophototherapy has attracted a lot of attention in clinical tumour treatment. 

DDSs with innovative drug combinations have immense potential in countering drug 

resistance and in reducing tumour metastasis by inhibiting multiple tumour cell survival 

pathways [5]. Hu et al. validated that the combination of chlorin 6, doxorubicin (DOX) and 

manganese dioxide produced a synergistic anti-tumour effect by combined chemo-PDT along 

with generation of oxygen in an MCF-7 tumour-bearing mouse model [6]. Recently, Liu et al. 

developed a versatile metal-organic framework capable of selective cathepsin B responsive 

imaging and chemo-PDT therapy which exhibited superior treatment efficacy compared to 

individual therapies [7]. Lin’s group developed nanoscale coordination polymers (NCPs) as a 

potential DDS to enable both chemotherapy and PDT in a single delivery system [8]. 
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NCP@pyrolipid core–shell nanoparticle with high loading contents of the photosensitizer 

pyrolipid and oxaplatin was designed to synergistically induce cancer cell necrosis and 

apoptosis and provoke an immune response. Further treatment with PD-L1 checkpoint 

blockade therapy resulted in not only regression of primary tumours but also regression of the 

distant tumours by generating a systemic tumour-specific T-cell response [9].  

2D cell cultures remain the most commonly used preliminary evaluation of the 

therapeutic efficacy of DDSs due to their reproducibility, simplicity and low cost [6, 7] . 

However, in most cases, promising results observed in these suboptimal 2-D monolayer cell 

culture systems result in misleading observations and conclusions and do not translate to 

similar results in animal models due to the absence of cell-cell or cell-extracellular matrix 

interactions [8-11]. Consequently, multitudes of ineffective therapeutics are tested on 

animals, resulting in overuse of animals in experimentation and increase in the overall time 

and cost of the development process [12-14]. Hence, we developed multicellular spheroids 

(MCs) as an intermediate step to bridge the gap between 2-D cell experiments and in-vivo 

studies. MCs closely mimic many of the therapeutically relevant pathophysiological 

characteristics of human solid tumours such as their structural organization, nutrient 

gradients, hypoxia and production of an extracellular matrix, which act as major barriers for 

penetration of the nanoparticles into solid tumours [15-17].  

In this study, we aimed to exploit the advantages of the chemo-PDT by developing a 

dual-in-dual blood brain barrier (BBB) targeted nanoprobe for cancer cell imaging and a 

synergistic anti-tumour effect. 1,2-distearoyl-snglycero-3-phosphoethanolamine-N-

[methoxy(polyethyleneglycol)-2000] (DSPE-PEG2000) is an FDA approved material which 

shows excellent biodegradability and negligible toxicity upto 1000 µg/ml [18, 19]. The 

glutathione modified multifunctional DSPE-PEG2000 micellar nanoprobe (TMNP) was first 

encapsulated with an anti-cancer drug simvastatin (SV) and protoporphyrin IX (PpIX) as the 

signal and recognition moiety and photosensitizer. Simvastatin is a 3-hydroxy-3-methyl-

glutaryl coenzyme A (HMGCoA) reductase inhibitor that reduces cholesterol synthesis by 

preventing the conversion of HMG-CoA to mevalonate and is currently used in the clinic to 

treat hypercholesterolemia and cardiovascular diseases in high-risk patients [20]. 

Interestingly, recent experimental studies and clinical trials have demonstrated that 

simvastatin can elicit an anti-tumour effect, improve clinical prognosis and significantly 

prolong the survival time of glioma patients by inducing cell cycle arrest and apoptosis and 

inhibiting angiogenesis [21-27]. Meanwhile, PpIX in when subjected to light of suitable 
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wavelength and in the presence of oxygen can directly kill tumour cells through apoptosis, 

necrosis and vascular damage [1, 28, 9].  

Scheme 1 represents how the TMNPs cross the tightly regulated BBB via receptor 

mediated endocytosis and accumulate within the tumour tissue through the enhanced 

permeation and retention (EPR) effect. TMNP maintains structural integrity in the 

extracellular environment but intracellularly in an acidic environment releases SV and PpIX 

in a triggered fashion causing time- and site-specific cytotoxicity. Once the imaging of the 

cancer cells indicates adequate accumulation of the TMNPs, a 630 nm laser irradiation is 

used to activate the released PpIX to generate reactive oxygen species (ROS). Meanwhile, 

SV contributes to highly effective chemophototherapy involving synergistic apoptosis and 
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necrosis in addition to cell cycle arrest and vascular damage. 

 

Scheme 1. Proposed cytotoxicity mechanism of TMNP. Schematic showing high concentration of TMNP 

surrounding the tumour by leveraging on receptor mediated endocytosis and leaky vasculature of the BBB. 

2. Experimental Section 

2.1 Materials 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 

(DSPE-PEG2000) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide 

(polyethylene glycol)-2000](DSPE-PEG2000-MAL) were brought from Avanti Polar Lipids 

(USA). Reduced L-glutathione, simvastatin, 2’,7’-dichlorodihydrofluorescin diacetate 

(DCFH-DA) and tetrahydrofuran (THF) were obtained from Sigma Aldrich (Singapore). 

CellTiter 96® AQueous One Solution Cell Proliferation Assay was purchased from Promega 

Corporation (USA). 4,6-Diamidino-2-phenylindole (DAPI), LysoTracker Green DND-26, 

JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcarbocyanine iodide) assay kit 

and Annexin V apoptosis detection kit were provided by Life Technologies.  Dulbecco’s 

Modified Eagle’s Medium (DMEM), F-12K medium, fetal bovine serum (FBS), 0.25% 

trypsin-EDTA solutions, and penicillin-streptomycin were purchased from Gibco. The 

dialysis bags (MWCO = 1000Da) were from Spectrum Laboratories Inc. (USA).  

2.2 Cell lines and cell culture conditions 

C6 glioma cell line (rat), bEnd.3 cell (mouse), NIH/3T3 (mouse) and human umbilical vein 

endothelial cells (HUVEC) were brought from American Type Culture Collection (ATCC; 

Manassas, VA). C6, bEnd.3 and 3T3 cells were cultured in DMEM medium, supplemented 

with 10% FBS, 100 IU/ml penicillin and 100 mg/ml streptomycin. HUVEC cell line was 

cultured in F-12K medium. Cells were grown at 37 °C with 5% CO2 conditions. 

2.3 Synthesis and Characterization of Glutathione modified DSPE-PEG  

DSPE-PEG-Glut was prepared via thiol maleimide “click” reaction of DSPE-PEG-MAL and 

L-reduced Glutathione [30]. Briefly, DSPE-PEG-MAL and L-reduced Glutathione (2:1, 

mol/mol) were dissolved in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

and allowed to react overnight at room temperature. Subsequently, the solution was dialyzed 

(MWCO = 1000 Da) against distilled water at pH 7.4 for 24 hours and then lyophilized to 
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obtain DSPE-PEG-GLUT. The yield was observed to be 88%. The structure of DSPE-PEG-

GLUT was confirmed using nuclear magnetic resonance (1H NMR) and MALDI-TOF. 1H 

NMR spectra of DSPE-PEG-MAL, L-reduced Glutathione and modified GLUT-DSPE-PEG 

were recorded on a nuclear magnetic resonance spectrometer (Ascend TM 600 MHZ,Bruker) 

were solubilized using deuterated DMSO as the solvent.  

2.4 Preparation and Characterization of TMNP and MNP 

A lipid film rehydration method was used to prepare TMNPs [31]. Briefly, 5 mg of DSPE-

PEG, 5 mg of DSPE-PEG-GLUT, 0.8 mg SV and 0.4 mg PpIX were dissolved in 2 mL THF. 

