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Major depressive disorder is a leading cause of disability and significant mortality, yet mechanistic understanding remains limited.

Over the past decade evidence has accumulated from case-control studies that depressive illness is associated with blunted reward

activation in the basal ganglia and other regions such as the medial prefrontal cortex. However it is unclear whether this finding

can be replicated in a large number of subjects. The functional anatomy of the medial prefrontal cortex and basal ganglia has been

extensively studied and the former has excitatory glutamatergic projections to the latter. Reduced effect of glutamatergic projec-

tions from the prefrontal cortex to the nucleus accumbens has been argued to underlie motivational disorders such as depression,

and many prominent theories of major depressive disorder propose a role for abnormal cortico-limbic connectivity. However, it is

unclear whether there is abnormal reward-linked effective connectivity between the medial prefrontal cortex and basal ganglia

related to depression. While resting state connectivity abnormalities have been frequently reported in depression, it has not been

possible to directly link these findings to reward-learning studies. Here, we tested two main hypotheses. First, mood symptoms are

associated with blunted striatal reward prediction error signals in a large community-based sample of recovered and currently ill

patients, similar to reports from a number of studies. Second, event-related directed medial prefrontal cortex to basal ganglia effect-

ive connectivity is abnormally increased or decreased related to the severity of mood symptoms. Using a Research Domain Criteria

approach, data were acquired from a large community-based sample of subjects who participated in a probabilistic reward learning

task during event-related functional MRI. Computational modelling of behaviour, model-free and model-based functional MRI,

and effective connectivity dynamic causal modelling analyses were used to test hypotheses. Increased depressive symptom severity

was related to decreased reward signals in areas which included the nucleus accumbens in 475 participants. Decreased reward-

related effective connectivity from the medial prefrontal cortex to striatum was associated with increased depressive symptom se-

verity in 165 participants. Decreased striatal activity may have been due to decreased cortical to striatal connectivity consistent

with glutamatergic and cortical-limbic related theories of depression and resulted in reduced direct pathway basal ganglia output.

Further study of basal ganglia pathophysiology is required to better understand these abnormalities in patients with depressive

symptoms and syndromes.
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Introduction
Major depressive disorder (MDD) is a leading cause of dis-

ability worldwide and a cause of significant mortality, yet

there is wide agreement that its treatment has not changed

fundamentally in over half a century (Steele and Paulus,

2019). However, there is now substantial evidence from a

series of independent neuroimaging studies acquired over

more than a decade, that MDD is associated with blunted

reward signals in the medial prefrontal cortex (mPFC) and

particularly in the basal ganglia (Forbes et al., 2006; Steele

et al., 2007; Kumar et al., 2008, 2018; Pizzagalli et al.,

2009; Eshel and Roiser, 2010; Gradin et al., 2011; Zhang

et al., 2013; Pizzagalli, 2014; Johnston et al., 2015;

Stringaris et al., 2015; Rothkirch et al., 2017; Keren et al.,

2018), consistent with earlier large behavioural decision-

making studies (Forbes et al., 2007) and the conclusions of a

large behavioural meta-analysis on decision making in de-

pression (Huys et al., 2013).

In addition to studies on task-based reward processing,

there are now many studies of resting state connectivity in

MDD (Kaiser et al., 2015, 2016); however, the link between

blunted reward signals in task-based reward learning studies

and possible event-related connectivity abnormalities in

MDD remains unclear. Functional connectivity abnormal-

ities present during a resting state study may be different

from event-related effective connectivity abnormalities dur-

ing reinforcement learning studies involving valenced (re-

ward or punishment) feedback. Recognition of different

types of connectivity is important, because a number of

prominent theories propose a role for abnormal connectivity

in depression (Mayberg et al., 2005; Disner et al., 2011;

Roiser et al., 2012; Russo and Nestler, 2013; Pizzagalli,

2014) without distinguishing different types of connectivity.

While most MDD neuroimaging studies have focused on

resting state undirected functional connectivity, a recent ex-

ception reported blunted striatal reward prediction error sig-

nals and blunted reward-linked ventral tegmental area to

striatal event-related connectivity (Kumar et al., 2018). The

ventral tegmental area projection is dopaminergic, has been

extensively studied in animals and is part of the classical

basal ganglia thalamocortical circuit (Alexander and

Crutcher, 1990; Alexander et al., 1990).

