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Abstract
For a given finite dimensional Hopf algebra H we describe the set of all equivalence classes of
cocycle deformations of H as an affine variety, using methods of geometric invariant theory.
We show how our results specialize to the Universal Coefficients Theorem in the case of a
group algebra, and we also give examples from other families of Hopf algebras, including
dual group algebras and Bosonizations of Nichols algebras. In particular, we use the methods
developed here to classify the cocycle deformations of a dual pointedHopf algebra associated
to the symmetric group on three letters. We also give an example of a cocycle deformation
over a dual group algebra, which has only rational invariants, but which is not definable over
the rational field. This differs from the case of group algebras, in which every 2-cocycle is
equivalent to one which is definable by its invariants.

1 Introduction

Let H be afinite dimensionalHopf algebra definedover a field K . AHopf 2-cocycle (or simply
2-cocycle) on H is a convolution invertible map α : H ⊗ H → K which satisfy a certain
associativity condition. A cocycle deformation of H is then an associative H -comodule
algebra of the form αH , where α is some 2-cocycle. This algebra has the underlying vector
space of H , and the multiplication in αH is given by the formula

x ·α y = α(x1, y1)x2y2.

The associativity of this algebra is equivalent to the associativity equations α satisfies. The
coaction of H , ρ :αH →αH⊗H is given by the coproduct of H .Wewill identify henceforth
between 2-cocycles and the cocycle deformations they define. Thus, two 2-cocycles α and
α′ will be considered equivalent if and only if α′

H ∼=αH as H -comodule algebras.
2-cocycles appear abundantly in the theory ofHopf algebras. The algebra αH , for example,

can be seen as Hopf-Galois extension of the ground field K (see Theorem 3.8. in [27]). From
the non-commutative geometry point of view, they can be thought of as principal bundles
over a point (which, in the non-commutative case have some very nontrivial examples, see
[32]). From the categorical perspective such a structure is equivalent to a fiber functor on the
category of H -comodules.
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Hopf 2-cocycles can also be used to deform the multiplication of H to form a new Hopf
algebra, αHα−1

. The Hopf algebras of the form αHα−1
are exactly the Hopf algebras whose

category of comodules is equivalent to that of H . Such deformations appear abundantly in
the classification of both semisimple and non semisimple Hopf algebras.

On the semisimple side, classification results are achieved by comparing the categories
of modules or the categories of comodules of different Hopf algebras, and using the theory
of Deligne of symmetric monoidal categories (see [9]). On the non-semisimple side, classi-
fication results are achieved mostly by using the lifting method (see for example [4]). This
method deals with the classification of all Hopf algebras H such that gr H ∼= B(V )#H0,
where H0 is a semisimple Hopf algebra, usually a group algebra or a dual group algebra,
B(V ) is a Nichols algebra, and gr H is the graded Hopf algebra associated to the coradical
filtration of H . It turns out that in many cases all such Hopf algebras arise from B(V )#H0

via a cocycle deformation. In [4] Andruskiewitsch and Schneider classified all Hopf alge-
bras whose cordical is an abelian group algebra, under some restrictions on the order of this
group. Masuoka showed later in [21] that all such Hopf algebras are cocycle deformations
of their associated graded Hopf algebras. This classification was completed by Angiono and
Garcia Iglesias in [7], where it is also shown that all Hopf algebras whose coradical is an
abelian group algebra are cocycle deformations of their associated graded Hopf algebras. For
more classification results of non-semisimple Hopf algebras in which cocycle deformations
appear, see [1,5,11,15,16].

The importance of cocycle deformations raises the natural question of classification of
such structures, up to an appropriate isomorphism. In case the Hopf algebra H is semisimple,
Ocneanu rigidity tells us that there are only finitely many 2-cocycles up to equivalence
(see [10]). For a large class of Hopf algebras, the group theoretical Hopf algebras, such
cocycles can be classified explicitly by group theoretical data (see [10] and [14]). The general
classification of equivalence classes of 2-cocycles is in general open.

In the specific case where H = KG is a group algebra of a finite group G, an equivalence
class of a 2-cocycle on H is the same thing as an element in the second cohomology group
H2(G, K×). If K is algebraically closed and of characteristic zero, theUniversal Coefficients
Theorem gives us an isomorphism

� : H2(G, K×) ∼= Hom(H2(G, Z), K×).

Thismeans that for every c ∈ H2(G, Z) and everyα ∈ H2(G, K×)we can view�([α])(c) ∈
K× as a scalar invariant of the cohomology class of α. The above isomorphism tells us that
this set of scalar invariants is a complete set of scalar invariants for the cocycle α.

Another place in which scalar invariants of 2-cocycles appear is in the classification results
of non-semisimple Hopf algebras. Unlike the case of group algebras, the resulting invariants
now vary continuously. See for examples [4] and [7].

The goal of the present paper is to study this classification problem, for a general finite
dimensional Hopf algebra over an algebraically closed field of characteristic zero, from a
geometric point of view. This will continue the study done in [8] and [23] where geometric
invariant theory was applied to study finite dimensional semisimple Hopf algebras. We will
show that for a given Hopf algebra H over an algebraically closed field K of characteristic
0 the set of all equivalence classes of cocycle deformations XH has a natural structure of an
affine algebraic variety. We will thus think of XH as the moduli space of all the equivalence
classes of 2-cocycles on H . We will use methods of geometric invariant theory to construct
this variety as a quotient of an affine variety by the action of some reductive group. The
invariants and the variety that we will get here will generalize the invariants one receives for
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Hopf cocycle deformations and invariant theory 1357

cocycles on group algebras from the Universal Coefficients Theorem on the one hand, and
the continuous invariants which appear in the classification of non-semisimple Hopf algebras
on the other hand. We will give examples for both.

To state the result, recall first that the algebra αH is an H -comodule algebra which is
a Hopf-Galois extension of the ground field K (see [27]). Such H -comodule algebras are
characterized by the fact that the map M : αH ⊗αH → αH ⊗ H x ⊗ y �→ x ·α y1 ⊗ y2 is
invertible (see Proposition 2.4). Let us write T :αH ⊗ H →αH ⊗αH for the linear inverse
of this map. For h ∈ H we then write Th : αH → αH ⊗αH y �→ T (y ⊗ h). For elements
h(1), . . . , h(l) we write T (h(1), . . . , h(l)) : W → W⊗(l+1) for the composition

T (h(1), . . . , h(l)) = (I d⊗l−1
W ⊗ Th(l)) · · · (I dW ⊗ Th(2))Th(1). (1.1)

For f ∈ H∗ we write A f :αH →αH x �→ x1 f (x2) for the action of H∗ induced from the
coaction of H . For a permutation σ ∈ Sl+1 we write Lσ : (αH)⊗l+1 → (αH)⊗l+1 for the
permutation of the tensor factors induced by σ .

The main result of this paper is the following theorem, which will be proven in Sect. 4:

Theorem 1.1 For every finite dimensional Hopf algebra H the set XH of equivalence classes
of cocycle deformations of H has a natural structure of an affine variety, and we can therefore
think of the elements in the coordinate ring K [XH ] as a complete set of scalar invariants for
2-cocycles on H. The commutative algebra K [XH ] has a set of generators of the following
form:

c(l, σ, f , h(1), . . . h(l)) := TrW⊗l+1(A f m
l Lσ T (h(1), . . . h(l))),

where l ∈ N, f ∈ H∗, σ ∈ Sl+1 and h(i) ∈ H. We call these elements the basic invariants
of αH. The relations these invariants satisfy are given explicitly in Sect. 4.

Notice that for the above theorem we do not require the Hopf algebra H to be semisimple,
even though the semisimplicity was a necessary condition to apply geometric invariant theory
to Hopf algebras in [8] and [23].

The fact that we have a complete set of invariants gives us an indication about the fields of
definition of αH . We will prove in Sect. 4 the following proposition (see Proposition 4.13):

Proposition 1.2 Let W = αH be a cocycle deformation of H, defined over K . Assume
that K/k is a Galois extension with Galois group G, and that H has a k-form Hk (i.e.
H ∼= Hk ⊗k K ). Let L = k(c(l, σ, f , h(1), . . . h(l))) ⊆ K be the subfield of K generated
by the basic invariants of W (where we take here h(i) ∈ Hk and f ∈ H∗

k ). Then for γ ∈ G
it holds that γ W ∼= W if and only if γ fixes the subfield L of K pointwise. In particular, a
necessary condition for W to be defined over a subfield F ⊆ K is L ⊆ F.

Theorem 1.1 describes the ring K [XH ] in terms of generators and relations. In order to
prove this theorem we will first describe, in Sect. 3, the variety XH as a quotient of the
form YH/GLn(K ) where YH is an affine variety and n = dim(H). We will then have an
isomorphism K [XH ] = K [YH ]GL(W ), and we will calculate this ring of invariants explicitly
in Sect. 4.

Carrying out the analysis of the algebra of invariants for a given Hopf algebra H can
be quite difficult (the presentation which we will give here has in general infinitely many
generators and infinitely many relations). In order to overcome this problemwe will combine
certain results from [22], where certain classification results for 2-cocycleswere also obtained
by using a categorical construction, and we will show some alternative ways to describe the
variety XH and the ring K [XH ], which will help us to simplify the calculations. We shall
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1358 E. Meir

explain how, in many examples, we can find a subvariety Y ′ ⊆ YH and a subgroup N ⊆
GL(W ) which acts on Y ′ such that the natural map Y ′/N → Y/GL(W ) is an isomorphism
of varieties, or at least a bijection.

In Sect. 5 we will give examples. For group algebras we will show how the isomorphism
arising from the Universal Coefficients Theorem can be seen in the framework of the variety
XH presented here. We will also describe the invariants one receives for 2-cocycles on the
dual group algebra K [G], and their relation to invariants of cocycles on group algebras.
As an application, we will give an example of a group G and a cocycle deformation on
K [G], for which all the basic invariants (with respect to the canonical basis of K [G]) are
contained in Q, but for which the cocycle itself is not definable over Q. This shows that the
necessary condition from Proposition 1.2 is not sufficient. This is in contrary to the case of
group algebras, where every cocycle is definable over the extension of Q generated by its
scalar invariants (see [2]). See also [3] for another approach to cocycle deformations and the
possible ways to define them over subfields, using their graded identities.

In the non-semisimple realm we will study algebras of the form H = H0#B(V ), the
Radford biproduct, or Bosonizations, of a semisimple Hopf algebra H0 and the Nichols
algebra of a vector space V ∈ H0

H0
YD. We will concentrate on the case where H0 is either a

group algebra or a dual group algebra. We will consider the Taft Hopf algebras, and the Hopf
algebras in which H0 = K S3 or K [S3] and V = (O3

2,−1) in the terminology of [19]. We
will use the methods developed here to show that XH is A

2 in case H0 = K S3 and A
3 (up

to a bijective correspondence) in case H0 = K [S3]. The first case appears in [19]. For the
second case, the resulting double-twisted Hopf algebras αHα−1

appear in [5].
In all the examples checked so far the resulting space XH is a disjoint union of affine

spaces. In Sect. 6 we will formulate a conjecture saying that this is always the case. We will
also raise the question about the possibility to reconstruct αH from its invariants.

2 Preliminaries

2.1 Hopf algebras and cocycle deformations

Throughout this paper H will be a finite dimensional Hopf algebra of dimension n defined
over an algebraically closed field K of characteristic zero. We make these assumptions about
the field to simplify the application of geometric invariant theory to our situation. We revise
here some known facts about Hopf algebras and their cocycle deformations, and refer the
reader to [26] and the introduction of [4] for further reading. We will use here the Sweedler
notation for the comultiplication in H :

�(x) = x1 ⊗ x2. (2.1)

The counit of H will be denoted by ε.
Our main object of study in this paper will be cocycle deformations of H . We recall that

a Hopf 2-cocycle (or just 2-cocycle) on H is a convolution invertible map α : H ⊗ H → K
which satisfies the associativity condition:

∀x, y, z ∈ H : α(x1, y1)α(x2y2, z) = α(y1, z1)α(x, y2z2). (2.2)

We will also assume here that our 2-cocycles satisfy the unity condition

α(1, x) = α(x, 1) = ε(x). (2.3)
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Hopf cocycle deformations and invariant theory 1359

This assumption can be made because every 2-cocycle is equivalent to a 2-cocycle which
satisfies this condition. 2-cocycles enable us to define new algebras. We define an algebra
αH which has the underlying vector space H and in which the multiplication is given by the
formula:

x ·α y = α(x1, y1)x2y2. (2.4)

The conditions on α assure that the multiplication in αH is associative, and that 1 ∈ αH
remains a unit for the twisted multiplication. The algebra αH has a richer structure of an
H -comodule algebra. That is: by identifying αH with H as vector spaces, the map� induces
an algebra map ρ :αH →αH ⊗ H which furnishes an H -comodule structure on αH .

The algebra αH is an H -comodule algebra, but in general it is not a Hopf algebra by
itself. Indeed, the counit of a Hopf algebra provides us with an algebra homomorphism from
the Hopf algebra into the ground field K , and αH will admit such a homomorphism if and
only if αH ∼= H as H -comodule algebras. However, one can construct a double-twisted
Hopf algebra αHα−1

. This Hopf algebra has the underlying vector space H , has the same
coalgebra structure as H , and a two-sided twisted multiplication, given by the formula

x · y = α(x1, y1)α
−1(x3, y3)x2y2. (2.5)

The unit and counit in this new Hopf algebra are the same as those in H . The antipode in this
new algebra is more complicated, and is given by the formula

Sα(x) = γ (x1)S(x2)γ
−1(x3) (2.6)

where γ ∈ H∗ is given by γ (x) = α(x1, S(x2)). We will prove later that the element γ is
really invertible, so this is well defined. The notion of a 2-cocycle on a Hopf algebra is dual
to the notion of a Drinfeld twist on a Hopf algebra. In other words, a 2-cocycle on H is the
same as a Drinfeld twist in H∗ ⊗ H∗.

It is possible that different cocycles α and α′ will define isomorphic cocycle deformations.
To see when this happens notice first that an isomorphism αH → α′

H is in particular an
isomorphism of H -comodules, and will therefore be of the form x �→ ν(x1)x2 for some
invertible ν ∈ H∗ (this follows from the fact that H -comodules are the same as H∗-modules,
and that H is isomorphic with H∗ as H∗-modules). It then follows that this map will be an
isomorphism of algebras if and only if the equation

ν(x1)ν(y1)α
′(x2, y2)ν−1(x3y3) = α(x, y) (2.7)

holds. This also gives us a description of the automorphism group of αH as an H -comodule
algebra. Indeed, by the above formula we see that an invertible element ν ∈ H∗ will define
an automorphism αH → αH if and only if ν : αHα−1 → K is an algebra homomorphism.
We conclude this discussion in the following lemma:

Lemma 2.1 The automorphism group of αH as an H-comodule algebra is canonically iso-
morphic with the group of characters of the Hopf algebra αHα−1

. In particular, since this
algebra is finite dimensional, this group is finite.