Using a vacuum rotary evaporator, solvent was removed and a dry thin-film was obtained. At 

room temperature, the dried thin-film was hydrated with HEPES for 15 minutes. The 

unloaded SV and PpIX were removed using a 200 nm polycarbonate membrane (Millipore 

Co., Bedford, MA). MNPs were prepared using an identical procedure. The morphology of 

TMNP (SV and PpIX loaded Targeted Micellar nanoprobe) was studied by transmission 

electron microscopy (TEM, JEM-2010F, JEOL, Japan) following negative staining with 

phosphotungstic acid. Particle size and zeta potential were recorded using a particle size 

analyzer (NanoBrook90 Plus, Brookhaven Instruments Co., USA) by dynamic light 

scattering (DLS) at a constant angle of 90°. A solution of TMNP (10 mg) dissolved in 1ml 

PBS (pH = 7.4). The concentration of SV and PpIX in the nanomicelles was determined 

using a UV-Vis spectrophotometer (Shimadzu UV-1700 spectrometer) at 205 nm and 405 nm 

respectively. Drug loading content (DLC) and drug loading efficiency (DLE) were calculated 

as follow:    

                       
                     

                              
              ........................... (1) 

  

                     
                     

                      
                          ............................ (2) 

 

2.5 In-Vitro Drug Release Study  

In vitro release of SV and PpIX from TMNP was studied through the dialysis method under 

two different pH environments: sodium-acetate buffer (10 mM, pH 5.0) and PBS (10 mM, 

pH 7.4) [32]. Briefly, 1 ml of TMNP was transferred to a dialysis tube (MWCO 1000Da). 

The dialysis tube was dropped into the desired releasing media and shaken at 37 °C. At 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



8 
 

different time points, 1 mL of the release medium was withdrawn and re-filled with 1 ml of 

fresh medium. The amount of released drugs was quantified by UV-Vis spectrophotometry.  

2.6 Stability of Drug Loaded Micelles 

The colloidal stability was studied by adding 100 µl of TMNP to 1 mL of water, HEPES 

buffer, and DMEM cell medium with 10% FBS and incubated at 37 °C, with gentle shaking 

at 50 rpm. The change in the micellar size at different intervals was studied using a 90Plus 

particle-size analyzer (Brookhaven Instruments Co., USA) instrument and the transmittance 

was measured at 750 nm by a microplate reader.  

2.7 Evaluation of Hemolytic Activity 

Freshly collected sheep Red blood cells (RBCs) were taken and washed thrice with sterile 

PBS (1500 g for 5 min).  Serum was removed and the cells were mixed well in phosphate 

buffer. 500µL of six different sample concentrations (10, 20, 40, 80, 160, or 320 μg/mL) of 

TMNP in saline was mixed with 500 µL of RBC solution. The reaction mixture was left 

undisturbed for 2 h at 37 °C, and centrifuged again at 1500g for 5 min. The supernatant was 

carefully collected and the optical density (OD) was measured at 545 nm using a UV-Vis 

spectrophotometer by keeping blood/water mixture as a positive control (100% lysis) and 

blood/saline mixture as a negative control.  

2.8 In-Vitro Cytotoxicity Studies  

The cell toxicity of the free payloads and drug loaded micelles (SV concentration range 0.301 

- 48.25 µg/ml) was studied using MTS assay. Free SV with/without light, free PpIX 

with/without light, and combination of free SV + free PpIX with/without light were also 

studied at concentrations similar to the co-loaded micelles. Briefly, C6 cells and 3T3 cells 

were grown into a 96-well plate at a density of 5  103 cells per well.  The cells were then 

treated with different treatment groups for 24 h. After incubation, the culture media was 

removed and fresh medium was added to eliminate micelles which are not uptaken. The cells 

were irradiated with a 130 mW/cm2 630-nm laser for 5 min and incubated for 4h. Cell 

viability was then evaluated by MTS assay in triplicate.  After 2 h, the optical density was 

measured by a microplate reader (Tecan, Switzerland) at 490 nm.  

For qualitative determination of live/dead cells, C6 cells were cultured at a density of 

2  105 in each 35-mm glass-bottom dishes. After treatment with free drugs and co-loaded 
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micelles for 6 h, the PDT groups were irradiated with a 130 mW/cm2 630-nm laser for 5 min. 

Later, the cells were rinsed and stained with calcein-AM and ethidium homodimer-1 for 20 

min, washed three times with Dulbecco's phosphate-buffered saline (DPBS) and observed 

using Olympus inverted microscope.   

2.9 In-Vitro BBB Penetration Study 

An in-vitro BBB model was constructed using C6 and bEnd.3 cells using a non-contact co-

culture transwell system as described previously [33]. Briefly, the upper chamber of 

transwells coated with 2% gelatin solution was used to culture bEnd.3 cells (1 x 104 

cells/well) in DMEM containing 10% FBS for 7 days. Transepithelial electrical resistance 

(TEER) was used to measure the integrity of tight junction dynamics in the endothelial cell 

monolayer. Monolayers with TEER values higher than 300 Ω cm2 were selected for 

experiments. C6 cells (4 x 104 cells/well) were seeded in the lower compartment of 

transwells. PpIX, MNP and TMNP (based on IC50 concentration) were added to the upper 

compartment to assess their penetration efficiency through the BBB. After 6 hours of 

incubation, the upper chamber was removed and the lower chamber was further incubated 

until 24 h. Confocal microscopy was used to observe the fluorescence intensity of the C6 

cells. 

2.10 Quantitative and Qualitative Intracellular Distribution of TMNP 

Cellular uptake of the free drug and co-loaded micelles was investigated using confocal 

imaging. C6 cells were cultured into 35-mm glass-bottomed dishes at a density of 1.0   105 

cells per well for 24 h. The cells were then incubated with 0.301 µg/ml of PpIX loaded 

targeted micelles in complete medium. Free PpIX and PpIX loaded micelles were also tested, 

in concentrations correspondent to the amounts loaded in PpIX targeted micelles. After 

incubation for 3 h and 6 h, cells were rinsed with DPBS and incubated with LysoTracker 

green for 20 min and rinsed with DPBS twice. The cells were fixed with 4% 

paraformaldehyde, washed, and stained with DAPI. The cells were washed again thrice with 

DPBS and observed by Confocal Laser Scanning Microscopy (CLSM). 

 Furthermore, the cell uptake was quantified by flow cytometry. At a density of 2   

105 cells per well was grown in 6-well plates for 24 h.  The cells were then treated with free 

PpIX, PpIX-loaded micelles and PpIX-loaded targeted micelles for 3 h. The drugs were 

removed and rinsed with DPBS for twice. The cells were then trypsinized, centrifuged and 
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replaced with 1 mL PBS to obtain a uniform suspension. The suspended cells were examined 

by a flow cytometer (Life Technologies).  

2.11 Evaluation of Cellular Internalization Pathway 

To evaluate the effect of temperature on the cell uptake, C6 cells (1.5 x 105) cultured in 8 

well glass dishes were kept at 37 °C and 4 °C for 1 hour before adding the TMNPs (based on 

IC50 concentration). The cells were washed with DPBS thrice, fixed with 4% 

paraformaldehyde and stained with DAPI. Repeated washing with DPBS was done and 

CLSM was used to observe the resulting fluorescence. The mechanism of endocytosis of 

TMNPs in C6 cells was studied by pre-incubating the C6 cells with different endocytosis 

inhibitors such as dynasore (80mM), chlorpromazine (25mM), genistein (25mM) for 1 hour. 

Then, the cells were incubated with TMNP for 2 hour and washed with DPBS. The remaining 

procedures were followed as mentioned above.  

 

2.12 Intracellular ROS Detection 

ROS production was measured using DCFH-DA. C6 cells were cultured at a density of   2.5 

  105 cells per well in 35-mm glass-bottomed dishes for 24 h. The cells were then incubated 

with TMNP with SV concentration of 0.301µg/ml for 12 h. Free SV, free PpIX and MNP 

were also studied at concentrations similar to the co-loaded micelles. Drugs were removed 

and DCFH-DA (10 μM) in serum free medium was added and was left undisturbed for 1h. 

The cells treated with TMNP were irradiated with a 130 mW/cm2 630-nm laser for 5 min. 

Control and treated groups were rinsed with DPBS thrice, and fixed with 4% 

paraformaldehyde for 20 min, stained with DAPI for 5 min. The cells were washed three 

times with DPBS and then imaged under CSLM. 

2.13 Mitochondrial Membrane Potential Detection 

Damaged mitochondrial membrane was detected using JC-1 dye. C6 cells were grown at 2.5 

  105 cells per well in 35-mm glass-bottomed dishes for 24 h.  The cells were then incubated 

with TMNP with SV concentration of 0.301µg/ml for 12 h. Free SV, free PpIX and MNP 

were also tested in concentrations correspondent to the amounts loaded in TMNP. The cells 

treated with TMNP were irradiated with a 130 mW/cm2 630-nm laser for 5 min and 

incubated further for 1 h. Positive control group was treated with CCCP for 5 min. Control 

and treated groups were rinsed  with DPBS twice , stained with JC-1 (5 μg/mL) and 
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incubated for 20 min. The cells were fixed with 4% paraformaldehyde for 20 min; after being 

washed twice with DPBS, the cells were imaged by a confocal microscope. 