Event-related functional MRI studies of reward learning

tasks in humans report consistent activation of the basal

ganglia and rostral-subgenual mPFC (Kim et al., 2011;

Johnston et al., 2015), which are prominent parts of the

limbic basal ganglia thalamocortical circuits. The mPFC

to basal ganglia projection has been studied in animals

and is glutamatergic (Alexander and Crutcher, 1990;

Alexander et al., 1990). We were particularly interested in

whether the effective connectivity for this medial prefront-

al projection was abnormal in volunteers with increased

depressive symptoms and decreased brain reward

responses. The rostral cingulate is important as influential

PET imaging studies reported abnormal metabolic activity

in MDD (Drevets et al., 1997; Mayberg et al., 2005),

which motivated a subgenual deep brain stimulation inter-

national treatment trial (Holtzheimer et al., 2017).

Here we analysed behaviour and functional MRI data

from a large community-based sample of volunteers. A di-

mensional approach was chosen because the Research

Domain Criteria (RDoC) (Insel et al., 2010) approach aims

to explore the ‘full range of variation from normal to abnor-

mal’, recognizing current diagnostic systems ‘do not ad-

equately reflect relevant neurobiological and behavioural

systems—impeding not only research on aetiology and

pathophysiology but also the development of new treat-

ments’ (Cuthbert and Insel, 2013). Our behavioural task

included an aspect of control, as there have been reports

that reward processing may be affected by whether an indi-

vidual values making their own choices and in our previous

work (Romaniuk et al., 2019), we found evidence for an as-

sociation between the inherent value of choice and activation

in MDD-related regions including striatum and mPFC.

Two primary hypotheses were tested: (i) mood symptoms

are associated with blunted reward and/or reward prediction

error (RPE) signals, similar to reports from a number of clin-

ical studies; and (ii) there is abnormal (increased or

decreased) event-related, directed rostral anterior cingulate

to basal ganglia effective connectivity, linked to the severity

of mood symptoms. In addition motivated by our previous

work (Romaniuk et al., 2019), we also tested the hypothesis

that (iii) individuals learned differently from outcomes de-

pending on whether they had control over decisions, related

to the presence of mood symptoms.
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Materials and methods

Participants

Subjects were recruited via the Stratifying Resilience and
Depression Longitudinally (STRADL) study (Navrady et al.,
2018). The STRADL clinical cohort is a subset of the
Generation Scotland Scottish Family Health Study who were
originally recruited in Scotland from 2006 to 2011, aged over
18 at the time (Smith et al., 2013). Generation Scotland partici-
pants residing in north east Scotland (Grampian and Tayside
areas) were invited to attend a clinic in Aberdeen or Dundee for
MRI scanning, other testing and sample collection.

Clinical interview and questionnaire
data

All participants were assessed for a lifetime history of MDD
using the Structured Clinical Interview for DSM-IV disorders
(SCID) (First et al., 2002). Diagnostic criteria were based on the
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-
TR). Participants also completed a series of questionnaires that
included the Quick Inventory of Depressive Symptomatology
(QIDS) (Rush et al., 2003), which is 16-item inventory designed
to assess the severity of depression symptoms, and the Hospital
Anxiety and Depression Scale (HADS) (Zigmond and Snaith,
1983) anxiety subscale (seven items), which was used to assess
symptoms of anxiety (Habota et al., 2019).

Participant selection and analyses

Computational modelling of behaviour and event-related func-
tional MRI analyses were performed on 475 participants, which
included 20 subjects with a current major depressive episode
(MDE) (Table 1). For dynamic causal modelling (DCM) 165
subjects were selected who had sufficiently strong functional
MRI signals in the regions of interest. Sufficiently strong signals
are required for DCM to be valid, despite depressive symptoms
being associated with blunting of signal strength in clinical stud-
ies. Data selection is summarized in Supplementary Fig. 9 and
further described in the Supplementary material, which contains
additional analyses showing that varying the inclusion criteria
did not significantly influence the DCM results. Importantly,
included and excluded subjects did not differ significantly with
respect to QIDS depression severity scores.