Wenext show that the invertibility of α is equivalent to the invertibility of a certain element
in H∗. Let γ ∈ H∗ be defined by

γ (x) = α(x1, S(x2)). (2.8)

Notice that it holds that x1 ·α S(x2) = α(x1, S(x4))x2S(x3) = γ (x). We claim the following:
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Lemma 2.2 The invertibility of α ∈ (H ⊗ H)∗ is equivalent to the invertibility of γ ∈ H∗.

Proof Let x, y ∈ H . consider the product x1 ·α y1 ·α S(y2) ·α S(x2). Using the associativity
of α, we will write this element in two different forms. On the one hand, starting with the
multiplication of y1 and S(y2) we see that this element is equal to γ (x)γ (y). On the other
hand, we also have

x1 ·α y1 ·α S(y2) ·α S(x2) = α(x1, y1)α(S(y4), S(x4)) ·
x2y2 ·α S(x3y3) = α(x1, y1)γ (x2y2)α(S(y3), S(x3)). (2.9)

In other words, we get the following equation in H∗ ⊗ H∗:

α · �(γ ) · ((S ⊗ S)(αop)) = γ ⊗ γ. (2.10)

This means that if γ is invertible then α is invertible, and its explicit inverse is given by

α−1 = �(γ )((S ⊗ S)(αop))(γ −1 ⊗ γ −1). (2.11)

Moving �(γ ) to the other side of the equation and writing everything as functionals on H
gives us

γ −1(x1y1)α
−1(x2, y2) = α(S(y1), S(x1))γ

−1(x2)γ
−1(y2) (2.12)

for every x, y ∈ H .
On the other hand, assume that α is invertible. We write β = α−1, α = α(1) ⊗ α(2) and

similarly for β. The 2-cocycle condition for α reads (α⊗1)(�(α(1))⊗α(2)) = (1⊗α)(α(1)⊗
�(α(2))). Multiplying by the relevant inverses from both sides, we get the equation

(1 ⊗ β)(α ⊗ 1) = (α(1) ⊗ �(α(2)))(�(β(1)) ⊗ β(2)). (2.13)

By applying S to the middle factor and multiplying all the three tensors together we get the
equation

α(1)S(α(2))S(β(1))β(2) = 1. (2.14)

But this equation translates to γ S(β(1))β(2) = 1, so γ is invertible as desired. ��
Next, we define a twisted antipode ˜S :αH →αH by

˜S(x) = S(x1)γ
−1(x2). (2.15)

We claim the following:

Lemma 2.3 In αH it holds that x1 ·α ˜S(x2) = ˜S(x1) ·α x2 = ε(x) and ˜S(x) ·α ˜S(y) =
α−1(y2, x2)˜S(y1x1)

Proof By the last lemma we know that γ −1(x) = α−1(S(x1), x2). We calculate:

˜S(x1) ·α x2 = γ −1(x3)α(S(x2), x4)S(x1)x5
= α−1(S(x3), x4)α(S(x2), x5)S(x1)x6 = S(x1)x2 = ε(x) (2.16)

where for the last equation we have used the fact that α−1 and α multiply to ε ⊗ ε. For the
second equation we get

x1 ·α ˜S(x2) = α(x1, S(x4))x2S(x3)γ
−1(x5)

= α(x1, S(x2))γ
−1(x3) = γ (x1)γ

−1(x2) = ε(x) (2.17)
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as desired. For the last equality, we calculate, using Equation 2.12

˜S(x) ·α ˜S(y) = α(S(x2), S(y2))S(x1)S(y1)γ
−1(x3)γ

−1(y3)

= S(y1x1)γ
−1(y2x2)α

−1(y3, x3) = ˜S(y1x1)α
−1(y2, x2) (2.18)

as desired. ��
If W is a comodule algebra which is of the form αH , we can think of the choice of the

2-cocycle α as a choice of coordinates forW . Indeed, the choice of the 2-cocycle is equivalent
to the choice of an isomorphism W ∼= H as H -comodules. We would like to give here also
a “coordinate free” version of this structure, which will help us later on in the application of
geometric invariant theory.

Assume now that W is an H -comodule algebra. We denote the multiplication in W by
concatenation or by · and the coaction of H by ρ : W → W ⊗ H , w �→ w1 ⊗ w2. The map

M : W ⊗ W → W ⊗ H

x ⊗ y �→ xy1 ⊗ y2 (2.19)

will play a prominent role in what follows. We have the following proposition (see Theorem
3.8 in [27] and references therein. See also [31]);

Proposition 2.4 A finite dimensional H-comodule algebra W is of the form αH if and only
if W 
= 0 and the map M defined above is invertible.

The following lemma gives a convenient criterion to the invertibility of M . To state it, notice
that ifM is invertiblewith an inverse T , then themap˜T : H → W⊗W given by˜T = T (1⊗h)

considered as a map from H to Wop ⊗ W is an algebra homomorphism. It turns out that the
invertibility of M can be detected by considering this map.

Lemma 2.5 The map M is invertible if and only if there exists a homomorphism of algebras

˜T : H → Wop ⊗ W

for which the composition

H
˜T→ W ⊗ W

M→ W ⊗ H

is equal to h �→ 1 ⊗ h, and the composition

W
ρ→ W ⊗ H

1⊗˜T→ W ⊗ W ⊗ W
mW⊗1→ W ⊗ W

is equal to w �→ 1 ⊗ w. Moreover, it is enough to check the equality of these compositions
on some multiplicative-generating sets for H and for W.

Proof Assume first that W ∼=αH . For convenience, assume further that W =αH . We define
˜T (h) = T (1⊗h)where T is the linear inverse of M . In this case the map ˜T can be calculated
explicitly in terms of the algebra αH . Indeed, we get ˜T (h) = ˜S(h1) ⊗ h2 ∈ W ⊗ W . This
map is multiplicative when considered as a map H → Wop ⊗ W since

˜T (x)˜T (y) = ˜S(y1) ·α ˜S(x1) ⊗ x2 ·α y2

= ˜S(x1y1)α
−1(x2, y2)α(x3, y3) ⊗ x4y4 = ˜S(x1y1) ⊗ x2y2 = ˜T (xy).(2.20)

In the other direction, assume that such a map ˜T exists, and extend it to a map T :
W ⊗ H → W ⊗ W by w ⊗ h �→ (w ⊗ 1) · ˜T (h). Then the conditions of the lemma imply
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that T is the inverse of M . This follows from the fact that both maps are W -linear where
W acts on the left tensor factor, and the compositions of M and T in both directions are the
identity when evaluated on a generating subset (as W -modules) of these W -modules.

To see why it is enough to check the conditions of the lemma on a generating set (in the
multiplicative sense), we show that the set of elements h ∈ H for which M˜T (h) = 1 ⊗ h
is closed under multiplication. In a similar way, we show that the set of elements w ∈ W
for which (mW ⊗ 1)(1⊗ ˜T )ρ(w) = 1⊗ w is closed under multiplication. Assume then that
M˜T (x) = 1⊗x and thatM˜T (y) = 1⊗ y.Write ˜T (x) = ∑

i ai ⊗bi and ˜T (y) = ∑

j c j ⊗d j .
This means that

∑

i

ai (bi )1 ⊗ (bi )2 = 1 ⊗ x and

∑

j

c j (d j )1 ⊗ (d j )2 = 1 ⊗ y. (2.21)

We then have

M˜T (xy) = M(˜T (x)˜T (y)) = M(
∑

i, j

c j ai ⊗ bid j )

=
∑

i, j

c j ai (bi )1(d j )1 ⊗ (bi )2(d j )2 =
∑

j

c j (d j )1 ⊗ x(d j )2 = 1 ⊗ xy.

(2.22)

In the other direction, we use the fact that (1 ⊗ ˜T )ρ : W → W ⊗ Wop ⊗ W is an algebra
map. Then if w,w′ ∈ W satisfy the condition of the lemma and we write (1 ⊗ ˜T )ρ(w) =
∑

i ai ⊗bi ⊗ci and (1⊗˜T )ρ(w′) = ∑

j r j ⊗s j ⊗ t j , then it holds that
∑

i ai bi ⊗ci = 1⊗w

and
∑

j r j s j ⊗ t j = 1 ⊗ w′. We then have that

(mW ⊗ 1)(1 ⊗ ˜T )ρ(w · w′) =
∑

i, j

ai r j s j bi ⊗ ci t j

=
∑

i

ai bi ⊗ ciw
′ = 1 ⊗ ww′ (2.23)

and we are done. ��
The coordinate free perspective also enables us to construct the algebra αHα−1

categori-
cally in terms of the algebra αH :

Lemma 2.6 (See [31]) The subspace of H-coinvariants in αH ⊗αH is a subalgebra under
the multiplication in αH ⊗ (αH)op. It is isomorphic to the algebra αHα−1

, and the map
H → αH ⊗αH which sends x to x1 ⊗ ˜S(x2) is an isomorphism of coalgebras between H
and the algebra of coinvariants.

Proof For a proof of the first statement see [31]. The second statement is a direct calculation.
��

Remark 2.7 In the proof of Lemma 2.5 we have seen that an explicit formula for the inverse
of M is given by T (x ⊗ y) = x ·α ˜S(y1) ⊗ y2. Notice in particular that the map M is both
a W -module map and an H -comodule map, where W acts from the left on the left tensor
factor on both sides, and H coacts from the right on the right tensor factor of W in W ⊗ W
and on the tensor factor H in W ⊗ H .
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The map T can also be used to define on αH a canonical structure of a Yetter–Drinfeld
module. We define a right action of H on αH in the following way:

∀x ∈αH , h ∈ H x · h = mL(23)T (1 ⊗ h) ⊗ x . (2.24)

The map m is the multiplication on αH and L(23) : (αH)⊗3 → (αH)⊗3 is given explicitly
by a ⊗ b ⊗ c → a ⊗ c ⊗ b. Using the explicit formula for T we obtained we see that
T (1⊗ h) = ˜S(h1) ⊗ h2. This implies that x · h = ˜S(h1) ·α x ·α h2. Explicit calculation now
shows us that ρ(x · h) = x1 · h2 ⊗ S(h1)x2h3, which means that αH has a structure of a
Yetter-Drinfeld module over H indeed.

2.2 Geometric invariant theory

Let K be an algebraically closed field of characteristic zero as before, and let Y be an affine
variety defined over K . This means that Y can be thought of as the set of zeros of a collection
of polynomials { f1, . . . fm} ⊆ K [y1, . . . yn]. We write K [Y ] := K [y1, . . . yn]/( f1, . . . , fm)

and think of this ring as the ring of polynomial functions on Y . We do assume here that
( f1, . . . fm) is a radical ideal. Even if it is not the case, we can still define Y as the set of
zeros of f1, . . . , fm , but in the definition of K [Y ] we need to take the radical of the ideal
( f1, . . . , fm).

Let � be a reductive algebraic group which acts on Y algebraically. In this paper the group
� will be a reductive subgroup of GLn , the affine variety Y will be the variety of all possible
cocycle deformations of a given finite dimensional Hopf algebra H , and two points in Y will
define isomorphic cocycle deformations if and only if they lie in the same orbit of �. For this
reason we would like to form the quotient space Y/�. Every polynomial function f ∈ K [Y ]
which is invariant under the induced action of �, g · f (y) = f (g−1y), can be thought of as a
polynomial function on Y/�. The following central result from Geometric Invariant Theory
(GIT) tells us when the other direction works as well (see [28, Theorem 3.5]).

Theorem 2.8 Let � and Y be as above. Assume that all the orbits of � in Y are closed.
Then the orbit space Y/� is also an affine variety. Moreover, we have an isomorphism
K [Y/�] ∼= K [Y ]� , and the natural map Y → Y/� corresponds to the inclusion of algebras
K [Y ]� → K [Y ]. We have a one to one correspondence between closed �-stable subsets of
Y and closed subsets of Y/�. Therefore, if I ⊆ K [Y ] is a radical �-stable ideal of Y , then
I 
= 0 if and only if I� 
= 0.

The map Y → Y/� satisfies a universal property with respect to morphisms of varieties
Y → X which are invariant on �-orbits (see [28] for more details).

In practice, a lot of the invariant ringswhichwe shall encounterwill be difficult to calculate
explicitly. The following proposition will be useful for reducing the variety and the group
acting on it.

Proposition 2.9 (Reduction of acting group) Let � be a reductive algebraic group acting on
an affine variety Y . Assume that N < � is a closed reductive subgroup and that Y ′ ⊆ Y is a
closed subvariety such that the following conditions hold:

(1) All the orbits of � in Y are closed.
(2) The subvariety Y ′ is stable under the action of N.
(3) For every �-orbit T in Y , the intersection T ∩ Y ′ is an N-orbit. in particular, every

�-orbit in Y intersects Y ′ non-trivially.
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Then the restriction of functions from Y to Y ′ induces an injective ring homomorphism:
� : K [Y/�] ∼= K [Y ]� → K [Y ′]N ∼= K [Y ′/N ] which induces a bijection Y ′/N → Y/�.

Proof Since a �-invariant polynomial on Y is in particular N -invariant, the restriction map
K [Y ] → K [Y ′] induces a ring homomorphism� : K [Y ]� → K [Y ′]N . The subgroup N acts
on K [Y ′] since it acts on Y ′, by the second assumption. Since every �-orbit in Y intersects Y ′
it follows that if the restriction of f ∈ K [Y ]� to Y ′ is zero, then it is zero on all the �-orbits
in Y , and is therefore zero on Y . This implies that the map � is injective.

The orbits of N in Y ′ are the intersections of the orbits of � in Y with Y ′. Since the orbits
of � in Y are closed, the same is true for the orbits of N in Y ′ since they are an intersection
of two closed subsets. Since both groups are reductive we have affine quotient varieties Y/�

and Y ′/N , and isomorphisms K [Y ]� ∼= K [Y/�] and K [Y ′]N ∼= K [Y ′/N ]. By the universal
property of the variety Y ′/N the map Y ′ → Y → Y/� induces a map Y ′/N → Y/�, for
which � is the induced map on coordinate rings. The conditions of the proposition imply
that the induced map Y ′/N → Y/G is bijective (this is a purely set-theoretical argument
which does not use the additional structure of the groups and the varieties). ��
Remark 2.10 It is possible that the map� from the lemma will be injective but not surjective.
Consider for example the variety Y = A

2\{(0, y)|y ∈ K } = {(x, y) ∈ K 2|x 
= 0} and the
subvarietyY ′ = {(x, 1)|x 
= 0}∪{(1, 0)}.We define� = Gm to be themultiplicative group of
the field and we define an action of � on Y by t · (x, y) = (t x, t−1y). We define the subgroup
N to be the trivial group. Then it is easy to show that �, N , Y and Y ′ satisfy the conditions
of the lemma: all orbits of the action of � on Y are of the form Oc := {(x, y)|xy = c} ∩ Y
for some c ∈ K and are therefore closed. Notice that the intersection with Y is redundant
for all c 
= 0, but not for c = 0. The subvariety Y ′ is trivially stable under the action of N ,
and the intersection of Oc with Y ′ for c 
= 0 is {(c, 1)}, and O0 ∩ Y ′ = {(1, 0)}. However,
K [Y ]� = K [xy] is a polynomial ring in one variable, while K [Y ′]N = K [x±1] ⊕ K is
strictly bigger then K [Y ]� .