2.14 Cell apoptosis study 

The apoptosis cells percentage was quantified by Annexin V-FITC/PI detection kit. C6 cells 

were cultured in 6-well plates at a density of 2  105 cells per well. The cells were treated 

with 0.301 µg/ml (SV concentration) of TMNP for 12 h. Free SV, free PpIX and MNP were 

also tested in concentrations similar to the amounts loaded in TMNP. The TMNP treated 

group was irradiated with a 130 mW/cm2 630-nm laser for 5 min and incubated further for 12 

h. The cells were then trypsinized, collected, centrifuged at 1500 rpm for 5 min and re-

suspended in 200 µL of 1X annexin-binding buffer. Next, annexin V-FITC (5 µL) and PI (5 

µL) were added to cell suspension tube and incubated at room temperature for 20 min 

protected from light. After incubation 1X annexin-binding buffer (400 µL) was added, mixed 

gently, placed on ice and then analyzed by flow cytometry.   

2.15 Caspase enzymatic activity assay 

Caspase enzymatic activity was quantified based on the instructions of the manufacturer for 

the caspase activity assay kit (Abcam, Singapore). The cells were treated with different 

treatment groups.  After 12 h, the cells treated with Free PpIX, and TMNP were irradiated 

with a 130 mW/cm2 630-nm laser for 5 min and incubated for 6 h. The cells were washed 

three times with DPBS. The C6 cells were then washed, trypsinized and centrifuged at 

1500 rpm for 5 min at 4 °C. Supernatant was discarded and 50 μl cold lysis buffer was 

transferred into the tube to the lyse the cell pellets and incubated on ice for 1 h. Using the 

Bradford protein assay kit, the individual sample’s total protein concentration was measured. 

2  reaction buffer (50 µL) was added to the protein supernatant (50 μL) in each individual 

sample. Next, 10 μl caspase 9 and caspase 3 substrate was added and incubated at 37 °C for 

1 h in dark. Lastly, each experimental sample were measured at 405 nm using a microplate 

reader.  

2.16 Capillary tube formation assay 

Growth factor reduced BD Matrigel (50µl) was transferred onto a 96 well plate and incubated 

at 37 °C for 30 min for gelation. Endothelial (HUVEC) cells suspended in serum-free F-12K 

medium was seeded on the Matrigel-coated plate at 20,000 cells per well. Cells were co-
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incubated with serum-free medium containing various treatment groups as described in the 

cell apoptosis study. After 6 h of incubation, HUVECs formed tubes in the control group and 

the cells were carefully washed with DPBS without disrupting the tubules. The tubules were 

imaged using an inverted fluorescence microscope. Based on the number of branching points, 

the tube formation was quantified.  

2.17 Cell cycle distribution  

C6 cells were cultured in 6-well plates at a density 4   105 cells per well, incubated for 24 h, 

and treated with free SV, Free PpIX, MNP and TMNP (based on IC50 concentration) for 12 h. 

After PDT, the cells were incubated further 12 h. The cells were then harvested with trypsin, 

washed with cold DPBS, and fixed by pre-cold 70% ethanol for overnight at 4 °C. The cells 

were washed twice with DPBS centrifuged and treated with RNase A, and propidium iodide 

(PI) for 30 min at 37 °C in the dark condition. Finally, the stained cells were analyzed by a 

flow cytometer.  

2.18 Growth Inhibition study in C6 Spheroids  

C6 spheroids were cultured in ultra-low attachment 96 well round-bottom plates at a density 

of 2000 cells per well [34]. The plates were centrifuged at 1750 rpm for 10 min. After 2 days, 

the C6 spheroids were treated with TMNP with SV concentration of 0.301µg/ml in complete 

medium. Free SV, free PpIX, and MNP were also tested in equivalent SV concentrations. 

After 24 h, all the spheroids were washed thrice with complete DMEM and the TMNP treated 

group was irradiated with a 130 mW/cm2 630-nm laser for 5 min. The medium was removed 

every alternate day and replaced with fresh medium. Spheroids were imaged using an 

inverted fluorescence microscope with a 10X objective lens (EVOS M7000). An automated 

image analysis macro developed for use with Image J (NIH, Bethesda, MD, Version 1.44 m) 

was used to measure the cross sectional area of the MCs, which in turn was used to determine 

the volume of the MCs across 7 days.  

2.19 Evaluation of Penetration through C6 Spheroids  

Three-Dimensional C6 spheroids were developed as mentioned in the growth inhibition 

study. The C6 spheroids were treated with 0.301 µg/ml of TMNP for 6 h. Free PpIX and 

PpIX loaded micelles were also tested, in concentrations correspondent to the amounts loaded 

in PpIX targeted micelles. The spheroids were then washed thrice with DBPS and fixed with 
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4% paraformaldehyde for 20 min. After washing thrice using DBPS, the spheroids were 

permeabilized with 1% Triton X-100 for 10 mins at room temperature. The spheroids were 

then dehydrated in an ascending series of methanol (25%, 50%, 75%, 100%) at 4°C for 15 

mins each, and rehydrated in the same descending series and washed thrice with DBPS. 

Finally, the spheroids were stained with Phalloidin-iFluor 488 and DAPI for 1 h and washed 

thrice with DBPS before using CLSM for imaging. 

2.20 Bio-TEM observation of C6 tumour spheroids 

According to PpIX drug concentration, 3D tumour spheroids were incubated with TMNP at a 

concentration of 6.093 µg/mL for 12 h at 37 °C with 5% CO2 atmosphere. The C6 tumour 

spheroids were harvested, washed with 1× DPBS (pH 7.4) and fixed with 2.5% 

glutaraldehyde for 3 h at 4 °C. The MCs were then washed DPBS twice, centrifuged at 1500 

rpm for 10 minutes, and post-fixed with 1% osmium tetroxide in DPBS for 30 minutes. The 

cells were subsequently dehydrated with ethanol series from 25% to 100% and acetone for 10 

minutes each, infiltrated and embedded in Araldite resin. The samples were trimmed on a 

microtome (Leica Ultracut UCT, Germany) and 100-nm thick sections were mounted on a 

TEM grid and stained with lead citrate for 8 minutes. The sections were observed with Tecnai 

Spirit G2 Transmission Electron Microscope (USA). 

2.21 Modelling of TMNP transport in brain tumour 

Brain tumour can briefly be divided into three compartments, including the extracellular 

space (ECS), cell membrane (CM) and intracellular space (ICS), respectively. TMNPs after 

penetrating BBB would experience multiple transport processes in these compartments, and 

finally release their therapeutic payloads in tumour cells as indicated in Scheme 1. The 

concentration of TMNP in ECS (    ) depends on the diffusive and convective transport 

with interstitial fluid flow and dynamic association with receptors on CM, governed by   

     

  
      

        (     )              ……………….(3) 

where   is the interstitial fluid velocity.      stands for the TMNP diffusivity in tumour ECS. 

   and    are the rates of TMNP association and dissociation with receptors, respectively. As 

the associated TMNP on CM can be taken-up by tumour cells, this TMNP concentration 

(   ) is calculated by    

    

  
                                    …...........……. (4) 

where    and    are the rates of cell endocytosis and cell recycling, respectively. Moreover, 

taking into account of the intracellular drug release, the TMNP concentration in tumour cells 

(    ) is given by   
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                                      ....………..…..(5) 

in which      is the drug release rate.  

The flux of TMNP penetrating BBB (   ) can be expressed as  

         (         )                       …..…….…….(6) 

where     is the transvascular permeability,      refers to the concentration in blood. The 

Eq.(5) is applied as the boundary condition to count the amount of TMNPs entering the 

tumour from blood.  

The interstitial fluid velocity was found in the scale of 1.0E-7 m/s in brain [35]. The values of 

rest model parameters are summarised in Table 1. Transient simulations are performed until 

the dynamic equilibrium established between the source term and sink term, which refer to 

the TMNP gain from blood and the intracellular release, respectively. 