Scanning and behavioural paradigms

T1-weighted images and functional MRI data were acquired at
Dundee and Aberdeen Universities. For functional MRI acquisi-
tion in Dundee, a 3 T Siemens PRISMA was used with repeti-
tion time 1.56 s, echo time 22 ms, flip angle 70�, field of view
217 mm, matrix 64 � 64, 32 axial slices; in Aberdeen a 3 T
Philips ACHIEVA was used with repetition time 1.56 s, echo
time 26 ms, flip angle 70�, field of view 217 mm, matrix
64 � 64, 32 axial slices. Subjects completed 66 trials of a prob-
abilistic reward learning task (Romaniuk et al., 2019), which
involved choosing one of two stimuli (yellow or blue squares).
Participants were not told that the stimuli were associated with
different reward probabilities (80% for the yellow square, 20%
for the blue square) and feedback on their choices was provided
by display of a number of points: 100 points for a ‘win’ or re-
ward, 0 points for ‘no win’ or no reward. During the first phase
of each trial a cue indicated whether participants would be
allowed to freely make a choice between the two squares or
whether the computer would choose for them and they had to
follow that choice. Phases were jittered, allowing for disambigu-
ation. The number of trials was split into 33 ‘choice’ and 33 ‘no
choice’ trials with the task being summarized in Fig. 1.

Computational modelling of
behaviour

Five reinforcement learning models represented distinct hypothe-
ses about how subjects learned during the task. The aims of the
modelling were to (i) correlate model parameter estimates with

Table 1 Demographic and clinical details

Healthy participants Past MDD Current MDE

Number of subjects 345 110 20

Age, range (mean ± SD) 28–78 (60 ± 8.8) 27–72 (57 ± 8.4) 37–65 (56 ± 8.7)

Sex, female / male 177 / 168 78 / 32 16 / 4

QIDS-SR, range (mean ± SD) 0–12 (3.39 ± 2.08) 1–22 (5.41 ± 3.84) 9–21 (14.55 ± 3.79)

HADS-A, range (mean ± SD) 0–12 (3.13 ± 2.44) 0–17 (5.04 ± 3.35) 6–20 (10.65 ± 3.62)

GHQ = General Health Questionnaire; HADS = Hospital Anxiety and Depression Scale; MDE = major depressive episode; SD = standard deviation.

Figure 1 Probabilistic reward learning task. Subjects com-

pleted trials of a probabilistic reward learning task which involved

choosing one of two stimuli. During the first phase of each trial a

cue indicated whether participants would be allowed to freely make

a choice between the two squares or whether the computer would

choose for them and they had to follow that choice. During the se-

cond phase a choice was made or confirmed. During the third

phase an outcome (‘no reward’ or ‘reward’) was presented.
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depressive symptom severity scores; (ii) estimate RPE signals for
use in model-based functional MRI analyses; and (iii) compare
learning during choice versus no-choice trials. Model 1 assumed
participants only learned from choice outcomes and ignored no-
choice outcomes, model 2 assumed participants learned equally
well during both choice and no-choice trials, model 3 assumed
participants learned at different rates on choice versus no-choice
trials, model 4 assumed reward outcomes were experienced dif-
ferently depending on the choice versus no-choice condition (i.e.
different ‘reward sensitivity’ parameters) and model 5 assumed
both learning and outcomes were experienced differently (differ-
ent learning rates and reward sensitivity parameters). Fitted
parameters were maximum a posteriori estimates and models
were compared using the integrated Bayesian Information
Criterion (Huys et al., 2013) (Supplementary material).

Image preprocessing and general
linear model voxel-based functional
MRI analyses

SPM12 was used for analyses with functional images realigned
to the first image, unwarped and slice time corrected. The T1-
weighted structural image was segmented and functional images
were co-registered to the bias corrected T1 image. Images were
spatially normalized and smoothed using an 8-mm Gaussian
kernel. Additional details are provided in the Supplementary
material.

An event-related design was used for the first-level analysis. A
first level general linear model (GLM) design matrix included
two columns for onsets of choice or no-choice cues, four col-
umns of possible outcomes (reward/no-reward during choice/
no-choice trials), two columns for responses (button-press) dur-
ing choice/no-choice trials, and one column for nuisance regres-
sors (response time out or incorrect response during no-choice
trials). Six rigid body motion realignment parameters estimated
during preprocessing were included as covariates of no interest.
For model-based functional MRI analyses, the four outcome
columns were replaced by a single column of all outcome events
and a column of the parametric modulator: reward/no-reward
outcome coded as 1 or 0, or the estimated RPE signal. Events
were modelled as truncated delta-functions and convolved with
the SPM12 canonical haemodynamic response function without
time or dispersion derivatives.