3 The variety of cocycle deformations

Let H and K be as before. From Proposition 2.4 we know that a cocycle deformation of H
is the same as an H -comodule algebra W of dimension n = dim(H), for which the map

M : W ⊗ W → W ⊗ H

x ⊗ y �→ x · y1 ⊗ y2 (3.1)

is invertible. Take nowW = Kn . We would like to describe the space of all possible cocycle
deformation structures on W . For this, we start with the following affine space:

AH = HomK (W ⊗ W ,W )
⊕

HomK (W ⊗ H ,W ⊗ W )
⊕

HomK (H∗ ⊗ W ,W ) (3.2)

Notice that the group� = GL(W ) acts in a natural way on all the direct summands appearing
in A by its diagonal action on W and the trivial action on H . The group � therefore acts on
AH aswell.Wewill write a point inAH as (m, T , A).Wewill think ofm as themultiplication
on W , on A as the action of H∗ on W (which contains the same information as a coaction
ρ : W → W ⊗ H ) and on T : W ⊗ H → W ⊗ W as the inverse of the map M defined
above. Of course, not every point in AH will satisfy the necessary axioms for a cocycle
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Hopf cocycle deformations and invariant theory 1365

deformation. Let us denote by YH ⊆ AH the subset of all points (m, T , A) which do give
on W the structure of a cocycle deformation of H . We claim the following:

Lemma 3.1 The subset YH is Zariski closed in AH and is stable under the action of �.

Proof The conditions on the points in YH are the following:

(1) Associativity of m:

m(m ⊗ I dW ) = m(I dW ⊗ m) : W ⊗ W ⊗ W → W . (3.3)

(2) Associativity of the action of H∗:

A(I dH∗ ⊗ A) = A(mH∗ ⊗ I dW ) : H∗ ⊗ H∗ ⊗ W → W . (3.4)

(3) Compatibility between the action and the multiplication:

m(A ⊗ A)(I dH∗ ⊗ τ ⊗ I dW )(�H∗ ⊗ I dW⊗W )

= A(I dH∗⊗W ⊗ m) : H∗ ⊗ W ⊗ W → W (3.5)

where τ : H∗ ⊗ W → W ⊗ H∗ is the flip map.
(4) The map T : W ⊗ H → W ⊗ W is the linear inverse of the map M described above.

All the coefficients of the linear maps mentioned here can be written as polynomials in
the coefficients of the linear maps m, T and A. As a result, YH is Zariski closed. Since the
equationswehavehere are stable under the actionof� (since this action respects compositions
of linear maps), the subset YH is also stable under the action of �. ��

The next two lemmas are crucial for the use of Theorem 2.8

Lemma 3.2 Two points in YH determine isomorphic cocycle deformations if and only if they
lie in the same �-orbit.

Proof Let g ∈ �. We consider it as a linear isomorphism g : W → W . We claim that
g(m, T , A) = (m′, T ′, A′) if and only if g is an isomorphism between the cocycle deforma-
tion structure defined by (m, T , A) and the one defined by (m′, T ′, A′). Indeed, g(m) = m′
means that the diagram

W ⊗ W
m

g⊗g

W

g

W ⊗ W
m′

W

commutes, and similar statements hold for T and for A. This shows us that two points
(m, T , A) and (m′, T ′, A′) are in the same orbit if and only if there exists an isomorphism
betweenW considered as a cocycle deformation via (m, T , A) andW considered as a cocycle
deformation via (m′, T ′, A′). We are done. ��

We therefore want to classify all the orbits of � in YH . To do so, we first prove the following:

Lemma 3.3 All the stabilizers of the action of � on Y are finite.
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Proof By definition Stab�((m, T , A)) = {g ∈ �|g(m, T , A) = (m, T , A)}. Using the
discussion in the proof of the previous lemma, this subgroup of � can also be understood as
the automorphism group of the cocycle deformation defined by (m, T , A). But we have seen,
in Lemma 2.1 that all such automorphism groups are finite. This implies that the dimensions
of all orbits is exactly the dimension of � (which is n2). This also implies that all the orbits
are closed, since if O ⊆ Y is any orbit, then O is the union of O with orbits of smaller
dimensions. Since there are no orbits of smaller dimensions, we deduce that O = O. ��
Theorem 2.8 gives us then an isomorphism K [YH ]� ∼= K [YH/�]. We will henceforth write
XH = YH/�, and consider this as an affine variety. Our next goal is therefore to describe
K [YH ]� = K [XH ].
Remark 3.4 Since we know that cocycle deformations are necessarily of the form αH , it is
also possible to describe the space XH in a different way: We can define

Z = {α ∈ (H ⊗ H)∗|α is a 2-cocycle}, (3.6)

and define an action of the algebraic group (H∗)× by

ν · α(x, y) = ν(x1)ν(x2)α(x2, y2)ν
−1(x3y3) (3.7)

where ν ∈ (H∗)×. The set of orbits Z/(H∗)× will then be in one to one correspondence
with the points of XH . However, the group (H∗)× might be more complicated than the group
GL(W ), and in case H is not semisimple it will not even be reductive. For that reason we will
concentrate on forming the quotient Y/� and not Z/(H∗)×. In the case of group algebras
we will reduce the group GL(W ) to (H∗)×, see Sect. 5.

4 The algebra of invariants K[XH]
In this section we will use invariant theory in order to give a full description of the ring of
invariant functions on the variety YH described in Sect. 3. We write here {h1, . . . hn} for a
basis of H , and denote the dual basis of H∗ by { f1, . . . , fn}. Writing H = ⊕i K hi enables
us to write the affine space AH from Sect. 3 as

AH = W 1,2
⊕

⊕n
i=1W

2,1
⊕

⊕n
i=1W

1,1 (4.1)

whereW p,q = W⊗p⊗(W ∗)⊗q for p, q ∈ N. In the sequelwewill use freely the identification
W p,q ∼= HomK (W⊗q ,W⊗p). In particular W p,p ∼= End(W⊗p). The first direct summand
in the decomposition of AH corresponds to the multiplication m on W , the n middle factors
correspond to the operators Thi given by Thi (w) = T (w⊗hi ), and the last n direct summands
correspond to the operators A fi , given by w �→ w1 fi (w2).

We next rewrite the space AH as AH = ⊕2n+1
i=1 W pi ,qi , where (pi , qi ) ∈ {(1, 1), (1, 2),

(2, 1)}. We then write an element v = (m, T , A) ∈ AH as v = (x1, . . . x2n+1) where we
understand the elements xi ∈ W pi ,qi to be in one of the different direct summands of AH .
We describe the algebras T (A∗

H ), K [AH ], and K [YH ], and the corresponding algebras of
invariants.

4.1 The algebras T(A∗
H) and T(A∗

H)
0

The algebra T (A∗
H ) has a direct sum decomposition

T (A∗
H ) = ⊕∞

m=0(A∗
H )⊗m . (4.2)
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The direct sum decomposition of AH enables us to write a direct sum decomposition of
(A∗

H )⊗m as

⊕

i1,...im

(W pi1 ,qi1 )∗ ⊗ · · · ⊗ (W pim ,qim )∗

∼=
⊕

i1,...im

(W pi1+···+pim ,qi1+···+qim )∗. (4.3)

This direct sum decomposition is stable under the action of �. Thus, in order to calcu-
late the subalgebra of invariants in T (A∗

H ) we need to calculate the invariant subspace of
(W p,q)∗ for p, q ∈ N. To describe these subspaces, we need some notations. For p ∈ N we
define

φp : K Sp → End(W⊗p) ∼= W p,p, (4.4)

to be the ring homomorphism which sends a permutation σ ∈ Sp to the linear operator
Lσ : W⊗p → W⊗p given by

Lσ (w1, . . . wp) = wσ−1(1) ⊗ · · · ⊗ wσ−1(p). (4.5)

In case p > n we write

An+1 = 1

(n + 1)!
∑

σ∈Sn+1

(−1)σ σ (4.6)

for the anti-symmetrizier in the group algebra of Sn+1 < Sp . We claim the following:

Proposition 4.1 1. The space of �-invariants ((W p,q)∗)� is zero when p 
= q.
2. If p = q the �-invariants in (W p,p)∗ are spanned by the elements T �→ TrW⊗p (Lσ T )

for σ ∈ Sp.
3. The kernel of the homomorphism φp is generated (as a two-sided ideal) by the element

An+1 in case p > n, and is zero otherwise.

Proof The first claim is clear, since in case p 
= q we can just consider the action of the
nonzero scalarmatrices in� onW p,q to deduce that the space of invariants is zero. The second
claim is Schur-Weyl Duality (see the discussion preceeding Theorem 1.1 in [30], which is
in turn based on Chapter IV of the book [33]), where we use the identification of W p,p with
its dual, using the trace form. For the third claim we proceed as follows: if p ≤ n then if
{w1, . . . w2, . . . wn} is a basis of W then the elements {φp(σ )(w1 ⊗ w2 ⊗ · · · ⊗ wp)}σ∈Sp
are linearly independent. This implies that the kernel of φp must be trivial. If on the other
hand p > n then it holds that An+1 is in the kernel of φp . To show this, we use again the
basis {w1 . . . wn} for W . It then holds that

An+1(wi1 ⊗ · · · ⊗ win+1) = 0

because the set wi1 , . . . , win+1 contains a repetition for every multi-index {i1, . . . in+1}. This
implies that φp(An+1) = 0. On the other hand, it is known that the kernel of φp is spanned by
the Young symmetrizers relative to diagrams λ with at least n + 1 rows (see Theorem 4.3 of
[30]). The fact that λ contains at least n + 1 rows implies that the Young symmetrizer which
corresponds to λ is contained in the two-sided ideal generated by An+1 (see the elements bλ

in Lecture 4 of [12]). ��
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Let us conclude this discussion by describing the algebra T (A∗
H ) in terms of generators and

relations: For everymulti-index i = (i1, . . . im) such that pi1 +· · ·+ pim = qi1 +· · ·+qim = r
and a permutation σ ∈ Sr we have an invariant element

t(σ, i) ∈ T (A∗
H ) (4.7)

(the t stands here for tensor). For an element x1 ⊗ · · · ⊗ xm ∈ (AH )⊗m where xi =
(xi1, . . . x

i
2n+1) ∈ AH this invariant is given explicitly by

t(σ, i)(x1 ⊗ · · · ⊗ xm) = TrW⊗r (Lσ (x1i1 ⊗ · · · ⊗ xmim )). (4.8)

For a fixed multi-index i, if r > n these invariants will satisfy linear relations among them
arising from the image of An+1 underφr . In otherwords, for every two permutationsσ, τ ∈ Sr
we will get the linear relation

1

(n + 1)!
∑

ν∈Sn+1

(−1)ν t(σντ, i) = 0. (4.9)

Themultiplication of two such t-invariantswill again be a t-invariant andwe have the formula

t(σ, i) · t(τ, j) = t((σ, τ ), i · j). (4.10)

Here σ ∈ Sr where r = pi1 + · · · pim = qi1 + · · · qim and τ ∈ Sl where l = p j1 + · · · p jm′ =
q j1+· · · q jm′ , (σ, τ ) ∈ Sr+l is the permutationwhich corresponds to the canonical embedding
of Sr × Sl in Sr+l , and i · j is the concatenation of i and j.
Remark 4.2 Notice thatwe have used here the fact that the canonical isomorphism (W p,q)∗ ∼=
Wq,p given by the pairing (v1, v2) �→ Tr(v1v2) is also a �-isomorphism.

Let us conclude the above discussoin in the following Lemma

Lemma 4.3 The algebra T (A∗
H )� is generated by the elements t(σ, i) subject to the rela-

tions 4.9 and 4.10.

4.2 The algebras K[AH] and K[AH]0

The algebra K [AH ] is just the symmetric algebra S[A∗
H ] since AH is an affine space.

This algebra can be described as a quotient π1 : T (A∗
H ) → S[A∗

H ]. Since the group �

is reductive we get a surjective algebra homomorphism which we denote by the same letter
π1 : T (A∗

H )� → S[A∗
H ]� . The image of the element t(σ, i) ∈ T (A∗

H )� under π1 is a poly-
nomial function p(σ, i) on AH . Since this polynomial is the image of t(σ, i) it is given by
the formula

p(σ, i)(x1, . . . , x2n+1) = t(σ, i)(x ⊗ · · · ⊗ x)

= Tr(Lσ (xi1 ⊗ · · · ⊗ xim )) (4.11)

where x = (x1, . . . , x2n+1). The algebras T (A∗
H ) and S[A∗

H ] are both graded by N. Since
S[A∗

H ] is the quotient of T (A∗
H ) by the ideal generated by all the elements of the form xy−yx

where x, y ∈ A∗
H , it holds that

S[A∗
H ]m = (T (A∗

H )m)Sm ,

the coinvariants with respect to the natural action of the symmetric group Sm on (A∗
H )⊗m .

Since the actions of � and of Sm on (A∗
H )⊗m commute, it follows that

S[A∗
H ]�m = ((T (A∗

H )m)Sm )� = (T (A∗
H )�m)Sm .
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This means that in order to describe the algebra S[A∗
H ]� by generators and relations we need

to understand the action of the symmetric group Sm on the generators t(σ, i) of T (A∗
H )� .

In order to describe this action, we begin with the following combinatorial definition.

Definition 4.4 Let τ ∈ Sm , and let c1, . . . , cm be a sequence of positive integers such that
∑

ci = r . Write

{1, . . . , r} = I1 � I2 � · · · � Im = J1 � J2 � · · · � Jm

where I1 = {1, . . . c1}, I2 = {c1 + 1, . . . c1 + c2} and so on, and J1 = {1, 2, . . . cτ(1)}, J2 =
{cτ(1) + 1, . . . cτ(1) + cτ(2)} and so on. Then we define a permutation τ(ci ) ∈ Sr to be the
unique permutation which maps Ji onto Iτ(i) in a monotonuous way.

We next prove the following lemma:

Lemma 4.5 Let τ ∈ Sm. Assume that a1, . . . am, b1, . . . bm are integers such that
∑

i ai =
∑

i bi = r . Write τ1 = (τ(ai ))
−1 and τ2 = τ(bi ). Then it holds that

Lτ1(y1 ⊗ y2 ⊗ · · · ⊗ ym)Lτ2 = yτ(1) ⊗ · · · ⊗ yτ(m)

For every y1 ∈ Wa1,b1 , . . . , ym ∈ Wam ,bm .