Table 1. Model parameters 

Parameter MNP TMNP Source 

Transvascular permeability * (m/s) 1.0E-9 4.5E-9 [36, 37] 

Diffusivity in ECS ˠ (m2/s) 1.13E-11 1.13E-11 [37, 38] 
Association rate with receptor on CM (min-1) 1.0E-1 1.0E-1 [39, 40] 
Dissociation rate with receptor on CM (min-1) 1.0E-2 1.0E-2 [39, 40] 

Endocytosis rate (min-1) 1.0E-1 1.0E-1 [39, 40] 
Recycling rate (min-1) 1.0E-3 1.0E-3 [39, 40] 

Release rate † (min-1) 1.2E-1 1.2E-1 [41] 

* The transvascular permeability of TMNP is estimated 4.5 times higher based on Figure 

3(c). 

ˠ The diffusivity is estimated based on the cited references and the TMNP and MNP size of 

80 nm.  

† Release rate is derived from results of pH=5.0 shown in Figure 1(f), with the lower value 

adopted. 

2.22 Statistical analysis 

The quantitative data collected were expressed as mean ± S.D. Statistical significance was 

analyzed using three-sample Student’s test. All experiments were performed in triplicates, P 

< 0.05 was considered statistically significant. 

3. Results and Discussion  

3.1 Construction and Characterization of the theranostic nanoprobe 

The hydrophobic core inside the micelle formed by DSPE provides a stable environment for 

encapsulating both SV and PPIX, while hydrophilic PEG on the surface increases the 

hydrophilicity of the whole drug-loaded micelle. Furthermore, hydrophilic PEG chains 

provide stealth properties and steric stabilization, thereby increasing the in-vivo circulation 
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time of the micelles. The conjugation of an endogenous tripeptide, glutathione to DSPE-PEG-

MAL can be rationalized due to the overexpression of sodium-dependent glutamate receptors 

such as AMPA and NPSH present on the BBB and glioma cells [42-47]. Average molecular 

masses of DSPE-PEG-MAL and DSPE-PEG-GLUT which were measured by performing 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF 

MS), were 2941 and 3248 Da, respectively (Figure 1a), indicating successful conjugation of 

glutathione onto DSPE-PEG-MAL. The molecular structure of the prepared DSPE-PEG-

MAL was determined using the 1H NMR spectra (Figure S1). The DSPE-PEG-GLUT 

spectrum clearly shows the PEG resonance peak at ℼ3.5 ppm and was unaffected by the 

conjugation with L-reduced Glutathione. The resonance peak at ℼ 6.92 ppm represents the 

terminal Mal group of DSPE-PEG-MAL. However, in the spectrum of DSPE-PEG-GLUT, 

the MAL peak disappeared, suggesting that the Mal groups of DSPE-PEG-MAL had reacted 

with the thiol groups of L-reduced Glutathione. This data further corroborates the successful 

conjugation of Glutathione with the DSPE-PEG2000-MAL. Using NMR, the degree of 

substitution was calculated to be ~71.78%. 

            By varying the weight ratios of SV to PpIX to DSPE-PEG2000 (mSV: mPPIX: mDSPE-

PEG2000) micellar nanoprobes were formulated (Table S1). The formulated nanoprobes were 

studied to determine their particle size, polydispersity indices (PDI), surface charge, 

encapsulation efficiencies and drug loading content. Initially, by increasing the mSV: 

mDSPE-PEG2000 ratio, the diameter of the nanoprobes decreased, while the drug loading 

efficiency increased (Table S1). This may be due to strong hydrophobic interactions between 

the phenyl groups of SV and the alkyl groups of DSPE-PEG2000 [48]. However, when PpIX is 

incorporated into the micellar core along with SV, the size increases by ~5 times. This 

indicates that co-loading of PpIX and SV in the hydrophobic core increases the volume of 

micelles. It was interesting to note that as the SV content increases in the nanoprobe, the 

encapsulation efficiency of PpIX also increases, thereby facilitating high loading content of 

both SV and PpIX. This correlation is due to the ℼ-ℼ stacking of the aromatic groups of SV 

and PpIX [49-51]. Modifying the MNPs with glutathione resulted in a slightly bigger TMNP 

(Figure 1b).  The morphologies of TMNP were examined by TEM. The TMNP had a uniform 

particle size of ~80 nm with spherical morphology (Figure 1b inset). The TEM images 

displayed a smaller particle size compared to the particle size determined by DLS, which can 

be attributed to the stretching property of the hydrophilic PEG terminal and swelling of the 

hydrophobic micellar cores in aqueous medium. It was also observed that the surface charge 
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of the micelles became more negative when PpIX and glutathione were incorporated into the 

formulation (Figure 1c). The increase in negative charge of TMNP compared to SVLM and 

MNP is due to the negatively charged carboxyl groups in Glutathione [52]. TMNP also 

showed favorable structural stability in physiological environment as there was negligible 

change in the particle size and PDI when the micelles where incubated in DMEM cell 

medium (Figure S2). TMNPs at different concentrations showed no visible hemolytic effects 

indicating excellent hemocompatibility (Figure S3). 

The absorption properties of PpIX and SV were still intact after being loaded onto the 

PE-PEG micelles as confirmed by UV/Vis spectroscopy (Figure 1d). TMNP showed a 

characteristic sharp Soret band at 405 nm and the well-known “stairs” in the 450-630 nm 

region (Q band of PpIX) along with the absorption maxima of SV at 205 and 237 nm. It is 

interesting to note that the wavelength of maximum absorbance (λmax) was independent on 

the loading percentage of PpIX and SV. PpIX existed as a monomer inside the hydrophobic 

micellar core as indicated by the Soret band at 405 nm and this was proven by the absence of 

peak shift in the fluorescence spectrum. This lack of aggregation increases the efficacy of 

PDT as aggregated porphyrins usually have a low photoactivity [53]. After encapsulation of 

PpIX, the TMNPs turn out to be fluorescent. However, at the same loaded concentration the 

fluorescence intensity of TMNP was comparatively lower than the free PpIX. As PpIX was 

loaded onto the micelles, the ℼ-ℼ stacking of their aromatic group with those of SV might 

have caused the fluorescence quenching of 2.1 times over free PpIX, as measured by the 

change in fluorescence intensity (Figure 1e).  

Table 2. Summary of formulations (SVLM – Simvastatin loaded micelles, MNP – 

Micellar Nanoprobe and TMNP – Targeted Micellar Nanoprobe) 

Formulation Size (nm) 
EE% 

(SV) 

DLC% 

(SV) 

EE% 

(PpIX) 

DLC% 

(PpIX) 

SVLM 24.82 ± 1.5 95.36 ± 0.2 7.62 ± 0.02 - - 

MNP 100 ± 1 96.51 ± 1 7.72 ± 0.08 97.54 ± 0.5 3.90 ± 0.02 

TMNP 112 ± 3.4 96.23 ± 0.53 7.69 ± 0.05 96.84 ± 0.8 3.87 ± 0.03 

 

3.2 In-Vitro Passive Release Characteristics of TMNP 
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The passive release of PpIX and SV from TMNP at different pH values was examined using 

a dialysis method. The release of PpIX and SV from TMNP is plotted in accordance with 

time (Figure 1f). At pH 7.4, SV and PpIX exhibited a first-order burst release in the first 7.5 

hours, before the release rate gradually slowed and stopped after 33 hours. Whereas, at a 

mildly acidic pH 5, the burst release is more pronounced. The final amount of SV and PpIX 

passively released after 33 hours increased from 9% and 7% (pH 7.4) to 82% and 77% (pH 5) 

respectively. This pH dependent release pattern suggests that the micelles remain stable at the 

blood and physiological pH level, whereas in the acidic microenvironment of the tumour 

cells, the micelles disassemble and release the encapsulated agents.  

 

Figure 1. Characterization: a) MALDI-TOF spectra of DSPE-PEG-MAL (black) and DSPE-PEG-GLUT (red). 

b) Hydrodynamic diameter (DH) histogram distribution profile of TMNP (black) and MNP (red), (inset) TEM 

image of TMNP, Scale bar 200 nm. c) Zeta potential of SVLM, MNP and TMNP. d) Absorbance spectra of free 

PpIX (black) and TMNP (red). e) Fluorescence emission spectra after excitation at 405 nm of free PpIX (black) 

and TMNP (red). f) Release of SV and PpIX from TMNP over time in of different pH solutions. (SVLM = 

Simvastatin loaded micelles ; MNP = SV and PpIX loaded Micellar nanoprobe; TMNP = SV and PpIX loaded 

Targeted Micellar nanoprobe). 