Contrast estimates from each subject’s first level analysis were
taken to the second level. Of interest was (i) the reward activa-
tions and RPE encoding signals across all participants calculated
using contrasts for the corresponding parametric modulator [as
expected a contrast of ‘reward(choice + no-choice) outcome 4
no-reward(choice + no-choice) outcome’ in the GLM matrix
not using parametric modulators gave similar results]; (ii) re-
ward response during choice conditions compared to reward re-
sponse during no-choice conditions [reward(choice) outcome 4
reward(no-choice) outcome]; and (iii) correlations with depres-
sive symptom scores across participants.

Multiple comparisons of effects linked to depressive symptom
severity were corrected using a whole brain cluster corrected
threshold of P50.001, comprising a simultaneous requirement
for a P50.05 voxel threshold and 4131 contiguous
supra-threshold voxels, this being estimated using Monte Carlo
simulations (Supplementary material) (Slotnick et al., 2003).

Dynamic causal modelling of event-
related effective connectivity

DCM (Friston et al., 2007) was used to investigate how the sever-
ity of depressive symptoms was associated with a small network
of three brain regions active during the task. Our connectivity
hypotheses concerned between-subject level inferences, meaning
we tested for an association between QIDS scores and the general
task-independent connectivity (DCM ‘A’ matrix).

Brain regions were selected to test the hypotheses of a mood
linked change in effective connectivity between regions involved
in the brain’s reward network. The left ventral striatum centred
at MNI (–12, 10, –14) (see ‘Results’ section and Supplementary
Table 2) was selected because there is extensive evidence for
blunted activation in MDD (Steele et al., 2007; Kumar et al.,
2008, 2018; Pizzagalli et al., 2009; Eshel and Roiser, 2010;
Gradin et al., 2011; Zhang et al., 2013; Pizzagalli, 2014;
Johnston et al., 2015; Rothkirch et al., 2017; Keren et al.,
2018). An mPFC region was selected centred at (–2, 52, 18)
(Fig. 2C and Supplementary Table 4) because this region usually
coactivates with the ventral striatum on reward delivery
(O’Doherty, 2004; Gradin et al., 2014; Johnston et al., 2015)
and the mPFC has direct projections to the striatum (Alexander
and Crutcher, 1990; Alexander et al., 1990). In addition, a vis-
ual cortex region centred at (–8, –88, –4) (Supplementary Table
2) was chosen as the brain region receiving experimentally con-
trolled inputs. This visual region and ventral striatum were also
constrained anatomically using the pericalcarine and accumbens
Freesurfer masks (Reuter et al., 2012). For each participant we
extracted the first principal component of the time series of
12-mm spheres, which were centred at the above MNI coordi-
nates, but importantly were further constrained by liberal individ-
ual activation thresholds as well as the above-mentioned
anatomical masks, meaning signals were only extracted from a
subset of the voxels contained in the spherical regions of interest.

A bilinear DCM with one state per region and no stochastic
effects was assumed and a fully connected model of nine con-
nections including inhibitory self-connections was fitted. There
are known direct excitatory glutamatergic projections from the
anterior cingulate to the striatum (Alexander and Crutcher,
1990; Alexander et al., 1990) and the possible effects of depres-
sion symptoms on this direct top-down connection were of par-
ticular interest. All other connections were assumed to be
indirect. Four outcome types [‘reward’ (choice + no-choice tri-
als), ‘no-reward’ (choice + no-choice), ‘choice’ (reward + no-re-
ward), ‘no-choice’ (reward + no-reward)] were used as driving
inputs to the visual cortex (‘outcome display’) (see
Supplementary material for control analyses using an alternative
input specification). It was assumed that each of these four
outcome conditions could also modulate each of the intrinsic
(endogenous, task-invariant) connections. The display of choice/
no-choice cues served as additional inputs to the visual area and
responses (choice/no-choice condition button presses) drove
activity in any region. Inputs were mean-centred so that parame-
ters of the endogenous (‘A’ matrix) connectivity specified the
average effective connectivity between regions and the modula-
tions (‘B’ matrix) added or subtracted from this average.

For each participant, the full DCM was fitted to the data and
the percentage of the variance explained was calculated. As rec-
ommended in the SPM documentation and online SPM discus-
sion groups (Zeidman, 2019), we only included participants for
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which the variance explained by the model was at least 10%
(Supplementary material). The parametric empirical Bayes (PEB)
framework (Friston et al., 2016) was used to model commonal-
ities and differences across participants. The group-level be-
tween-subject PEB design matrix included a column of ones,
corresponding to the mean connectivity across participants, and
a zero-mean centred column of our covariate of interest (QIDS
depression scores). Five additional mean-centred covariates
included HADS anxiety scores, age, sex, collection site and cur-
rent MDE diagnosis (see Supplementary material for additional
analyses without these covariates). The group-level within-sub-
ject design matrix was defined as the identity matrix, which
means we assumed the covariates could potentially have an ef-
fect on every within-subject DCM parameter. The full PEB

model was inverted to obtain parameter estimates and the mod-
el’s ‘free energy’.