Proof The easiest way to see this is to think of the tensors as “bits”, and of yi as a blackbox
with bi “input bits” and ai “output bits”. In this terminology, we see that the right hand side
takes the first bτ(1) bits via yτ(1) and outputs aτ(1) bits, while the left hand side takes the first
bτ(1) bits first to the input bits of yτ(1), then applies yτ(1) and apply another permutation to
bring the output back to the first aτ(1) bits, and so the action on the first bτ(1) bits is the same
for both sides of the equation. A similar phenomenon happens to the next bτ(2), then to the
next bτ(3) bits and so on. ��
Using the last lemma and its terminology, we can now calculate explicitly the action of
τ ∈ Sm on t(σ, i). We have:

(τ · t(σ, i))(x1 ⊗ · · · ⊗ xm) = t(σ, i)(τ−1 · (x1 ⊗ · · · ⊗ xm))

= t(σ, i)(xτ(1) ⊗ · · · ⊗ xτ(m)) = TrW⊗r (Lσ x
τ(1)
i1

⊗ · · · ⊗ xτ(m)
im

)

= TrW⊗r (Lσ Lτ1 x
1
i
τ−1(1)

⊗ · · · ⊗ xmi
τ−1(m)

Lτ2)

= TrW⊗r (Lτ2 Lσ Lτ1 x
1
i
τ−1(1)

⊗ · · · ⊗ xmi
τ−1(m)

)

= TrW⊗r (Lτ2στ1 x
1
i
τ−1(1)

⊗ · · · ⊗ xmi
τ−1(m)

)

= t(τ2στ1, τ · i)(x1 ⊗ · · · ⊗ xm)

From which we conclude that

τ · t(σ, i) = t(τ2στ1, τ · i)
This translates to the relation

p(τ−1
2 στ1, i) = p(σ, τ (i)). (4.12)

We conclude this discussion in the following lemma:

Lemma 4.6 The algebra K [AH ]� is generated by the elements p(σ, i) subject to the rela-
tions 4.9, 4.10, and 4.12
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4.3 The algebras K[YH] and K[XH] = K[YH]0

The algebra K [YH ] is isomorphic with K [AH ]/I , where I is the ideal of relations arising
from the axioms of a cocycle deformation:

(1) A f Ag = A f g for f , g ∈ H∗.
(2) m(1 ⊗ m) = m(m ⊗ 1).
(3) A f m = m(A f1 ⊗ A f2) for f ∈ H∗ and
(4) m(1 ⊗ A f )Th = f (h)I dW for every f ∈ H∗ and h ∈ H .

The reductivity of � implies that

K [XH ]� = (K [YH ]/I )� ∼= K [YH ]�/I�. (4.13)

All the above equations are equivalent to the vanishing of some polynomials in K [AH ], which
in turn generate the ideal I . We will write down these polynomials and write a spanning set
for I� explicitly.

We start with the first axiom. We fix a basis {wi } for W , and we write the entries of A f

by a f
i, j with respect to this basis. Thus

A f (w j ) =
∑

a f
i, jwi . (4.14)

Notice that a f +μg
i, j = a f

i, j + μagi, j holds for every f , g ∈ H∗ and μ ∈ K , and it is therefore

enough to consider the elements a fk
i, j where { fk} is the basis of H∗ described before. The

first axiom translates to the set of polynomial equations
∑

k

a f
i,ka

g
k, j = a f g

i, j for every i, j = 1, . . . n. (4.15)

Using the non-degeneracy of the trace form, we can write these equations as

Tr(L A f g) − Tr(L A f Ag) = 0 for every L ∈ EndK (W ). (4.16)

The elements of the ideal generated by these polynomials will then be of the form

TrW⊗q (L(xi1 ⊗ · · · ⊗ xim ⊗ A f Ag)) − TrW⊗q (L(xi1 ⊗ · · · ⊗ xim ⊗ A f g)) (4.17)

for L ∈ Hom(W p,Wq), where p = ∑

j pi j + 1 and q = ∑

j qi j + 1. It is clear how to
describe the second part of 4.17 (that is- the one with A f g) in terms of the generators of
K [AH ] we have described in the previous subsection. Notice that in case f g is not itself a
basis element of H∗ we will need to expand it as a linear combination of basis elements. For
the first part we proceed as follows: We notice that

A f Ag = ev2,2L(12)(Ag ⊗ A f ), (4.18)

where ev2,2(w1 ⊗ w2 ⊗ f1 ⊗ f2) = f2(w2)w1 ⊗ f1 (that is: we evaluate the second tensor
copies of W and of W ∗). This implies that

TrW⊗q+1(L(xi1 ⊗ · · · ⊗ xim ⊗ A f Ag))

= TrW⊗q (((L ⊗ I dW )L(q,q+1))(xi1 ⊗ · · · ⊗ xim ⊗ Ag ⊗ A f )) (4.19)

and the polynomial in Equation 4.17 can thus be written as

Tr(((L ⊗ I dW )L(q,q+1))(xi1 ⊗ · · · ⊗ xim ⊗ Ag ⊗ A f ))

−Tr(L(xi1 ⊗ · · · ⊗ xim ⊗ A f g)). (4.20)
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We write the last polynomial as pL,A f Ag−A f g ,i. We write I A f Ag−A f g ,i for the subspace of
I spanned by all the polynomials pL,A f Ag−A f g ,i.

The rest of the axioms can also be written as the vanishing of some linear map, whose
entries are polynomials in the structure constants (i.e. the entries of A f , m and T with
respect to some basis ofW ). For each such linear map Q we define similarly the polynomials
pL,Q,i and the subspace I Q,i. It follows that I = ∑

Q,i I
Q,i. We thus have a surjective

map ⊕Q,i I Q,i → I which gives us a surjective map on the invariant subspaces since � is
reductive:

⊕Q,i(I
Q,i)� → I�.

In order to describe the ideal I� of K [AH ]� it will thus be enough to describe the subspaces
(I Q,i)� . As can easily be seen, for every Q the action of � on I Q,i is given by g · pL,Q,i =
pg(L),Q,i, and so the invariants will again arise from invariants of the action of � on the
spacesW p,q , which were already discussed before. Using the description of the polynomials
p(σ, i) we get the following description of I� :

Proposition 4.7 For a multi-index i = (i1, . . . , im) write p = ∑

j pi j and q = ∑

j qi j . The

ideal I� is spanned by the following relations:

p(σ, i ◦ A f g) − p(σ (p, p + 1), i ◦ Ag ◦ A f ) for p = q, σ ∈ Sp+1,

p((p + 1, p + 2)σ (p + 1, p + 2), i ◦ m ◦ m)

−p((p, p + 2)σ, i ◦ m ◦ m) for p = q + 2, σ ∈ Sp+1

p(σ (p + 1, p + 2, p + 3), i ◦ A f1 ◦ A f2 ◦ m)

−p(σ (p + 1, p + 2), i ◦ m ◦ A f ) for p = q + 1, σ ∈ Sp+1,

p(σ (p + 1, p + 3, p + 4), i ◦ Th ◦ A f ◦ m)

− f (h)p(σ, i ◦ I dW ) for p = q, σ ∈ Sp+1 (4.21)

where

p(σ, i ◦ I dW ) =
{

dim(W )p(σ, i) if σ(p + 1) = p + 1

p(σ (r , p + 1), i) if σ(r) = p + 1

Intuitively, we can understand the relations appearing in the proposition in the following
way: All the invariants p(σ, i) can be understood as traces of maps formed from the maps
T , A,m by composition and by permuting the tensor factors. The relations appearing in the
proposition say that if two linear maps are equal, then switching between them inside the
relevant invariants will not change the invariants.We conclude with the following description
of K [XH ].
Theorem 4.8 The algebra K [XH ] is generated by the elements p(σ, i). The ideal of
relations among these elements is generated by the polynomials which appear in Equa-
tions 4.9, 4.10, 4.12, and 4.21.

Proof This follows from Equation 4.13 and Lemma 4.6. together with the discussion above
about the set of generators for I� . ��
Remark 4.9 Notice that it is possible that the ideal I defined above might not be a radical
ideal. This makes little difference for us, since in general if I is an ideal in a commutative
ring R upon which a group � acts, then the R� ideals rad(I )� and rad(I�) can easily be
shown to be equal.
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We next describe a simplified form for the invariants p(σ, i). For this, we define, for
h(1), . . . h(l) ∈ H ,

T (h(1), . . . , h(l)) : W → W⊗(l+1) as the composition

(I d⊗l−1
W ⊗ Th(l)) · · · (I dW ⊗ Th(2))Th(1). (4.22)

In a similar way we define

ml : W⊗l+1 → W , ml = m · (m ⊗ I dW ) · · · (m ⊗ I d⊗l−1
W ). (4.23)

We consider some identities for the maps Th , m, and A f . Notice that the first one is one of
the axioms for a cocycle deformation which we repeat here since we will use it directly in
the next proposition. All the rest can be proven using the isomorphism W ∼= αH for some
2-cocycle α.

Lemma 4.10 The following identities hold:

1. A f m = m(A f1 ⊗ A f2)

2. (1 ⊗ A f )Th = Th1 f (h2) and
3. (A f ⊗ 1)Th = T f2(S(h1))h2 A f1
4. (Th ⊗ 1)Tg = (1 ⊗ Tg2)Thg1 .

Proof The first identity is a reformulation of the fact that W is a comodule algebra. In other
words, that the multiplication map commutes with the action of H∗ given by f �→ A f . For
the rest of the identities, we use the formula for T from the proof of Lemma 2.5. We have

(1 ⊗ A f )Th(x) = (1 ⊗ A f )(x ·α ˜S(h1) ⊗ h2) = x ·α ˜S(h2) ⊗ h2 f (h3) = Th1 f (h2)(x)

as desired. The proof of identities 3 and 4 are similar. ��
We now claim the following:

Proposition 4.11 Each invariant p(σ, i) can be written as a sum of invariants of the form
TrW (ml Lσ ′T (h(1), . . . , h(l))A f ).

Proof We have p(σ, i) = TrW⊗p (Lσ xi1 ⊗ · · · ⊗ xim ). We use the fact that M : W ⊗ W →
W ⊗ H is invertible with inverse T : W ⊗ H → W ⊗ W . We conjugate the map which
appears in the definition of p(σ, i) with the map

˜M := (M ⊗ I d⊗p−2
H ) ⊗ · · · ⊗ (I d⊗p−3

W ⊗ M ⊗ I dH )(I d⊗p−2
W ⊗ M) (4.24)

and get

p(σ, i) = TrW⊗(H⊗p−1)(
˜MLσ xi1 ⊗ · · · ⊗ xim ˜T ) (4.25)

where ˜T = ˜M−1 = (I d⊗p−2
W ⊗ T ) · · · (T ⊗ I d⊗p−2

H ). By taking the basis {hi } of H and the
dual basis { fi } of H∗, we can rewrite the last trace as the sum of n p−1 traces of maps from
W to W . Indeed, if R : W ⊗ H⊗p−1 → W ⊗ H⊗p−1 is any linear map then

TrW⊗H⊗p−1(R) =
∑

j1,... jp−1

TrW (I dW ⊗ f j1 ⊗ · · · ⊗ f jp−1)R(− ⊗ (h j1 ⊗ · · · ⊗ h jp−1)).

(4.26)

Using the first identity in the previous lemma and the definition of M we see that the invariant
p(σ, i) is the sum of traces of maps of the form

mp−1(A f ′
1
⊗ · · · ⊗ A f ′

p
)Lσ (xi1 ⊗ · · · ⊗ xim )T (h j1 , . . . h jp−1). (4.27)
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It will thus be enough to prove the statement of the proposition for maps of the above form.
We first use the fact that A f ′

1
⊗ · · · ⊗ A f ′

p
Lσ = Lσ A f ′

σ(1)
⊗ · · · ⊗ A f ′

σ(p)
to re-write this map

as

mp−1Lσ (A f ′′
1

⊗ · · · ⊗ A f ′′
p
)(xi1 ⊗ · · · ⊗ xim )T (h j1 , . . . h jp−1). (4.28)

The tensors xi j are of the form A f or Th orm.We can then use Identities 1-3 fromLemma4.10
to “push to the right” all the appearances of A f (including those in xi j ) to the beginning of
the linear map, to get a map of the form

mp−1Lσ xi ′1 ⊗ · · · ⊗ xi ′
m′ T (h j1 , . . . , h jp−1)A f (4.29)

where xi ′j is either Th or m. This map can be written as

mp−1Lσ S1S2T (h j1 , . . . h jp−1)A f (4.30)

where S1 is a tensor product of copies of m and of I dW , and S2 is a tensor product of copies
of Thi and I dW . We can write Lσ S1 = S3Lσ ′ where S3 is again a tensor product of copies
of m and of I dW and σ ′ ∈ Sl+1 is a permutation defined from σ . We can also use Identity
4 from Lemma 4.10 repeatedly to write the composition S2T (h j1 , . . . , h jp−1) as a sum of
maps of the form T (h′

1, . . . h
′
l). Using the associativity of m, we arrive at a map of the form

ml Lσ ′T (h′
1, . . . , h

′
l)A f , which is what we wanted to prove. ��

We write

c(l, σ, f , h(1), . . . h(l)) = TrW (ml Lσ T (h(1), . . . , h(l))A f ).

The above proposition implies immediately the following theorem, which together with
Theorem 4.8 above finishes the proof of Theorem 1.1.

Theorem 4.12 The scalar invariants c(l, σ, f , h(1), . . . h(l)) form a complete set of invari-
ants for W. We call these invariants the basic invariants of W .

We can, in principal, translate all the relations which the invariants p(σ, i) satisfy to rela-
tions for the basic invariants. In both cases the set of invariants and the set of relations is quite
big.Wewill nevertheless be able to calculate some invariants explicitly, using Proposition 2.9.

As a first application of the basic invariants we study the relation of the invariants with
Galois theory. For the next proposition, assume that k ⊆ K is a subfield of K such that K/k
is a Galois extension with Galois group G. Assume also that H is already defined over k. In
other words, assume that there is a Hopf algebra Hk over k such that H ∼= Hk ⊗k K . This
is true for example in case K = Q, H = K Z or K [Z ] for some finite group Z , and k = Q.
In this case we will call a basic invariant c(l, σ, f , h(1), . . . , h(l)) k-rational if f ∈ H∗

k and
h(1), . . . , h(l) ∈ Hk (we can think of Hk and H∗

k as subsets of H and H∗ respectively). We
claim the following:

Proposition 4.13 Let W be a cocycle deformation of H, defined over K . Let L =
k(c(l, σ, f , h(1), . . . h(l))) ⊆ K be the subfield of K generated by the k-rational basic
invariants of W . Then for γ ∈ G it holds that γ W ∼= W if and only if γ fixes the subfield L
of K pointwise.

Proof Recall first that γ W is the vector space W twisted by the action of γ . Since the Hopf
algebra H is already defined over k = KG , γ W is again a cocycle deformation of H . The
structure constants for the multiplication and the coaction are given by applying γ to the
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structure constants ofW . The fact that the Hopf algebra H is already defined over k is crucial
here, since otherwise we would get that γ W is a comodule algebra over γ H . For more on
Galois twisting of algebraic structures, see Section 8 of [22]. It is easy to show that since
f ∈ H∗

k and h(i) ∈ Hk it holds that

cγ W (l, σ, f , h(1), . . . h(l)) = Trγ W (ml Lσ T (h(1), . . . , h(l))A f ).