3.3 Cytotoxicity of TMNP via combined chemotherapy and PDT 

The effect of drug concentration, irradiation time, power density as well as the presence or 

absence of light exposure on C6 cell line was evaluated. The cytotoxicity of different drug 

formulations with/without irradiation was investigated on C6 and 3T3 cell lines via standard 
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MTS assays. For in vitro therapeutic experiments, each group exhibited a concentration-

dependent cytotoxicity (Figure 2a, b, c, d). It should be noted that an enhanced therapeutic 

effect was observed in the TMNP + Light group, which might be ascribed to the synergistic 

effects of chemotherapy and PDT. Without PDT, PpIX showed an excellent 

cytocompatibility on C6 and bend.3 cells.  Although, the brain tumour model used in this 

study (C6 cells) is usually associated with a relatively leaky BBB [54], the efficacy of MNP 

on C6 brain tumour growth and survival was small. However, the therapeutic efficacy of 

TMNP at a similar dose was significantly higher. Interestingly, ℼ90% of 3T3 cells are viable 

after treatment with TMNP at a SV concentration 6.031 µg/mL, which decreases to ~80% 

even after light irradiation at 130mW/cm2 for 5 minutes (Figure 2a). Meanwhile, at the same 

SV concentration TMNP + light reduces the cell viability to ~40% (Figure 2d). This indicates 

that glutathione as a targeting ligand does have added therapeutic value. 

A live cell staining assay was used to visualize the enhanced tumour cell-killing 

efficacy of TMNP. As seen in Figure 2e, C6 cells treated with PBS (control) displayed vivid 

green fluorescence. While the C6 cells that received free SV, treatment showed moderate cell 

death, cells treated with free PpIX showed almost no toxicity as expected. Compared to 

monotherapy, MNP and TMNP showed significant cell death. However, when cells treated 

with TMNP subjected to light, almost all the cells were killed due to the synergistic effect of 

activated PpIX and SV.  

The in vitro cytotoxicity studies clearly proved that sole modal therapy is not the 

perfect treatment option due to dropping O2 content in cancer cells during PDT and 

significant toxicity to healthy brain cells during chemotherapy. Thus, a combined 

chemophototherapy should be applied to ensure the desired outcome. Hence, we further 

studied the tumour killing mechanisms behind the exhibited cytotoxicity.  
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Figure 2. In vitro cancer cell-killing efficacy of TMNP. Cell viability after dosing a) 3T3 and b, c, and d) C6 

cells with varying concentrations of treatment groups with/without irradiation (635 nm laser at 130 mW/cm2 for 

5 minutes) in a medium supplemented with serum for 24 hours. (n = 3), e) CLSM photographs of C6 cells 

received different treatments. Calcein AM and ethidium homodimer-1 staining was performed for live cells 

(green) and dead cells (red) respectively. Scale bar, 100 μm. 

3.4 In-Vitro BBB Penetration Study 

Blood brain barrier permeability is the primary limiting factor for the penetration and 

distribution of therapeutics from blood to brain. Having evaluated the stability and safety of 

the prepared micelles, we then investigated its BBB-penetrating efficiency. Several studies 

have reported that monolayer bEnd.3 cells express appropriate tight junction proteins and 

transporters and closely mimics the primary cultures of BBB endothelial cells [55, 56]. 

Figure 3 shows a schematic illustration of the constructed BBB model. FITC-dextran (4kDa), 

Alexa 555 cadaverine and FITC-dextran (70kDa) were used to validate the BBB mimics. 
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While Alexa 555 cadaverine and FITC-dextran (4kDa) passed through the BBB, FITC-

dextran (70kDa) could not pass through the BBB. As seen in Figure 3, only a limited amount 

of PpIX passed through the BBB monolayer and accumulated in the C6 cells cultured in the 

lower chamber of the setup. In contrast, the fluorescence intensity of TMNP in the cytoplasm 

of the C6 cells was significantly higher than that of PpIX and MNP. This results further 

proves the ability of Glutathione to facilitate the transport of therapeutic agents across the 

BBB as reported in previous studies [46, 57-59]. 

 

Figure 3. In-vitro BBB penetration study. a) Schematic representation of the in -vitro BBB model. b) CLSM 

photographs of MNP and TMNP in C6 cells after transporting across the BBB model. c) Fluorescent statistic of 

C6 cell uptake efficiency of MNP and TMNP after transporting across the BBB  model. Scale bar, 20 μm **P < 

0.01 and ***P < 0.001. 

3.5 Cell Imaging and Colocalization Assays of TMNP 

For in-situ imaging, C6 cells were treated with Free PpIX, MNP and TMNP for 3 and 6 

hours. We used both flow cytometry and CLSM images to show that the infiltration of TMNP 

into the C6 cells was both time and dose-dependent. As shown in Figure 4a, 4b TMNP is 

internalized by cells in its intact form and its lipid layer gradually disassociates from the 

aqueous hydrophobic core and is distributed in the cytoplasm or translocated to cell 

membrane. A significantly higher PpIX fluorescence was detected when the cells were 

treated with TMNP when compared to the delivery of the same PpIX concentration in MNP 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



21 
 

and its free form, under the same excitation and acquisition parameters. The higher PpIX 

uptake with TMNP might be elucidated by the endocytosis internalization pathway compared 

to free PpIX molecules which have limited receptor-mediated endocytosis. CLSM images 

indicated that the fluorescence of PpIX in TMNP treated cells was located predominantly in 

the lysosome. The group treated with TMNP had the highest mean fluorescence intensity 

which was almost 4-fold higher and 2-fold higher than free PpIX and MNP respectively.                                                                       

It should be noted that despite the quenching of PpIX by SV, both MNP and TMNP 

show a higher fluorescence intensity compared to free PpIX. Hence, the enhancement of 

PpIX and SV uptake with TMNP would be even more significant if the quenching effect is 

taken into consideration. As shown in Figure 1d, e, the quenching effect of SV on PpIX is ~ 

2.1 times. Hence at 6 hours, the corrected fluorescence intensity level of TMNP and MNP 

compared to free PpIX would be ~ 8 times and ~4 times higher respectively. 

 Furthermore, the flow cytometry result (Figure 4c) and its mean fluorescence intensity 

result (Figure 4d) indicates that after surface modification with GSH on to the micellar 

nanoprobe, the cellular uptake of TMNP has greatly enhanced compared to that of free PpIX 

and MNP. These results suggested that the uptake of nanoprobes by the C6 cells are through 

receptor mediated endocytosis.  
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Figure 4. Cellular uptake dynamics. CLSM images showing the internalization and intracellular distribution of 

Free PpIX, MNP and TMNP in C6 cells at a) 3 hours and b) 6 hours. c) Quantitative analysis of the Free PpIX, 

MNP and TMNP uptake by C6 cells using flow cytometry. d) Mean fluorescence intensity of C6 cells after 

treatment with Free PpIX, MNP and TMNP. e) Cell uptake of TMNP after incubation at 37 °C and 4 °C and 

after preincubation with inhibitors of dynamin (dynasore) or caveolin (genistein) or clathrin (chlorpromazine).  

Scale bar, 20 μm. **P < 0.01 and ***P < 0.001. 

2.6 Evaluation of Cellular Internalization Pathway 

To determine if the micellar uptake by C6 cells is a temperature dependent process, we 

performed uptake experiments at 37 °C and 4 °C. As seen in Figure 4e, the fluorescence 
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microscopy signal of TMNP observed at 37 °C was lost when cells were incubated at 4 °C. 

This indicates that the micellar uptake is an active temperature dependent process. 

Furthermore, to understand the early steps in the process of micellar uptake taking place in 

C6 cells in more detail, we pre-incubated the C6 cells with different selective inhibitors 

before treatment with TMNP. Dynamin is an important mediator in the scission of 

endocytotic vesicles from the cell membrane, which is a crucial step in the internalization of 

extracellular substances. Dynasore which is a selective inhibitor of dynamin significantly 

reduced the cellular uptake of TMNPs. Dynamin is associated with various endocytotic 

pathways such as clathrin- or caveolin- dependent routes [60, 61]. To investigate the exact 

endocytotic route, we used genistein and chlorpromazine to block caveolin- and clathrin-

mediated endocytosis, respectively. The micellar uptake had negligible change with 

increasing concentrations of genistein. However, chlorpromazine exhibited a dose-dependent 

inhibitor effect on the cellular uptake of TMNP (Figure 4e). This result confirms that TMNP 

is internalized via receptor-mediated endocytosis.  