Let us fix a basis {w1, . . . wn} for W . We can write all the linear maps T (h(i)), A f and
m with respect to that basis, using structure constants (this is the basic idea which enables
us to consider W as a point in an affine space in the first place). For the sake of sim-
plicity, let us write x1, . . . , xa for the set of structure constants which appear in the map
ml Lσ T (h(1), . . . , h(l))A f . Then the trace of this map will be a polynomial p(x1, . . . , xa)
with rational coefficients (this follows easily by considering the fact that composition of
linear maps is given by polynomial with rational coefficients in the structure constants). The
structure constants for γ W will then be γ (x1), . . . , γ (xa). This implies that the trace for
ml Lσ T (h(1), . . . , h(l))A f considred as a map γ W →γ W will be p(γ (x1), . . . , γ (xa)) =
γ (p(x1, . . . xa)), because p is a polynomial with rational coefficients. From this discussion,
we get the equation

γ (cW (l, σ, f , h(1), . . . h(l))) = cγ W (l, σ, f , h(1), . . . h(l)).

But the cocycle deformations W and γ W are isomorphic if and only if they have the same
basic invariants. Since the basic invariants with f ∈ H∗

k and h(i) ∈ Hk determine all the
other basic invariants, this implies the proposition. ��

5 Examples

Wewill give here examples for the invariants one gets for group algebras, dual group algebras,
and several non-semisimple Hopf algebras.

5.1 Group algebras

In this case theHopf algebra is a group algebra H = KG and the cocycle deformation algebra
is of the formW = K αG, where [α] ∈ H2(G, K×) is a cohomology class in the usual group
cohomology sense. The algebraW has a basis given by {Ug} for g ∈ G, and themultiplication
is given by UgUh = α(g, h)Ugh . The map T is given by T (Ug ⊗ h) = UgU

−1
h ⊗ Uh . The

map Aeg : W → W sends Uh to δg,hUh . Consider the invariant

c(l, σ, f , eg, g(1), . . . g(l)) = TrW (ml Lσ T (g(1), g(2), . . . g(l))Aeg ). (5.1)

The map ml Lσ T (g(1), g(2), . . . g(l))Aeg will send Uh to zero for h 
= g, and Ug to

U ε1
h1
U ε2
h2

· · ·U ε2l+1
h2l+1

, where εi = ±1, the list {h1, . . . h2l+1} contains every gi once with a posi-
tive and oncewith a negative power, and g oncewith a positive power. If g 
= hε1

1 · · · hε2l+1
2l+1 this

map is nilpotent, andwill therefore have trace zero. In the other case, where g = hε1
1 · · · hε2l+1

2l+1 ,

this map will have Ug as an eigenvector with nonzero eigenvalue, and its trace will be
U ε1
h1
U ε2
h2

· · ·U ε2l+1
h2l+1

U−1
g ∈ K . We have an interpretation of this invariant in terms of the

Universal Coefficients Theorem: Indeed, the Universal Coefficient Theorem gives us a homo-
morphism
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� : H2(G, K×) ∼= Hom(H2(G, Z), K×). (5.2)

The second integral homology group, also known as the Schur Multiplier of G can be
described in the following way: if

1 → R → F → G → 1 (5.3)

is a free resolution ofG, then H2(G, Z) ∼= ([F, F]∩R)/[F, R]. If we consider the free group
generated by the symbols {xg} and mapped to G in the obvious way, and if h1, . . . h2l+1 is a
sequence as above, then xε1

h1
· · · xε2l+1

h2l+1
x−1
g ∈ [F, F] ∩ R. It then holds that

�([α])(xε1
h1

· · · xε2l+1
h2l+1

x−1
g ) ∈ K (5.4)

is exactly the above invariant.Also, it is easy to see that every elementa ∈ [F, F]∩R,will give
rise to a basic invariant (by abuse of notations,we think here of homomorphisms H2(G, Z) →
K× as homomorphisms from [F, F] ∩ R which vanish on [F, R]). We summarize this in
the following proposition.

Proposition 5.1 In case H = KG all basic invariants are either zero or the invariants of the
cocycle arising from the isomorphism of the Universal Coefficients Theorem.

This gives us a description of the basic invariants, but it does not give us a description of the
relations between them. To get a concrete description, which will in fact reconstruct for us
the isomorphism �, we will use reduction of the acting group (Proposition 2.9).

For this, we enumerate the group elements {1 = g1, . . . , gn} of G. We fix a basis
{w1, . . . , wn} of W . We consider the variety Y of all cocycle deformation structures on
W . We write � = GL(W ). Let

N = {γ ∈ �|γ (wi ) = λiwi for some λi ∈ K×} ∼= GL1(K )n . (5.5)

We write Y ′ ⊆ Y for the subvariety

Y ′ = {((Ag),m, (Tg))|∀i Agi = eii }. (5.6)

We claim that the subgroup N stabilizes the subvariety Y ′, and every orbit of� in Y intersects
Y ′ in exactly one N -orbit. Indeed, since for every cocycle deformation we will have a direct
sum decomposition W = ⊕g∈GWg where Wg = span{Ug} is one dimensional, it holds that
every orbit of � in Y intersects Y ′, and if two points in Y ′ are conjugate under the action
of γ ∈ �, then γ fixes all the maps Agi = eii and is therefore contained in N . The group
N is also reductive. We thus see that all the conditions of Proposition 2.9 hold, and we can
therefore reduce the structure group from � to N .

Notice that we previously had n3 entries for the maps Ag , and n3 more entries for the
multiplication. Since we passed to Y ′ the maps Ag are given to us now explicitly. The
conditions saying that the multiplication respects the group grading will boil down to the
polynomial equations mk

i, j = 0 if gi g j 
= gk . This means that we have de-facto only n2

entries for the multiplication. These entries will be exactly the values of the cocycle α. The
variety we are left with is exactly the variety of 2-cocycles on G, and the acting group acts
by multiplying by one-cochains.

We re-write this variety in the following way:

Y ′ = {(α(g, h))g,h∈G |∀g, h, k ∈ G α(g, h)α(gh, k) = α(h, k)α(g, hk),

α(g, h) 
= 0} (5.7)
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(in fact, this is only a variety which is isomorphic with Y ′ as an N -variety, but this does not
make a big difference for us). The group N = GLn

1 acts on this variety by the action

(λg)g∈G · (α(g, h))g,h∈G = (α(g, h)λgλhλ
−1
gh )g,h∈G . (5.8)

We thus need to describe theGLn
1 invariants in K [Y ′]. We first notice that K [Y ′] is in fact the

group algebra of the abelian group A generated by the elements α(g, h)modulo the relations
arising from associativity, that is:

A = 〈α(g, h)〉/〈α(g, h)α(gh, k)α−1(h, k)α−1(g, hk)〉 (5.9)

and K [Y ′] = K A.
For every a ∈ A the subspace Ka ⊆ K [Y ′] is a one dimensional representations of GLn

1.
Since the character group of GLn

1 is Z
n , the action induces a homomorphism of abelian

groups ψ : A → Z
n . In other words, for every a ∈ A and (λg) ∈ N it holds that

(λg) · a =
n

∏

i=1

λψi (a)
gi a (5.10)

where ψ = (ψ1, . . . , ψn).
The invariant subspace K [Y ′]GLn

1 ∼= K AGLn
1 is then spanned by ker(ψ) ⊆ A. We claim

the following:

Lemma 5.2 We have an isomorphism � : ker(ψ) ∼= ([F, F] ∩ R)/[F, R] where F =
〈xg|g ∈ G〉 is a free group and R is the kernel of the canonical projection F → G.

Proof We will construct explicitly � and its inverse �−1. Assume first that a =
∏m

i=1 α(gi , hi )εi ∈ ker(ψ), where as usual εi ∈ {±1}. We consider the element a′ =
∏m

i=1(xgi xhi x
−1
gi hi

)εi ∈ F . The element a′ is contained in R since it is a product of elements
in R. The fact that a ∈ ker(ψ) implies that the element a′ is contained in [F, F]. Indeed, the
exponent sum of xh for h ∈ G in a′ is equal to bh , where (λg) · a = (

∏

g λ
bg
g )a′. But since

a′ ∈ ker(ψ) this implies that this sum is zero. It follows that the exponent sum is zero for
every h ∈ G, and a′ is thus an element of [F, F] ∩ R.

We would like to define now �(a) = a′ + [R, F]. For this, we need to check that this
map is well defined. Two problems may arise here: the first one is the fact that we took the
product in a′ in a specific order. The second one is that the elements α(g, h) do not freely
generate the abelian group A, and they satisfy relations arising from the associativity in the
algebra.

For the first problem, we just need to consider the commutation of two instances of α

variables: namely elements of the form

α(g1, h1)
ε1α(g2, h2)

ε2α(g1, h1)
−ε1α(g2, h2)

−ε2 . (5.11)

But thiswill be the sameas the commutator of two elements in R,which is obviously in [R, F].
For the second problem, notice that all the relations among the α variables are generated in
degree zero, namely by elements of the form a = α(g, h)α(gh, k)α(g, hk)−1α(h, k)−1. But
a direct calculation shows that in this case a′ is an element in [F, R], so � is well defined
indeed.

In order to define �−1 we proceed in a similar way. For every element x ∈ [F, F]∩ R we
write x as the product

∏

i r
εi
gi ,hi

where rg,h = xgxhx
−1
gh (this is possible since the elements

rg,h generate R as a group). We then define x ′ = ∏

i α(gi , hi )εi ∈ A. We then use the
fact that x ∈ [F, F] to show that x ′ ∈ ker(ψ), and we use the fact that A is an abelian

123



Hopf cocycle deformations and invariant theory 1377

group with defining relations arising from the associativity of α in order to show that if
x ∈ [R, F] then x ′ is trivial in A. This then enables us to define a group homomorphism
([F, F] ∩ R)/[F, R] → ker(ψ) ⊆ A by �(x) = x ′ and show that � = �−1. This finishes
the proof of the lemma. ��

Notice that with the proof of the above lemma we have re-established the special case of the
Universal Coefficients Theorem: indeed,we have seen that an equivalence class of a 2-cocycle
is equivalent to a ring homomorphism K [Y ]GLn

1 → K . But by the above isomorphism, this
is the same as an abelian group homomorphism [F, F] ∩ R/[F, R] → K×, which is the
isomorphism given by the Universal Coefficients Theorem.

5.2 Dual group algebras

Consider the case where the Hopf algebra is a dual group algebra H = K [G]. We will
describe the basic invariants we receive here. In this case, cocycle deformations of H will
be associative algebras with a G-action, which are isomorphic to KG as G-representations.
We use now the fact that cocycle deformations of H are the same thing as Drinfeld twists on
H∗. Following [25] and [9] (see also [13] and Theorem 3.2 in [29]) we have the following
classification result:

Proposition 5.3 A cocycle deformation for K [G] is given by a pair (F, [α]) where F is a
subgroup of G and [α] ∈ H2(F, K×) is a non-degenerate 2-cocycle (which means that
K αF is isomorphic with a full matrix algebra). Two such pairs will give rise to equivalent
cocycle deformations if and only if they differ by conjugation by an element of G. The algebra
which corresponds to (F, [α]) is given explicitly by ⊕i eti K

αF where {ti }i is a set of coset
representatives of F in G, and the eti are pairwise orthogonal idempotents. The action of G
on this algebra is given explicitly in the following way: if gti = t j f then

g · (eti U f ′) = et j U f U f ′U−1
f .

We can, in principle, write a cocycle on K [G] which arises from the cocycle on F . For
this, one uses the fact that as an F-module under conjugation K αF is isomorphic with K F
with the regular action.

We will take a different approach here. We will write the linear maps T f explicitly, and
we will use them to write down the invariants explicitly. We will not describe explicitly the
relations between these invariants, but we will show how they relate to the basic invariants
of the cocycle α, and we will say something about their arithmetic properties.

The map M sends eti U f1 ⊗ et j U f2 to
∑

f ∈F eti U f1U f U f2U
−1
f ⊗ eti f t−1

j
. Notice that the

idempotent in the second tensor factor is an element of K [G], and not of W . We shall now
use the fact that the cocycle α is non-degenerate in order to describe explicitly the inverse
T of M . For this, we will use the following facts: since K αF ∼= Mn(K ), this algebra has
a trivial center. For every 1 
= f ∈ F the element

∑

f ′∈H U f ′U f U
−1
f ′ is central and not a

scalar multiple of the identity, and is therefore zero.
For an element f ′ ∈ F and two coset representatives ti and t j we consider now the

element

Xi, j,h1,h2 = 1

|F |
∑

f ∈F
eti U f1U f ⊗ et j U

−1
f2
U−1

f U f2 . (5.12)
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Its image under M is the element

1

|F |
∑

f , f3∈H
etiU f1U f U f3U

−1
f2
U−1

f U f2U
−1
f3

⊗ eti f3t−1
j

= eti U f1 ⊗ eti f2t−1
j

. (5.13)

For the equality we have used the fact that the sum

1

|F |
∑

f ∈F
U f U f3U

−1
f2
U−1

f (5.14)

is zero, unless f3 = f2, in which case it is 1. This already gives us the inverse of the map
M : indeed, for ti ∈ T and g ∈ G there is a unique index j such that f2 := t−1

i gt j is in H

(this follows easily from the fact that t−1
j are the representatives of the right cosets of F in

G). We then have that

T (eti Uh1 ⊗ eg) = Xi, j, f1,t
−1
i gt j

. (5.15)

Writing this more explicitly, we have that

Teg (eti U f1) = 1

|F |
∑

f ∈F
eti U f1U f ⊗ et j U

−1
f2
U−1

f U f2 where f2 = t−1
i gt j . (5.16)

We now turn to the calculation of the invariants. We will begin with the case F = G. In
this case our algebra W is just K αF and

Teg (U f ) = 1

|F |
∑

f ′
U f U f ′ ⊗U−1

g U−1
f ′ Ug. (5.17)

The map T (eg(1), . . . eg(l)) sends U f to

1

|F |l
∑

f ′
1,..., f

′
l

U f U f ′
1
· · ·U f ′

l
⊗U−1

g(l)U
−1
f ′
l
Ug(l) ⊗ · · · ⊗U−1

g(1)U
−1
f ′
1
Ug(1). (5.18)

We would like to show that the trace of the map Agml Lσ T (eg(1), . . . , eg(l)) is the sum of
invariants of the cocycle α. In order to do so we first show that the projection

E f : K αF → K αF
∑

f ′∈F
a f ′U f ′ �→ a f U f (5.19)

can be expressed using the maps Teg . Indeed, consider the map mτTe f where τ is the flip of
vector spaces. This is the same as the action of K [G] on W described in Sect. 2. We have

mτTe f (U f ′′) = 1

|F |
∑

f ′
U−1

f U−1
f ′ U f U f ′′U f ′ . (5.20)

In case f f ′′ 
= 1 this sum is zero. When f f ′′ = 1 then this sum is equal to

1

|F |
∑

f ′
U−1

f U f U f ′′U−1
f ′ U f ′ = U f ′′ , (5.21)

and we thus see that mτTe f −1 = E f . We write

Agm
l Lσ T (eg(1), . . . eg(l)) =

∑

f1,... fl

Agm
l Lσ (E f1 ⊗ · · · ⊗ E fl )T (eg(1), . . . eg(l)). (5.22)
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The trace of the left hand side will thus be the sum of the traces of the maps on the right
hand side. But following the calculation we have done for group algebras, for every l-tuple
f1, . . . fl the trace of any of the maps on the right hand side is either zero or 1

|F |l times one of
the basic invariants of the cocycle α. Moreover, it can easily be shown that all the invariants
of the cocycle α will be received in this way. Lastly, notice that the fact that E f can be
expressed using m and T implies that the summands on the right hand side are also basic
invariants. We summarize this discussion in the following proposition:

Proposition 5.4 In the case F = G all the basic invariants are either zero or of the form

|F |−r
∑

i

ci

where all the ci are basic invariants of the cocycle α.

We next consider the case where F is a proper subgroup of G. We write W = ⊕Wi

where Wi = eti K
αH . We would like to calculate the trace of linear maps of the form

Agml Lσ T (eg(1), . . . eg(l)). We consider the action of this linear map on Wi . First notice that
if for some k = 1, . . . l the index j for which t j F = gkti F is different from i , this map will
be the zero map: this follows directly from the fact that the multiplication eti U f1 · et j U f2 is

zero if i 
= j . We thus see that this trace will be zero unless gk ∈ ti Ft
−1
i for every k. Notice

also that if g /∈ ti Ht−1
i the action of Ag will send Wi to Wj for some j 
= i , and the trace

will be zero again. Let now

dF (g, σ, g(1), . . . g(l)) =
{

TrW1(Agml Lσ T (eg(1), . . . , eg(l)) if g, g1, . . . gl ∈ F

0 else
(5.23)

These are the invariants which we encountered in the case F = G. The above discussion can
be summarized in the following proposition:

Proposition 5.5 The basic invariants of W are of the form

c(l, σ, g, eg(1), . . . , eg(l)) =
∑

i

dF (t−1
i gti , σ, t−1

i g(1)ti , . . . , t
−1
i g(l)ti )

As amore specific example, consider the casewhere F is a normal subgroup ofG. In this case,
if any of the elements g, g(1), . . . g(l) is not in F , then the invariant is automatically zero. If
all these elements are in F , then dF (g, σ, g(1), . . . , g(l)) is a sum of basic invariants of the
cocycle α. In a similar fashion, for every i the scalar dF (t−1

i gti , σ, t−1
i g(1)ti , . . . , t

−1
i g(l)ti )

will be the sum of the same basic invariants, but for the cocycle t∗i (α).

5.2.1 Dual group algebras: a concrete example

Assume that the ground field K isQ. Consider the group F = Z/3×Z/3. Let {x, y} be a basis
for F , considered as a vector space over Z/3. Consider the following action of Z/4 = 〈g〉 on
F : g(xi y j ) = x2i y j , and construct the semidirect prouct G = (Z/3 × Z/3) � Z/4. Notice
that the subgroup 2Z/4 of Z/4 is central.

Let α : F × F → K× be the 2-cocycle defined by (xi y j , xk yl) = ζ jk where ζ ∈ K is a
third root of unity. This cocycle is non-degenerate, and a direct calculation shows that g∗(α)

is cohomologous to ν∗(α) where ν ∈ Gal(Q(ζ )/Q) sends ζ to ζ−1. Then we see that in
this case all the basic nonzero invariants will be of the form c(g, σ, g(1), . . . , g(l)) = (2 +
2ν)(dF (g, σ, g(1), . . . g(l))) for some g, g(1), . . . g(l) ∈ F , and will therefore be rational.
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We thus have the following situation: the Hopf algebra K [G] is already defined over Q,
and all the basic invariants of W are contained in Q. As was mentioned in Proposition 4.13,
this only means that νW ∼= W . We show here that the cocycle deformation W is, however,
not definable over Q. For this, we begin by writing W explicitly. As an algebra,

W = e1K
αF ⊕ egK

ν(α)F ⊕ eg2K
αF ⊕ eg3K

ν(α)F, (5.24)

the action of g is given by

e1U f1 + egU f2 + eg2U f3 + eg3U f4 �→ e1Ug( f4) + egUg( f1) + eg2Ug( f2) + eg3Ug( f3).

(5.25)

The action of f ∈ F is givenby conjugationwith e1U f +egU f +eg2U f +eg3U f .Assumenow
thatW has a formWQ definedover the rational numbers. For convenience,wewill think ofWQ

as a subspace ofW . The algebraWQ is the direct sumof 1, 2 or 4 simple algebras overQ. Since
the action of conjugation by x and by y is defined inWQ, and since this action fixes the centre
pointwise, Skolem-Noether Theorem implies, by considering this action on the different
direct summands ofWQ, that the action of x is given by conjugation by an element Vx ∈ WQ,
and the action of y is given by conjugation by an element Vy ∈ WQ. It must hold that Vx =
a1e1Ux+agegUx+ag2eg2Ux+ag3eg3Ux andVy = b1e1Uy+bgegUy+bg2eg2Uy+bg3eg3Uy

We then get that z = VxVyV−1
x V−1

y = ζe1 + ζ 2eg + ζeg2 + ζ 2eg3 ∈ WQ. The last element
is contained in the centre Z of WQ. We see that dimQZ = 4, since the center of W over K
is four dimensional, and the dimension of the centre is stable under field extension. We also
see that Z contains a subalgebra of dimension 2 which is isomorphic with the field Q(ζ )

(this is the subalgebra generated by the element z). Moreover, there exists an automorphism
g of order 4 such that Zg = Q (since taking dimensions of fixed subspaces is also stable
under field extension). The element g2 fixes Q(z) pointwise. Since we know that Zg2 has
dimension 2 (again, since taking dimensions is stable under field extensions), we see that
Zg2 = Q(z). The centre Z is either a field or the direct sum of two fields. If it is a field, it
will be a Galois extension of Q of order 4 which contains Q(ζ ) as a subfield. However, one
can prove directly that such an extension does not exist.

It follows that Z must be isomorphic with Q(ζ )⊕ Q(ζ ). The action of the element g then
necessarily sends (1, 0) to (0, 1), (0, 1) to (1, 0), (ζ, 0) to either (0, ζ ) or (0, ζ 2) and (0, ζ )

to either (ζ, 0) or (ζ 2, 0). But by checking all 4 cases we see that in none of these options it
holds that Zg2 ∼= Q(ζ ). This is a contradiction, and therefore the form WQ does not exist.
This shows that unlike in the case of group algebras (see [2]), the invariants of the 2-cocycle
are not always enough in order to define the 2-cocycle.

5.3 Taft Hopf algebras

We turn now to examples arising from non-semisimple Hopf algebras. We consider the Taft
Hopf algebra Hn . This algebra has the following presentation:

Hn = K 〈g, x〉/(gn − 1, xn, gxg−1 − ζ x) (5.26)

where ζ ∈ K is a primitive n-th root of unity. The comultiplication in this algebra is given on
the generators by the rules �(g) = g⊗ g and �(x) = x ⊗1+ g⊗ x . The classification of 2-
cocycles for this Hopf algebras are known (see [20] and the examples in [22]). Wewill follow
now some of the ideas of [22] and describe this problem as a problem in invariant theory. To
do so, we will begin by taking a cocycle deformation of Hn , and analyze its structure. We
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then use this analysis to reduce the acting group from GLn2 to GL1, and study the invariants
under this group.

To do so, we begin by recalling some of the calculations done in Lemma 13.1 of [22].
We begin by considering the element γ ∈ H∗ given by γ (gi x j ) = δ j,0ζ

i . As can easily be
seen, this element is a group like element of H∗. We also define ξ ∈ H∗ by ξ(gi x j ) = δ j,1.
This element satisfies the equation �(ξ) = 1⊗ ξ + ξ ⊗ γ −1. Lastly, we define ˜Tg = mτTg :
W → W . Under the isomorphismW ∼=αHn this map is given by conjugation by the element
g insideαHn .

A direct calculation shows that the maps Tg and Aγ commute with one another. This
follows from the fact that the corresponding elements commute inside the Drinfeld double
D(Hn) of Hn , and that W is a representation of D(Hn), as was explained in Sect. 2.

We thus see thatW is a representation of the abelian group Z/n × Z/n. We letWi, j ⊆ W
to be the subspace of W upon which γ acts by ζ i and Tg by ζ j . We have a direct sum
decomposition W = ⊕i, jWi, j . Using again the D(Hn)-representation structure on W , we
see that ξ(Wi, j ) ⊆ Wi+1, j−1 where the indices are taken modulo n.

Using now the presentation W = αHn , we see that the kernel of ξ has a basis given
by gi for i = 0, . . . , n − 1. But gi ∈ Wi,0. It follows that the restriction of ξ to Wi, j for
j 
= 0 is injective. By dimension considerations it follows now that dim(Wi, j ) = 1 for
every i, j = 0, . . . n − 1. It then follows that if j 
= 0 then ξ : Wi, j → Wi+1, j−1 is a
linear isomorphism. Notice that the result about the dimensions ofWi, j is independent of the
particular cocycle.

The unit of W must be an element of W0,0. Let now t ∈ Wn−1,1 be an element which
satisfies ξ(t) = 1, and let g̃ ∈ W1,0 be some nonzero element. We claim that for every
i, j = 0, . . . , n − 1 the element g̃i t j spans the one dimensional space Wi− j, j . For this, we
first notice that g̃ is invertible. This follows from considering the restriction of the cocycle
α to the sub-Hopf algebra of Hn generated by the group like element g. It thus remains to
prove that t j 
= 0 for j < n. We prove this by induction on j . We first calculate Aξ (t j ) =
Aξ (t · t j−1) = t · Aξ (t j−1) + 1 · ζ 1− j t j−1. It follows now by induction that Aξ (t j ) =
(1 + ζ−1 + · · · + ζ 1− j )t j−1, so if we assume by induction that t j−1 
= 0 it follows that
t j 
= 0 as well.

This already gives us a description of almost all the structure constants of W . Indeed, W
has a basis given by the elements g̃i t j . Using the associativity of W , and the fact that the
action of g̃ on t by conjugation is given by g̃t g̃−1 = ζ t (because t ∈ Wn−1,1), we get that
the multiplication of two basis elements is given explicitly by the formula

(g̃i t j ) · (g̃k tl) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ζ− jk g̃i+k t j+l if i + k, j + l < n,

ζ− jk g̃n g̃i+k−nt j+l if i + k ≥ n, j + l < n,

ζ− jk tn g̃i+k t j+l−n if i + k < n, j + l ≥ n,

ζ− jk g̃ntn g̃i+k−nt j+l−n if i + k, j + l < n.

(5.27)

where we have used the fact that g̃n, tn ∈ W0,0 = span{1} are central elements. We will
denote these elements by g̃n = a and tn = b.

Let {wi, j }i, j be a basis for W . We now summarize the above discussion by using the
Group-Reduction-Proposition (Proposition 2.9). Let

Y ′ = {(m, T , A)|wi, j =wi
1,0w

j
n−1,1, Aξ (wn−1,1)=1, ˜Tg(wi, j )=ζ jwi, j , Aγ (wi, j )=ζ i− jwi, j } ⊆ Y .

(5.28)
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The above discussion shows that every orbit of GL(W ) in Y intersects Y ′. This is because
we have shown that we can always find an orbit of W for which the structure constants has
a specific form. Since the action of the grop GL(W ) is esentially the base change operation,
this implies that Y ′ intersect all the orbits in Y .

Consider now the subgroup N := GL1 ⊆ GL(W ) which acts on W by the formula
λ·wi, j = λiwi, j . The subgroup N acts onY ′, and for everyGL(W )-orbitO it holds thatO∩Y ′
is a single N -orbit. This follows from the fact that the only liberty we have in the choice of the
basis is by choosing λg̃ instead of g̃. The Group-Reduction-Lemma can thus be used here. All
the structure constants can be expressed as polynomials in a±1, b as explained above: This is
true for the structure constants of the multiplication by the above formula. For the structure
constants of A, we have Aγ (wi, j ) = ζ i− jwi, j and Aξ (wi, j ) = (1+ζ−1+· · ·+ζ 1− j )hi t j−1,
and this is enough to describe A because γ and ξ generate H∗. We can thus also describe
T by using a±1 and b, since T is the inverse of a linear map constructed from A and m (a
priori this only tells us that we can describe the entries of T by rational functions of a and
of b, but a direct verification shows that polynomials in a±1 and b are enough). By checking
directly all the equations the structure W should satisfy, we see that for every value of (a, b)
with a 
= 0 we will get an algebra which is a cocycle deformation for Hn .

We thus reach the conclusion that K [Y ′] = K [a±1, b]. The action of N on this ring is
given by λ · a = λna, λ · b = b. The ring of invariants is thus K [b]. We thus get here a
concrete description of the moduli space of 2-cocycles on Hn as the affine line.

This result has been proven also in [22]. However, the proof there was different: we have
also showed that over an algebraically closed field the equivalence class of a cocycle is given
by a scalar b ∈ K . What was less clear was the fact that for every b we really get such
an algebra. The proof there was by constructing such an algebra explicitly, using a crossed
product construction. This part of the proof appears also here, where we verified that for every
value of (a, b) with a 
= 0 we get a cocycle deformation of Hn (by checking the equations
for associativity and the other axioms). In the next examples we will have to make similar
considerations. We will use again the Group-Reduction Proposition in order to reduce the
acting group to a relatively small group. This will enable us to describe explicitly a generating
set for the invariants. The problem is that it is not clear a-priori what will be the relations
that these invariants should satisfy. We will then use Lemma 2.5 to show that for every set
of invariants we get a cocycle deformation (and so, the generating sets we find will freely
generate a polynomial algebra).

5.4 Hopf algebras arising as Bosonizations of finite non-abelian groups

We will consider now examples of cocycle deformations of Hopf algebras of the form H =
H0#R where H0 is a semisimple Hopf algebra and R ∈ H0

H0
YD is the Nichols algebra B(V ) of

some object V ∈ H0
H0
YD. Wewill consider here the case where H0 = KG or H0 = K [G] for a

finite groupG. In both cases the category of Yetter Drinfeld modules is the same. An object in
H0
H0
YD is a representation V of G, which is also G graded, in such a way that g(Vh) = Vghg−1

for every g, h ∈ G. We consider now the case where G = S3 and V = I ndS3
〈(12)〉sign, where

sign is the sign representation of 〈(12)〉. In the terminology of [19] this representation is
denoted (O3

2,−1). Written explicitly, V = span{a, b, c} where

a = 1 ⊗ 1

b = (123) ⊗ 1 and
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c = (132) ⊗ 1.