3.7 Intracellular Photodynamic Behaviour 
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Upon specifically uptaken by the tumour cells, the intracellular photoactivity of TMNP was 

further investigated by CLSM observation. The ROS generation of TMNP with and without 

irradiation was monitored with an intracellular ROS-detecting probe, namely, 2’,7’–

dichlorofluorescein diacetate (DCFH-DA) which produces a bright fluorescence at 535 nm 

after reacting with the reactive oxygen species [62]. As shown in Figure 5a, the other 

treatment groups except TMNP caused almost no green fluorescence in C6 cells. The slight 

fluorescence caused by TMNP is justified by the enhanced cellular uptake. However, the 

cells irradiated after treatment with MNP showed higher fluorescence than cells treated with 

TMNP alone (Figure S4a). Furthermore, on irradiation of TMNPs, the fluorescence intensity 

was significantly enhanced due the activation of the released PpIX.  ROS generation was 

quantified using CellRox green reagent and its fluorescence intensity at absorption/emission 

at ℼ 485/520 nm was measured using a microplate reader (Figure 5b). Compare to all treated 

groups, TMNP + Light irradiated group displayed relatively high fluorescence signal 

indicating that TMNP + Light is the promising therapeutic nanoprobe for the 1O2 generation.  

 

Figure 5. ROS generation assay: a) Cells were treated with different therapeutic agents and then exposed to a 

635-nm laser (130 mW/cm
2
 for 5 minutes). ROS generated in C6 cells was measured using DCFH-DA. CSLM 
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images showing green fluorescence indicate positive staining for ROS. b) Quantitative analysis of ROS 

generation in cells treated with different agents and then exposed to a 635-nm laser (130mW/cm
2
 for 5 minutes) 

detected using CellRox Green Reagent, JC 1 assay: c) CLSM images representing changes in mitochondria 

membrane potential when treated with different agents and then exposed to a 635-nm laser (130 mW/cm
2
 for 5 

minutes). d) Red-to-Green channel ratio of different agents determines the rate of membrane poten tial decay. *P 

< 0.05, **P < 0.01 and ***P < 0.001. 

3.8 Mitochondrial membrane potential 

It has been widely reported that singlet oxygen is highly reactive and causes mitochondrial 

damage. Thus, we hypothesized that the combination of increased singlet oxygen production 

by irradiated PpIX and caspase-3 activating SV would cause an enhanced mitochondrial 

damage. To test this hypothesis, we measured the changes in the mitochondrial membrane 

potential (∆ℼѱm) both quantitatively and qualitatively (Figure 5c and 5d) using the JC-1 

assay [63, 64]. ∆ℼѱm determines the accumulation of the JC-1, a cationic dye, within the 

electronegative interior of the mitochondria. At high ∆ℼѱm, there is an increased 

concentration of JC-1 in the mitochondria which is indicated by the red fluorescence of the 

JC-1 aggregates. However, lower ∆ℼѱm results in the formation of monomers in the cytosol 

which emit green fluorescence. The ratio of positive control (CCCP) and negative control 

was used as a surrogate for analysing the ∆ℼѱm. As expected, the ratio of the red complex to 

green monomer decreased for different samples from left to right. After 12 hours of 

incubation, the cells treated with Free SV, Free PpIX and control group presented a dual 

staining of green and red fluorescence in the cancer cell cytoplasm. However, for cells treated 

with MNP and TMNP, the red fluorescence signal gradually becomes weaker while the green 

fluorescence signal appears, indicating the mitochondrial damage irradiated TMNP which 

previously showed the highest cellular uptake and greatest ROS production, also exhibited 

the largest ∆ℼѱm in C6 cells, which was significantly greater than the rest of the treatment 

groups. 

3.9 Apoptosis cell study 

SV causes cytotoxicity by inducting apoptosis whereas both apoptosis and necrosis 

are involved in PDT mediated cytotoxicity. By integrating PDT and chemotherapy modalities 

into a single carrier, TMNP can produce an enhanced apoptosis and necrosis when subjected 

to light of appropriate wavelength. Due to negligible efflux, SV causes apoptosis by inducing 

cytochrome C release and subsequent caspase-3 activation and suppresses Akt 

phosphorylation [22, 65, 66], whereas a high concentration of PpIX accumulates in the cells 
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to effectively generate ROS upon irradiation thereby causing cell death via both apoptosis 

and necrosis. It is known that the translocation of phosphatidylserine to the outer layer of the 

cell membrane marks induction of apoptosis in cancer cells. Hence, we used flow cytometry 

to quantify the precise extent of apoptosis vs necrosis induced by irradiated TMNP in C6 

cells using a dual fluorescence probe Annexin V-FITC (Figure 6a and 6b). The total 

apoptosis ratio of free SV, MNP and TMNP treated C6 cells was 19.77%, 38.31% and 

39.38% respectively. Meanwhile, as expected PpIX without irradiation caused considerably 

lower apoptosis (9.48%) in the C6 cells. TMNP treated cells subjected to light demonstrated 

significantly higher apoptosis (49.50%) and necrosis (37.61%) thereby validating our 

hypothesis that synergistic apoptosis and necrosis plays a major role in the cytotoxicity 

induced by irradiated TMNP. 

Figure 6. a) Annexin V/PI analysis of C6 cells incubated with DMEM (control), free SV, free PpIX, MNP, 

TMNP with/without irradiation (635nm laser at 130mW/cm
2
 for 5 minutes). The quadrants from lower left to 

upper left (counter clockwise) represent healthy, early apoptotic, late apoptotic, and necrotic cells, respectively. 

(b) The percentage of cells in each quadrant was shown on the graphs. c) Caspase-9 activity and d) Caspase-3 

activity after treatment with Free SV, Free PpIX, PpIX+Light, MNP+Light, TMNP and TMNP+Light. All the 

data values are presented as mean ± SD (n = 3).  *P < 0.05, **P < 0.01 and ***P < 0.001. 

3.10 Caspase 9 and Caspase 3 Activity Assays 
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The caspase 9 activation dictates the mitochondria-dependent signaling pathway which plays 

a major role to mediate apoptosis. The activation of caspase-9 and caspase-3 were studied 

using a colorimetric assay which involves peptide substrates that release the solvatochromic 

dye p-nitroaniline (pNA)) upon cleavage by a caspase. As shown in Figure 6c and 6d, after 

18 h incubation with SV, caspase activity was slightly increased than that of control and PpIX 

[67, 68]. Compared to drugs without nano-formulation, MNP+Light possess better ability to 

activate caspase-9 and caspase-3 pathway. However, PpIX+light irradiated and TMNP has 

similar effects. Whereas, when the cells treated with TMNP+Light, significantly greater 

caspase release was observed in-comparison to other drug treatment used in the study. This 

might be obviously due to higher accumulation of TMNP inside the tumour cells facilitated 

by the surface target ligand-receptor specificity.  

3.11 Anti-Angiogenesis Effect of TMNP 

It has been demonstrated that tumour cure rates are strongly dependent on vessel damage in 

and around the treated tumour [48]. Hence, we evaluated the anti-angiogenic potential of 

TMNP on HUVEC cell line. A comparison between the samples containing only endothelial 

cells and the treated endothelial cells led us to attribute the anti-angiogenic effects to the 

functionality of TMNP. It is clearly seen that the control group show neovascular sprouting 

after 6 hours of incubation (Figure 7a). This is due to the residual growth factors contained in 

the matrix gel. While PpIX did not inhibit capillary formation, SV and MNP reduced the tube 

formation and TMNPs produced a greater inhibitory effect on angiogenesis. Furthermore, 

when subjected to irradiation, TMNPs severely reduced the ability of HUVECs to form 

capillaries. Further, these general observations was quantified by statistical image analysis 

using mathematical algorithm AngioQuant (v1.33) [69]. Computer-assisted analysis enables 

identification of the main vascular network by converting microscopy images to a skeleton. 

From each image, two parameters were extracted: the mean vessel length and the number of 

junctions in the skeleton network (Figure 7b and 7c). Both the parameters are drastically 

compromised when the endothelial cells are treated with irradiated TMNP. This suggests that 

TMNP has immense potential in tumour reduction as cancerous environments actively 

accelerate vascularization to obtain adequate nutrients and oxygen for growth and metastasis.  