The degrees of the elements of V is given by

deg(a) = (12)

deg(b) = (23)

deg(c) = (13)

The action of (12) on the basis elements of V is given by

a �→ −a, b �→ −c, c �→ −b,

and the action of (123) is given by

a �→ b �→ c �→ a.

The structure of theNichols algebraB(V )was studied in [24]. It is given explicitly as T(V )/I ,
where I is the two-sided ideal generated by the degree 2 elements

a2, b2, c2, ab + bc + ca and ac + cb + ba.

This algebra is known as FK3, the Fomin-Kirillov algebra. See also [18]. The algebra
B(V ) is graded, and the dimensions of its homogeneous components are 1,3,4,3,1 (where
dim B(V )0 = 1 and so on).

We will study now cocycle deformations on the Hopf algebras B(V )#K S3 and
B(V )#K [S3]. Notice that the first Hopf algebra is pointed (that is- all its irreducible comod-
ules are one dimensional), while the second one is not, because the group S3 is not abelian.
Both Hopf algebras are of dimension 72. See also [5] and [6] for a deeper study of these
Hopf algebras.

5.5 The Hopf algebra H = B(V)#KS3

We have H = K S3 ⊗ B(V ) as vector spaces. The algebra structure is the bicrossed product
algebra structure, where the group S3 acts on B(V ) by conjugation (see [4]). The elements
of S3 are group-like elements, and the elements of V satisfy the coproduct formula

�(a) = a ⊗ 1 + (12) ⊗ a

�(b) = b ⊗ 1 + (23) ⊗ b

�(c) = c ⊗ 1 + (13) ⊗ c (5.29)

Analysing the equations for the variety XH will be too complicated. Instead, we will use
again the group reduction technique. For this we will begin by finding a specific form for
any cocycle deformation of the Hopf algebra H1.

Notice first that the Hopf algebra H is also graded, where

Hi = T(V )i · K S3.

For every j it then holds that

⊕i≤ j Hi

is a subcoalgebra of H . Let now W =αH for some 2-cocycle α. We begin by analysing W
similar to the way we proceeded in the previous examples. In the language of [22], we study
the fundamental category of W .
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Whenever it will be convenient for us, we will use the isomorphism W ∼= H of right
H -comodules. We recall also the fact that

T (1 ⊗ h) = ˜S(h1) ⊗ h2 ∈ W ⊗ W .

We start with analysing the comodule structure of W . For every g ∈ S3 we write

Wg = ρ−1(W ⊗ Kg).

This is a subspace of W of dimension 1 (by using the isomorphism of comodules), and the
direct sum

WS3 = ⊕g∈S3Wg

will give us an algebra which is isomorphic to K β S3 for some

[β] ∈ H2(S3, K
×).

Next, we consider the subspace

Ha = span{1, a} ⊆ H .

It holds that �−1(H ⊗ Ha) = Ha . It then holds that

Wa := ρ−1(W ⊗ Ha) ⊆ W

is a subspace of dimension 2. Pick a nonzero element w(12) ∈ W(12). We know that this
element is invertible because the restriction of the cocycle α to K S3 is also invertible. Write

c(12) : W → W

for conjugation by the element w(12). Notice that c(12) does not depend on the choice of
w(12), and has order 2, since w2

(12) ∈ span{1}. Since (12)a(12) = −a in H , it holds that
c(12)(Wa) = Wa . We write {1, w} for a basis of Wa . It holds that c(12)(1) = 1. If

ρ(w) = w1 ⊗ 1 + w2 ⊗ a,

then from the coassociativity and counitality of the coaction of H we get that w1 = w and
ρ(w2) = w2 ⊗ (12). This implies that w2 is proportional to w(12), and therefore c(12)(w2) =
w2. Using the fact that ρ is an algebra morphism, we get

ρ(c(12)(w)) = c(12)(w1) ⊗ (12)(12) + c(12)(w2) ⊗ (12)a(12) = c(12)(w1) ⊗ 1 − w2 ⊗ a.

We thus have that

ρ((c(12) + I dW )(w)) = (c(12) + I dW )(w) ⊗ 1, (5.30)

and therefore

(c(12) + I dW )(w) ∈ span{1}.
It follows that

Im(c(12) + I dW ))|Wa = span{1}.
Since dimWa = 2 this means that there exists a unique vector (up to a nonzero scalar)
wa ∈ Wa such that c(12)(wa) = −wa . This follows by considering the representation of the
group Z/2 (given by the conjugation action of c(12)) onWa and its decomposition to isotypic
components.
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We next choose a non-zero element w′
(23) ∈ W(23). This element is again invertible since

the cocycle α is invertible, and we consider the element

w(123) = w′−1
(23)c(12)(w

′
(23)) ∈ W(123).

Notice that this element is canonically defined, and does not depend on the choice of the
elements w(12) and w′

(23). Moreover, since

H2(S3, K
×) = 0

one can prove that w3
(123) = w1. We then define

w(23) = w(12)w(123), w(13) = w(12)w
2
(123),

wb = w(123)waw
−1
(123) and wc = w−1

(123)waw(123). (5.31)

We can write

ρ(wa) = wa ⊗ 1 + νw(12) ⊗ a

for some scalar ν. The element wa is not central, and ν is therefore not zero. We can then
rescale wa to assume that ν = 1. Using the definition of wb and wc and the multiplicativity
of ρ we get that

ρ(wb) = wb ⊗ 1 + w(23) ⊗ b and

ρ(wc) = wc ⊗ 1 + w(13) ⊗ c.

We claim the following:

Lemma 5.6 The set of products

{1, wa, wb, wc, wawb, wawc, wbwa, wbwc,

wawbwa, wawbwc, wbwawc, wawbwawc} · {wg|g ∈ S3}
is a basis for W

Proof We will use the multiplicativity of the map ρ : W → W ⊗ H together with the fact
that the corresponding set of products in H is a basis for H . Since the dimension ofW agrees
with the size of the set we have, it is enough to prove that this set is linearly independent.
Assume that we have a linear relation of the form

wawbwawc · X + ( terms of degree ≤ 3) = 0 (5.32)

where X ∈ span{wg|g ∈ S3}. Apply the map

W
ρ→ W ⊗ H → W ⊗ H4

where the second map is given by the projection H → H4. If X = ∑

g∈S3 tgwg then we get
that

∑

g∈S3
tgw(12)w(23)w(12)w(13)wg ⊗ abacg = 0.

But this implies that for every g ∈ S3 we have

tgw(12)w(23)w(12)w(13)wg = 0,
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which implies that X = 0 (since all the wg are invertible). We then write the above
linear combination as a linear combination of terms of degree ≤ 3, and continue in a similar
fashion. ��

This gives us a very big reduction of the acting group. Indeed, by the last lemma we see
that once we have chosen the element w(12) ∈ W(12) we have a canonically defined basis for
W . We write

w2
(12) = c0, w

2
a = λ0 and wawb + wbwc + wcwa = μ0.

Notice that due to the nature of defining wb and wc as conjugates of wa , it holds that

w2
b = w2

c = λ0, and wbwa + wawc + wcwb = μ0.

Wecan nowwrite specifically a subvariety Y ′ ⊆ Y for theGroup-Reduction-Lemma in the
following way: Let {w1, . . . w72} be a basis forW , and let {q1, . . . q72} be an enumeration of
the basis from the last lemma.So for exampleq1 = 1,q2 = w(12), . . . q7 = wa, q8 = waw(12)
and so on. We know that these basis elements satisfy a large collection of relations arising
from the coaction of H and themultiplication, for example q8 = q7q2, andρ(q2) = q2⊗(12).
Let us denote by {Ri (q j )} the set of all such relations. Consider now the subset Y ′ =
{(m, T , A)|∀i Ri (w j )}. The last lemma implies that every orbit in Y intersects Y ′. This
follows by choosing carefully the basis for W and considering the fact that the action of
� on Y is given by base change. By the above lemma we see that the only freedom in
choosing the basis elements above is in choosingw(12). In other words, consider the subgroup
N = GL1 ⊆ GL(W ). The specific embedding of GL1 in GL(W ) is given in the following
way: an element ν ∈ N acts diagonally with respect to the above basis. If wi1 · · · wit is a
monomoial of degree t in wa, wb, wc which appears in the basis, and g ∈ S3 then the action

of ν on wi1 · · · wit wg is given by the scalar νt+
1−sign(g)

2 . We then see that each GL(W )-orbit
in Y intersects Y ′ in exactly one N orbit. The conditions of Proposition 2.9 then hold.

We can now write explicitly all the structure constants using the scalars c0, λ0 and μ0.
The action of ν ∈ GL1 on these elements is given by ν · (c0, λ0, μ0) = (νc0, νλ0, νμ0).
Since the scalar c0 is necessarily invertible (since the element w(12) must be invertible) we
reach the conclusion that the ring of invariants K [Y ′]N is generated here by the elements
λ := λ0c

−1
0 and μ := μ0c

−1
0 .

We conclude this result in the following proposition:

Proposition 5.7 We have an isomorphism K [Y ′]N ∼= K [λ,μ]/I , where I is some ideal.

Therefore, to complete the classification of cocycle deformations of H , we need to understand
the ideal I . In other words- we need to understand what polynomial relations (if any) the
elements λ and μ must satisfy. We will prove here the following (see also [18] and [19]):

Proposition 5.8 The ideal I above is the zero ideal. In other words, the moduli space XH of
cocycle deformations for H is the affine space A

2.

Proof In principle, we can write all the structure constants for W using λ and μ, and check
that for every value of (λ, μ) we get a cocycle deformation. Unfortunately, as the dimension
of W is quite big (72), this requires some effort. What we will do instead is to construct, for
every pair (λ, μ), such a cocycle deformation. We thus fix now (λ, μ) ∈ A

2. We begin by
defining an algebra R by the presentation:

R = K 〈wa, wb, wc〉/(w2
a − λ,w2

b − λ,w2
c − λ,
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wawb + wbwc + wcwa − μ,wawc + wcwb + wbwa − μ).

This algebra has an action of the group S3 given on the generators of S3 and on the generators
of R by

(12)(wa) = −wa, (12)(wb) = −wc, (12)wc = −wb

(123)(wa) = wb, (123)(wb) = wc, (123)wc = wa .

We define W to be the crossed product algebra

W := R � K S3.

We write wg for the group elements in S3 insideW . Notice thatW = 0 if and only if R = 0.
At this level it is still not clear if this is the case or not.

We define ρ : W → W ⊗ H as the algebra map which is defined, on generators, by

ρ(wg) = wg ⊗ g, ρ(wa) = wa ⊗ 1 + w(12) ⊗ a,

ρ(wb) = wb ⊗ 1 + w(23) ⊗ b, ρ(wc) = wc ⊗ 1 + w(13) ⊗ c.

A direct verification shows that ρ sends the defining relations ofW , arising from the relations
among the generators of R and from the formulas for the action of S3 on R, to zero, and thus
defines an algebra morphism. Verification of coassociativity is also direct. We next define
˜T : H → Wop ⊗ W to be the algebra map which, on the level of generators of H is given
by

g �→ wg−1 ⊗ wg, a �→ −w(12)wa ⊗ 1 + w(12) ⊗ wa,

b �→ −w(23)wb ⊗ 1 + w(12) ⊗ wa, c �→ −w(13)wc ⊗ 1 + w(13) ⊗ wc.

A direct verification shows that the conditions of Lemma 2.5 are satisfied, so if we can prove
that the algebra W is nonzero, we will be done.

Notice, again, that this is not clear a-priori. Indeed, it is possible that by deforming the
original relations into non-homogeneous ones we would have gotten the element 1 inside the
ideal of relations, and this would imply that W = 0. However, Proposition 2.4 tells us that
proving that W 
= 0 will be enough. We shall do so by proving that R 
= 0.

In order to do so, it will be enough to show that R has a nonzero quotient. We proceed as
follows: if μ = λ = 0 we know that this is the case, since we can simply map R → K by
sending wa, wb, wc to 0. If λ = 0 but μ 
= 0, then we consider the algebra homomorphism

φ : R → M2(K ) given by sendingwa, wb →
(

0 1
0 0

)

andwc →
(

0 0
μ 0

)

. A direct calculation

shows that φ is an algebra map.

If λ 
= 0 we define X =
(

1 0
0 −1

)

∈ M2(K ) and Y =
(

0 1
1 0

)

∈ M2(K ), and define

φ : R → M2(K ) by φ(wa) = φ(wb) = t X and φ(wc) = r X + sY where t2 = λ,
r = (μ − λ)/t and s2 = λ − r2 (the choice of the scalars is done to ensure that the relations
of R will hold in M2(K )). Again, this proves that R 
= 0 and we are done. ��

We denote the last cocycle deformation by W = Wλ,μ. By applying Lemma 2.6 we get

the following description of the double-twisted Hopf algebra αHα−1
:

Proposition 5.9 Write W = αH for an appropriate cocycle α on H. Then αHα−1
is the

Hopf algebra generated by the group like elements of S3 together with the elements a, b, c,
and which satisfy the relations a2 = b2 = c2 = 0, ab + bc + ca = μ(1 − (123)), and
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ba + ac+ cb = μ(1− (132)). The coproduct is the same as in the Hopf algebra H, and the
action of the group like elements on a, b and c is the same as in H.

Remark 5.10 The construction of this algebra was done in [19] by Garcia Iglesias and
Mombelli. The calculation done there also includes checking that a certain algebra is non-
zero. They do so by using computer software. Checking that the algebra R has a nonzero
quotient, as we did here, provides a shorter proof.

Remark 5.11 Since we have used Proposition 2.9, it is possible that K [Y ]GL(W ) will be a
proper subalgebra of K [Y ′]N . One can prove directly that this is not the case by constructing
basic invariants which are equal to λ and to μ. A similar statement holds for the Taft Hopf
algebras.

5.6 Non-pointed non-semisimple Hopf algebra over S3

We turn now to the Hopf algebra H = B(V )#K [S3]. This algebra was studied by
Andruskiewitsch and Vay in [5] and [6]. They have also classified Hopf algebras arising
from this Hopf algebra by deformation, and showed that these algebras are all of the form
αHα−1

. Here we will consider the classification of all cocycle deformations of this algebra.
The braided vector space V ∈ S3

S3
YD is the same as before. This algebra is generated by

the dual group algebra K [S3] together with three elements a, b, c which satisfy the same
relations as before: a2 = b2 = c2 = ab+bc+ ca = ac+ cb+ba = 0. The action of K [S3]
on B(V ), which amounts to the grading by S3 gives us here that

ega = ae(12)g, egb = be(23)g, and egc = ce(13)g for every g ∈ S3.

The comultiplication is more complicated, as it is induced now by the action of S3. It is given
by the formulas:

�(a) = a ⊗ 1 + (e1 − e12) ⊗ a + (e132 − e13) ⊗ b + (e123 − e23) ⊗ c

�(b) = b ⊗ 1 + (e1 − e23) ⊗ b + (e132 − e12) ⊗ c + (e123 − e13) ⊗ a

�(c) = c ⊗ 1 + (e1 − e13) ⊗ c + (e132 − e23) ⊗ a + (e123 − e12) ⊗ b. (5.33)

Let now W be a cocycle deformation of H . We would like to analyze, as before, the
structure of W and describe the moduli space of all cocycle deformations. We start now by
considering the restriction of W to K [S3]. In other words: let us write WS3 := ρ−1(W ⊗
K [S3]) where ρ denotes, as before, the coaction of H on W . By using the fact that W is
isomorphic with H as an H -comodule, we get that dim(WS3) = 6, and that this is a cocycle
deformation of K [S3] (in cocycle terms, we will just get here the restriction of the cocycle
on H to K [S3]). We know that all cocycle deformations on K [S3] are trivial. Indeed, this
follows from Proposition 5.3 above, and the fact that the group S3 does not contain any
nontrivial subgroups of central type. We thus fix an isomorphism � : K [S3] → WS3 as
K [S3]-comodule algebras.

Notice that this isomorphism is not unique: indeed, the set of such isomorphisms is a torsor
over the group of automorphisms of K [S3] as a K [S3]-comodule algebra, which is the finite
group S3. This lack of uniqueness, very similar to the lack of uniqueness in choosing w(12)
in the previous example, will come into play later when we will determine the invariants.

We consider the isomorphism � from now on as an identification. We thus have a basis
for WS3 given by {eg}g∈S3 , the multiplication is given by

egeh = δg,heg
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and the coaction of H is given by

ρ(eg) =
∑

g1g2=g

eg1 ⊗ eg2 ∈ W ⊗ H .

Next, we consider the subspace

W1 := ρ−1(W ⊗ span{1, a, b, c}).
By comparing W and H as H -comodules we find out that dim(W1) = 4. As can easily be
seen, the multiplicative unit 1 ∈ W is contained in W1. We now define the projections

Eh : W → W

w �→
∑

g∈S3
eg · w · ehg. (5.34)

These maps are projections because all the elements eg are pairwise orthogonal idempotents.
A direct calculation shows that

∑

h

Eh = I dW and that EhEh′ = δh,h′Eh .

Notice that for w ∈ WS3 it holds that Eh(w) = δ1,hw. This follows from the fact that the
subalgebra WS3 is commutative.

Using again the isomorphism of W and H as H -comodules, we find out that for every
w ∈ W1 it holds that

ρ(w) − w ⊗ 1 ∈ WS3 ⊗ span{a, b, c}.
We write

ρ(w) = w ⊗ 1 + ra(w) ⊗ a + rb(w) ⊗ b + rc(w) ⊗ c.

We use the fact that the map ρ is multiplicative. We calculate ρ(E1(w)) :
ρ(E1(w)) =

∑

g1g2=g3g4

(eg1 ⊗ eg2) · ρ(w) · (eg3 ⊗ eg4)

=
∑

g1g2=g3g4

[eg1weg3 ⊗ eg2eg4 + eg1ra(w)eg3 ⊗ eg2aeg4

+ eg1rb(w)eg3 ⊗ eg2beg4 + eg1rc(w)eg3 ⊗ eg2ceg4 ]
=

∑

g1,g2∈G
[eg1weg1 ⊗ eg2 + eg1ra(w) ⊗ eg2aeg2

+ eg1rb(w) ⊗ eg2beg2 + eg1rc(w) ⊗ eg2ceg2 ] = E1(w) ⊗ 1. (5.35)

We have used here the fact that the elements ra(w), rb(w) and rc(w) are contained in the
commutative algebraWS3 , and that for every g ∈ G it holds that egaeg = egbeg = egceg = 0
in H . The fact that ρ(E1(w)) = E1(w)⊗1 implies that E1(w) is a scalar multiple of 1. This
implies that the image of E1 is exactly K1, and the kernel of E1 is therefore 3 dimensional.
We denote this kernel by W2.

We consider next the map ra : W1 → WS3 . This is a linear map, and by comparing again
with H , we find out that the kernel of this map is spanned by 1. It follows that the restriction
ra : W2 → WS3 is injective. We next define

wa = r−1
a (e1 − e12), wb = r−1

a (e123 − e13) and wc = r−1
a (e132 − e23).
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Again, we know that all these elements are contained in the image of ra by comparing W
with H . We have to be a bit careful here, since the map ra depends on the isomorphism
� we chose above. It can be shown that the above elements will be in the image of ra for
every choice of �. The fact that the elements e1 − e12, e123 − e13 and e132 − e23 are linearly
independent in WS3 implies that the elements wa, wb, wc ∈ W1 are linearly independent
as well. Considering again the isomorphism between W and H we find out the following
explicit formulas for ρ:

ρ(wa) = wa ⊗ 1 + (e1 − e12) ⊗ a + (e132 − e13) ⊗ b + (e123 − e23) ⊗ c

ρ(wb) = wb ⊗ 1 + (e1 − e23) ⊗ b + (e132 − e12) ⊗ c + (e123 − e13) ⊗ a

ρ(wc) = wc ⊗ 1 + (e1 − e13) ⊗ c + (e132 − e23) ⊗ a + (e123 − e12) ⊗ b. (5.36)

Using the above formulas for ρ we calculate the projections Eh defined before to the
elements wa, wb and wc. For h /∈ {(12), (23), (13)} we use the fact that inside H we have
exaehx = 0, and similarly for b and c. We find out that for such h it holds that ρ(Eh(wa)) =
Eh(wa) ⊗ 1. This implies that Eh(wa) ∈ K1. But then E2

h(wa) = 0. Using the fact that Eh

is a projection, we conclude that Eh(wa) = 0. A similar result holds for wb and wc.
For the transpositions, we calculate E(23)(wa), using the commutativity of WS3 . Similar

to the calculation of E1(w) before, and using the explicit formulas for ρ above, we find out
that

ρ(E(23)(wa)) = E(23)(wa) ⊗ 1.

By the same argument as before we conclude that

E(23)(wa) = 0.

Similar results hold for E(13)(wa), E(12)(wb), E(13)(wb), E(12)(wc), and E(13)(wc). If we
write Im(Eh) = Wh then this gives us a direct sum decomposition W = ⊕hWh . An easy
calculation then shows that

Wh1 · Wh2 ⊆ Wh1h2 for every h1, h2 ∈ S3.

The proof of the following lemma is very similar to the proof of Lemma 5.6, and we omit
it.

Lemma 5.12 The set of products

{1, wa, wb, wc, wawb, wawc, wbwa, wbwc,

wawbwa, wawbwc, wbwawc, wawbwawc} · {eg|g ∈ S3}
is a basis for W

We almost have the entire structure ofW in our hands now. The last thing that we need to do
is to find out how the homogeneous defining relations in B(V ) are deformed in W .

Consider the element w2
a ∈ W . We calculate ρ(w2

a) :

ρ(w2
a) = ρ(wa)

2 = (wa ⊗ 1 + (e1 − e12) ⊗ a + (e132 − e13) ⊗ b + (e123 − e23) ⊗ c)2

= w2
a ⊗ 1 + (a(e1 − e12) + (e1 − e12)a) ⊗ a + (a(e132 − e13) + (e132 − e13)a) ⊗ b

+(a(e123 − e23) + (e123 − e23)a) ⊗ c = w2
a ⊗ 1. (5.37)
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We have used here the fact that in H it holds that a2 = b2 = c2 = 0, and the fact that
E(12)(wa) = wa , which implies that all the anti-commutators vanish. This implies that
w2
a ∈ K1 and we write

w2
a = λa .

Similarly, w2
b ∈ K1 and w2

c ∈ K1 and we write

w2
b = λb and w2

c = λc.

We turn next to the second type of relations. A similar calculation reveals the fact that

ρ(wawb + wbwc + wcwa) = wawb + wbwc + wcwa ⊗ 1 and

ρ(wawc + wcwb + wbwa) = wawc + wcwb + wbwa ⊗ 1. (5.38)

This implies that these elements are also scalar multiples of 1. But 1 ∈ W 1 and wawb +
wbwc + wcwa ∈ W (123), and so we get the relations

wawb + wbwc + wcwa = wawc + wcwb + wbwa = 0.

Notice that the above problem does not arise for w2
a since w2

a ∈ W 1.
The last relations already give us a complete description of W . We summarize it here:

Proposition 5.13 The algebra W is generated by the elements {eg|g ∈ S3}, wa, wb, wc.
These elements satisfy the following relations:

egeh = δg,heg,
∑

g

eg = 1

egwa = waeg(12), egwb = wbeg(23), egwc = wceg(23)

w2
a = λa, w

2
b = λb, w

2
c = λc

wawb + wbwc + wcwa = wawc + wcwb + wbwa = 0

We know the map ρ on the generators eg and wa, wb, wc. Indeed, we have ρ(eg) =
∑

g′∈S3 eg′ ⊗ eg′−1g and ρ(wx ) is given by Equation 5.36. We claim the following:

Proposition 5.14 For every value of (λa, λb, λc) there exists a cocycle deformation algebra
W in which w2

a = λa, w2
b = λb and w2

c = λc.

Proof (See also Theorem 3.2. of [7]) As in the Example of Sect. 5.4, it will be enough to
prove that the algebra R generated by wa, wb and wc modulo the relations wawb + wbwc +
wcwa = wawc + wcwb + wbwa = 0, w2

a = λa, w
2
b = λb, and w2

c = λc is nonzero.
In case λa = λb = λc this follows from Proposition 5.8, by considering the case where
λ = λa = λb = λc and μ = 0.

Assume then that #{λa, λb, λc} ≥ 2. Without loss of generality we assume that λb 
= λc.
We begin by making some calculations inside the algebra R. We have

wa · w2
c = (wawc)wc = −wbwawc − wcwbwc.

On the other hand, we have that

wbwawc = −wbwbwa − wbwcwb

and so we get

wa · w2
c = w2

bwa + wbwcwb − wcwbwc.
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This implies that

(λb − λc)wa = wcwbwc − wbwcwb.

By our assumption this means that wa can be written as a noncommutative polynomial in
wb and wc, and so the algebra R is generated by the elements wb and wc. We re-write the
defining relations of R as noncommutative polynomials in wb and wc. For this, we write
(λb −λc)

−1 = x . The cyclic relation wawb +wbwc +wcwa = 0 then becomes, modulo the
quadratic relations for wb and wc:

x(wcwbwc − wbwcwb)wb + wbwc + xwc(wcwbwc − wbwcwb)

= x(wcwbwcwb − wbwc(λb − λc) − wcwcwcwb) + wbwc = 0. (5.39)

In other words, it becomes redundant. The same happens for the other cyclic relation. We are
left with the algebra generated by the elements wb, wc and defined by the relations

w2
b = λb, w

2
c = λc

x2(wcwbwc − wbwcwb)
2 = λa (5.40)

We open the parenthesis in the last relation and we get

x2(λ2cλb + λ2bλc − (wcwb)
3 − (wbwc)

3) = λa (5.41)

Since λb 
= λc at least one of them is different from zero. Assume without loss of generality
that λb 
= 0. This implies that wb is invertible. We write now wcwb = v1, wbwc = v2. Then
the algebra R is generated by the elements w±1

b , v1 and v2, and has the defining relations

w2
b = λb, v1v2 = λc, wbv1w

−1
b = v2, wbv2w

−1
b = v1 and v31 + v32

= y where y = λax
−2λcλb(λb + λc).

(5.42)

It follows that the subring S ⊆ R generated by v1 and v2 is commutative. Moreover, since
conjugation by wb stabilizes S and stabilizes the relations, we see that the ring R is the
crossed product

R = S ∗ 〈wb〉,
and that the ring S can be represented by the generators v1, v2 and the relations v1v2 =
v2v1 = λc and v31 + v32 = y. In order to prove that R 
= 0 it will thus be enough to prove that
S 
= 0.

To prove this, consider first the case λc = 0. We then have that

S/(v2) = K [v1]/(v31 − z) 
= 0

where z is an appropriate scalar. In case λc 
= 0 then v2 is the inverse of v1 up to a nonzero
scalar, and we can write

S = K [v±1
1 ]/( f ) 
= 0

where f is a polynomial of degree 6. In any case, the ring S is not the zero ring and we are
done. ��
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Sowe see that every cocycle deformation of H arises from a triple (λa, λb, λc), and that every
such triple gives a cocycle deformation. However, there is no one to one correspondence
between such triples and cocycle deformations of H . The reason for this is that the triple
(λa, λb, λc) depends on the choice of the isomorphism � we made before, and � is defined
only up to an element of S3.

The resulting action of the group S3 on the varietyA
3 is given by permuting the coordinates

(λa, λb, λc). This implies that the set of cocycle deformations is in a one to one correspon-
dence with A

3/S3. Since the group S3 is finite it is reductive, and for obvious reasons all the
orbits for this action are closed. We have K [A3/S3] = K [A3]S3 = K [c1, c2, c3] where

c1 = λa + λb + λc, c2 = λaλb + λbλc + λcλa, c3 = λaλbλc.s

In other words, the moduli space of cocycle deformation is again isomorphic with A
3.

Remark 5.15 It is also possible to receive this result by using reduction of the acting group
to S3. The result will be the same.

Using again Lemma 2.6, we can describe also the Hopf algebra αHα−1
. This Hopf algebra

is again generated by eg, a, b, cwith the samecoproduct as before. Themultiplication remains
almost the same, except for the relations a2 = b2 = c2 = 0, which deform to

a2 = (λa − λb)(e13 + e132) + (λa − λc)(e23 + e123)

b2 = (λb − λc)(e12 + e132) + (λb − λa)(e13 + e123)

c2 = (λc − λa)(e23 + e132) + (λc − λb)(e12 + e123).

These Hopf algebras were also described in [5] and [6]. Notice that in this case most of the
analysis of the cocycle deformation was done “by hand”, and only at the very final step we
have used the action of S3 to describe the moduli space XH as an affine variety. This still
leads to some geometrical questions, which we will describe in the next section.

6 Some further questions

In case the Hopf algebra H is semisimple, it is known by Ocneanu’s rigidity that there are
only finitelymany cocycle deformations. In the two non-semisimple exampleswhichwe have
seen here, the space of cocycle deformations were affine spaces. It is easy to combine these
two examples to receive Hopf algebras whose space of cocycle deformations is a disjoint
union of affine spaces. This leads us to the following conjecture:

Conjecture 6.1 Let H be a finite dimensional pointed Hopf algebra. The moduli space of
2-cocycles up to equivalence is then the disjoint union of affine spaces.

In the example in Sect. 5.4 we have had a canonical way to construct the cocycle defor-
mation out of the invariants. Indeed, one sets c0 = 1 and receives a cocycle deformation for
which all the structure constants are polynomials in the invariants μ, λ. We thus get a vector
bundle of cocycle deformations over the space XH . In the terminology of [17], we get a fine
moduli space of cocycle deformations.

Question 6.2 Let H be a finite dimensional Hopf algebra. Is there a vector bundle of cocycle
deformations over XH , similar to the previous example?

For the Hopf algebra which appears in Sect. 5.6, the quotient by the action of S3 makes it
unclear how can one construct such a vector bundle. We do not know the answer to that
question even for that case.
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