3.12 Cell cycle Arrest 

To examine the effect of TMNP on cell cycle distribution, we subjected C6 glioma cells to 

flow cytometric analysis of total DNA (Figure 7d and 7e). Irradiated TMNP caused a 
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significant decrease of cells in S phase concomitant with an increase in G0/G1 phase 

compared to control free growing cells. In accordance with previous studies, cells treated 

with free SV showed a minor increase in their number in G0/G1 phase and decrease in the S 

phase[70, 71]. The increase in the cells in the G2/M phase caused by inactive PpIX agrees 

with our previous cytotoxicity data (Figure 2c). There was a considerable increase in the 

number of cells in the G0/G1 stage when treated with TMNP compared to MNP. Interestingly, 

there was only a slight increase in the number of cells in the G0/G1 after PDT, suggesting that 

PpIX does not contribute much to this mechanism of induced cytotoxicity. 
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Figure 7. Angiogenesis assay on HUVEC cells : a) Phase contrast images show endothelial cells grown on 

matrigel after treatment with different agents. Results from computer assisted quantitative analysis of 

angiogenesis showing b) mean length of tubule complexes and c) number of junctions.  Effect of different 

agents on cell cycle progression: d) The cell cycle distribution was determined by a flow cytometric analysis of 

the DNA content after staining with propidium iodide. e) Data expressed as mean ± SD from three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.001 and ns – Not Significant. 

3.13 Growth Inhibitory Effect on C6 Spheroids 

MCs are of clinical relevance in the study of DDSs, as they mimic the cellular 

microenvironments such as hypoxia, cell-cell interactions occurring in-vivo, presence of 

extracellular matrix (ECM) and diffusional constraints. All of these factors can reduce the 
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efficacy of the DDS either by inducing drug resistance via the local microenvironment or by 

mass transport limitations. Figure 8a shows the representative optical images of MCs treated 

with free SV, free PpIX, MNP, TMNP and TMNP with light. While the diameter of the MCs 

treated with fresh medium continued to increase over time due to secretion of ECM and 

interaction between the cells, the diameter of the MCs treated with free PpIX and free SV 

remained almost constant. MNP showed a slight decrease in the diameter compared to 

TMNP, which exerted a greater inhibitory effect on the MCs. However, once the MCs could 

restore their proliferation conditions after ~5 days, the diameter of the MCs exposed to these 

treatment groups increased. Furthermore, metastatic spheroids resulting from collective 

detachment from the primary tumours were observed for these treatment groups at day 7 [72]. 

In contrast, the decrease in diameter of TMNP treated MCs irradiated with a 130 mW/cm2 

630-nm laser at day 2, was monotonical during the whole test. Figure 8b depicts the change 

in average volume of MCs in 6 groups as a function of time. The control groups showed a 

significant increase in volume over the 7 days. This can be attributed to the proliferation of 

the outer layer of the MCs. After day 5, the volume of MCs reaches a plateau. No significant 

difference in volume was observed following exposure to free SV, free PpIX and MNP. The 

volume of MCs treated with TMNP begins to increase after day 5, whereas the volume of 

MCs exposed to TMNP + Light significantly reduces even after day 5. In line with our 

cytotoxicity data on 2D monolayer cultures (Figure 2), these results suggest that targeted 

carriers are not very effective if they rely on monotherapy alone, and should be able to 

leverage on combination therapies such as chemophototherapy.  
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Figure 8. Growth Inhibition assay in C6 MCs: a) Sequential Bright-field images of the same C6 spheroids 

treated with free SV, free PpIX, MNP, TMNP, TMNP+light (Scale bar = 275µm), b) Volume changes of MCs 

over 7 days. Data represents average ± standard deviation of three (n=3) independent measuremen ts. Penetration 

and Distribution in C6 spheroids : c) CLSM images of C6 MCs treated with Free PpIX, PpIX+Micelles, 

PpIX+T-Micelles and C6 MCs pre-incubated with Glutathione (1mg/ml) before treatment with PpIX+T-

Micelles for 6 hours. Scale bar, 20 μm, d) Surface plots of images in (a), produced in Image J. 

3.14 Penetration and Distribution in C6 Spheroids 

Many researchers leverage on the EPR effect when discussing translation of in-vitro results to 

in-vivo efficacy for DDSs. However, the conventional understanding of EPR is greatly 

simplified in comparison to the in-vivo tumour microenvironment. Barriers such as limited 

access to tumour cells and penetration need to be overcome to achieve in-vivo success [73, 

74]. C6 tumour spheroids of ~400-450µm which consists of an inner quiescent layer and an 

outer proliferating cell layer, mimics the 3D in-vivo environment due to limited oxygen and 
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nutrient transport [75, 76]. The MCs were exposed to free PpIX, MNP and TMNP and 

examined over time via CLSM to evaluate the ability of the proposed DDS to infiltrate into 

the 3D structure (Figure 8c). The penetration and distribution of free PpIX in the MCs were 

restricted to the boundary layers after 6 hours (Figure 8d). The fluorescence intensity of MNP 

show deeper penetration into MCs compared to the free payload. Compared to free PpIX and 

MNP, TMNPs show a strong fluorescence signal extending from the periphery to the center 

of the MCs within 6 h. This suggests that Glutathione conjugation can facilitate deeper 

penetration of the micelles into the solid tumours. To confirm our findings, we pre-incubated 

the MCs overnight at 1mg/ml of Glutathione and then treated with TMNP for 6 h. The 

images suggest that majority of the fluorescence signal is localized in the around the 

boundary of the spheroids compared to those without pre-treatment. 

3.15 Effect on Spheroid Morphology 

The control group of C6 spheroids showed evidence of normal morphological features of 

nuclear chromatin, intact nuclear membrane, mitochondria display membrane-enclosed 

filamentous cristae, secretory material rich cytoplasm, intact cytoplasmic membrane, and 

numerous microvilli communicating with other cells (Figure 9a, b and c). Furthermore, the 

TEM images clearly show the presence of extracellular matrix in the intracellular space and 

the surface of the cells, suggesting stabilized cell-ECM and cell-cell interactions [77]. The C6 

spheroids treated with TMNP shows a smooth cell surface/short microvillus but compact 

nuclear membrane. Additionally, distinct apoptosis features were observed such as 

fragmented nuclear content, loss of membrane-enclosed filamentous cristae in the 

mitochondria, and a greater number of vacuoles in the cytoplasm (Figure 9d, e and f). This 

result further confirms that the mitochondrial damage could be associated with abundant ROS 

production through PDT therapy. 
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Figure 9. TEM image of C6 tumour spheroids after 36 h culturing (a, b and c) Control group (d, e and f) 

Spheroids treated with TMNP at a concentration of 6.093 µg/mL for 12 h. Ch: chromatin; DB: Dense body; LD: 

Lipid droplet; M: Mitochondria; MV: Microvillus; N: Nucleus; TJ: Tight junction; V: vacuole. 

3.16 Delivery and Accumulation of TMNP within the tumour 

The mathematical model given in Section 2.21 is applied to predict the delivery outcomes 

using TMNP and MNP, respectively. Model parameters describing the transport properties of 

the two nanoprobes are summarised in Table 1. For comparison, their intravascular 

concentrations are assumed to be identical.  

The concentration profiles of TMNP and MNP from the blood vessel wall into deep tumour 

are compared in different tissue compartments in Figure 10a. TMNP is found with the higher 

     near the blood vessel wall. This is owing to the enhanced BBB penetration induced by 

Glutathione. As a consequence, more TMNPs could enter the tumour ECS and thereby 

improve the drug accumulation both on CM and in ICS, as shown in Figure 10a(ii) and (iii).  

Figure 10b(i) compares the spatial averaged concentrations of TMNP and MNP. Results 

indicate that the drug accumulation using TMNP is more effective in all the three tissue 

compartments. Similarly, drugs are able to penetrate into deeper tumour regions when loaded 

into TMNP, as implied in Figure 10b(ii).   
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Figure 10. a) Comparison of TMNP and MNP concentration in each tissue compartment as a function of 

distance from blood vessel wall. Concentration i) in ECS, ii) on CM and iii) in ICS of tumour tissue , normalised 

by     . b) Comparison of TMNP and MNP delivery outcomes in each tissue compartiment. i) Spatial averaged 

concentration, which is normalised by     . ii) Penetration depth which is counted when the local concentration 

is greater than 0.1% of     .  

4. Conclusions 

Chemotherapeutic agents such as simvastatin and photosensitizers such as protoporphyrin IX 

suffer from poor penetration into solid tumours, resulting in ineffective treatments due to 

exposure to sublethal drug concentrations and subsequent development of drug resistance 

[78]. DDSs developed to combat this issue has several advantages such as reduced systemic 

exposure and improved pharmacokinetics but still suffers from poor in-vivo efficacy. 3D 

multicellular spheroids which closely represent the in-vivo environment, can be used as an 

intermediate tool to evaluate the therapeutic effect of the DDSs before proceeding to animal 

models. In this paper, we have fabricated a PE-PEG based nanotherapeutic probe that 

integrates two treatment modalities, chemotherapy and PDT, into a single DDS for a 

synergistic anticancer activity in 3D multicellular spheroids. We extensively characterized 

the colloidal stability, drug loading and the release behaviour of SV and PpIX over a period 

of a few days. TMNP has several distinctive capabilities: (i) Possesses synthetic convenience 

and good biocompatibility, (ii) Exceptionally high loading of SV and PpIX, which is released 

in the acidic tumour microenvironment, (iii) Can potentially be used for image guided 

therapy to identify optimum location to release the therapeutic payload, (iv) Possesses 

multiple killing mechanisms – synergistic apoptosis, necrosis, anti-angiogenesis and cell 
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cycle arrest, (v) Exhibited negligible dark toxicity thereby providing a truly controllable 

treatment option. (vi) Enhanced penetration into solid tumours, validated by both 

experimental and modelling results. Overall, this integrated treatment platform reduces side 

effects, overcomes the low efficiency of PDT in hypoxia cells, and retards multidrug 

resistance of chemotherapeutics. The promising insights provided by this targeted and image-

guided combination therapy warrants further evaluation of its therapeutic efficacy in animal 

models. However, the clinical translation of PDT is hindered due to the limited penetration 

range of visible light into tissues and there is a need to develop strategies such as the use of 

external optical fibers to ensure precise and adequate dispersion of light within the brain 

tumours [79]. 
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Scheme 1. Proposed cytotoxicity mechanism of TMNP. Schematic showing high concentration of TMNP 

surrounding the tumour by leveraging on receptor mediated endocytosis and leaky vasculature of the BBB. 
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Figure 1. Characterization: a) MALDI-TOF spectra of DSPE-PEG-MAL (black) and DSPE-PEG-GLUT (red). 

b) Hydrodynamic diameter (DH) histogram distribution profile of TMNP (black) and MNP (red), (inset) TEM 

image of TMNP, Scale bar 200 nm. c) Zeta potential of SVLM, MNP and TMNP. d) Absorbance spectra of free 

PpIX (black) and TMNP (red). e) Fluorescence emission spectra after excitation at 405 nm of free PpIX (black) 

and TMNP (red). f) Release of SV and PpIX from TMNP over time in of different pH solutions. (SVLM = 

Simvastatin loaded micelles; MNP = SV and PpIX loaded Micellar nanoprobe; TMNP = SV and PpIX loaded 

Targeted Micellar nanoprobe). 
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Figure 2. In vitro cancer cell-killing efficacy of TMNP. Cell viability after dosing a) 3T3 and b, c, and d) C6 

cells with varying concentrations of treatment groups  with/without irradiation (635 nm laser at 130 mW/cm2 for 

5 minutes) in a medium supplemented with serum for 24 hours. (n = 3), e) CLSM photographs of C6 cells 

received different treatments. Calcein AM and ethidium homodimer-1 staining was performed for live cells 

(green) and dead cells (red) respectively. Scale bar, 100 μm. 
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Figure 3. In-vitro BBB penetration study. a) Schematic representation of the in -vitro BBB model. b) CLSM 

photographs of MNP and TMNP in C6 cells after transporting across the BBB model. c) Fluorescent statistic of 

C6 cell uptake efficiency of MNP and TMNP after transporting across the BBB model. Scale bar, 20 μm **P < 

0.01 and ***P < 0.001 
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Figure 4. Cellular uptake dynamics. CLSM images showing the internalization and intracellular distribution of 

Free PpIX, MNP and TMNP in C6 cells at a) 3 hours and b) 6 hours. c) Quantitative analysis of the Free PpIX, 

MNP and TMNP uptake by C6 cells using flow cytometry. d) Mean fluorescence intensity of C6 cells after 

treatment with Free PpIX, MNP and TMNP. e) Cell uptake of TMNP after incubation at 37 °C and 4 °C and 

after preincubation with inhibitors of dynamin (dynasore) or caveolin (genistein) or clathrin (chlorpromazine).  

Scale bar, 20 μm. **P < 0.01 and ***P < 0.001. 
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Figure 5. ROS generation assay: a) Cells were treated with different therapeutic agents and then exposed to a 

635-nm laser (130 mW/cm
2
 for 5 minutes). ROS generated in C6 cells was measured using DCFH-DA. CSLM 

images showing green fluorescence indicate positive staining for ROS. b) Quantitative analysis of ROS 

generation in cells treated with different agents and then exposed to a 635-nm laser (130mW/cm
2
 for 5 minutes) 

detected using CellRox Green Reagent, JC 1 assay: c) CLSM images representing changes in mitochondria 

membrane potential when treated with different agents and then exposed to a 635-nm laser (130 mW/cm
2
 for 5 

minutes). d) Red-to-Green channel ratio of different agents determines the rate of membrane potential decay. *P 

< 0.05, **P < 0.01 and ***P < 0.001. 

 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



47 
 

 

Figure 6. a) Annexin V/PI analysis of C6 cells incubated with DMEM (control), free SV, free PpIX, MNP, 

TMNP with/without irradiation (635nm laser at 130mW/cm
2
 for 5 minutes). The quadrants from lower left to 

upper left (counter clockwise) represent healthy, early apoptotic, late apoptotic, and necrotic cells, respectively. 

(b) The percentage of cells in each quadrant was shown on the graphs. c) Caspase-9 activity and d) Caspase-3 

activity after treatment with Free SV, Free PpIX, PpIX+Light, MNP+Light, TMNP and TMNP+Light. All the 

data values are presented as mean ± SD (n = 3).  *P < 0.05, **P < 0.01 and ***P < 0.001. 
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Figure 7. Angiogenesis assay on HUVEC cells: a) Phase contrast images show endothelial cells grown on 

matrigel after treatment with different agents. Results from computer assisted quantitative analysis of 

angiogenesis showing b) mean length of tubule complexes and c) number of junctions.  Effect of different 

agents on cell cycle progression: d) The cell cycle distribution was determined by a flow cytometric analysis of 

the DNA content after staining with propidium iodide. e) Data expressed as mean ± SD from three independent 

experiments. *P < 0.05, **P < 0.01, ***P < 0.001 and ns – Not Significant. 
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Figure 8. Growth Inhibition assay in C6 MCs: a) Sequential Bright-field images of the same C6 spheroids 

treated with free SV, free PpIX, MNP, TMNP, TMNP+light (Scale bar = 275µm), b) Volume changes of MCs 

over 7 days. Data represents average ± standard deviation of three (n=3) independent measurements. Penetration 

and Distribution in C6 spheroids: c) CLSM images of C6 MCs treated with Free PpIX, PpIX+Micelles, 

PpIX+T-Micelles and C6 MCs pre-incubated with Glutathione (1mg/ml) before treatment with PpIX+T-

Micelles for 6 hours. Scale bar, 20 μm, d) Surface plots of images in (a), produced in Image J. 
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Figure 9. TEM image of C6 tumour spheroids after 36 h culturing (a, b and c) Control group (d, e and f) 

Spheroids treated with TMNP at a concentration of 6.093 µg/mL for 12 h. Ch: chromatin; DB: Dense body; LD: 

Lipid droplet; M: Mitochondria; MV: Microvillus; N: Nucleus; TJ: Tight junction; V: vacuole. 
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Figure 10. a) Comparison of TMNP and MNP concentration in each tissue compartment as a function of 

distance from blood vessel wall. Concentration i) in ECS, ii) on CM and iii) in ICS of tumour tissue, normalised 

by     . b) Comparison of TMNP and MNP delivery outcomes in each tissue compartiment. i) Spatial averaged 

concentration, which is normalised by     . ii) Penetration depth which is counted when the local concentration 

is greater than 0.1% of     .  
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