Bayesian model reduction (Friston et al., 2016) was used to
rapidly estimate different reduced PEB models within which cer-
tain parameters were ‘switched off’. An automatic ‘greedy’
search procedure was used to iteratively prune parameters that
did not contribute to the free energy. The models identified at
the final iteration were combined using Bayesian model averag-
ing (Fig. 3A) (Penny et al., 2006). Our main analysis focused on
a PEB model including nine DCM (‘A’ matrix) parameters (see
Supplementary material for additional analyses).

To increase confidence in our results, a large number of con-
trol analyses were performed (Supplementary material). Most
notably, during these analyses different variance-explained

Figure 2 Correlations between depressive symptom scores and reward signal encoding. Higher depressive symptoms were associ-

ated with lower striatal reward response. (A) Decreased reward activation/RPE encoding signal in putamen/ventral striatum; (B) increased de-

activation/negative RPE encoding signal in caudate and insula; (C) decreased RPE encoding signal in midbrain; and (D) increased reward

activation/RPE encoding in occipital lobe, with regions significant at P5 0.001 whole-brain corrected. (E) Negative correlation of QIDS scores

with striatal activity (26, 4, 0) (Spearman’s P = –0.16, P5 0.001). (F) Negative correlation of QIDS scores with striatal activity (–16, 10, 6)

(Spearman’s P = –0.20, P5 0.001).
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thresholds were used, and different covariates were included in
the second level design matrix (e.g. only QIDS was included as
covariate). Additional control analyses also included an analysis
of individual symptoms (as opposed to the QIDS sum of indi-
vidual symptom scores) to address both a skew in overall QIDS
scores and the possibility of correlation effects being influenced
by a group-level (i.e. never-depressed healthy participants versus
MDE subjects) effect. This is described in detail in the
Supplementary material. Bootstrap split-sample replication was
used to test the effective connectivity hypothesis.

Data availability

The data that support the findings of this study are available by
application to the Generation Scotland Access Committee (ac-
cess@generationscotland.org) and Edinburgh Data Vault (https://
doi.org/10.7488/8f68f1ae-0329-4b73-b189-c7288ea844d7). For
further information, see Habota et al. (2019).

Results

Behavioural analyses

There was no significant Spearman’s correlation between

QIDS depression score and number of rewards gained

[Spearman’s q(475) = 0.064, P = 0.164] on the task, or be-

tween QIDS score and number of missed trials [Spearman’s

q(475) = 0.064, P = 0.164], facilitating interpretation of the

imaging results. Formal model comparison identified model

3, which assumed subjects learned at different rates from

choice and no-choice outcomes, as the most parsimonious

description of decision-making behaviour (Supplementary

material). Learning rates for choice trials were larger than

learning rates for no-choice trials for most (440 of 475, 93%)

participants. These results indicate that whilst participants

learned from all outcomes, they learned most from outcomes

over which they had more control. However, there were no

significant Spearman’s correlations between parameter esti-

mates and mood scores (Supplementary material). We

repeated this correlation analysis using a ‘default’ Bayesian

hypothesis test and found strong evidence for the absence of

a correlation between depressive symptom severity scores and

each of the three parameters (1/305BF105 1/10) (Wetzels

and Wagenmakers, 2012) (Supplementary material).

General linear model voxel-based
functional MRI analyses

As expected, across all 475 participants, significant reward

activations were identified in areas including the ventral stri-

atum (–12, 10, –14) (10, 8, –10), ventromedial prefrontal

cortex (–4, 52, –10), orbitofrontal cortex (–24, 34, –20) (30,

34, –16) and mPFC (–10, 28, 0), as well as activations in the

occipital lobe visual areas (10, –86, –6) (–10, –88, –8). As

hypothesized, significant negative correlations between re-

ward activation magnitude and QIDS mood symptom scores

were found in areas including the striatum (8, 10, 16) (–10,

8, 22) (–16, 12, 4), and also in the insula (–34, 18, –12) (30,

16, –16) and dorsomedial prefrontal cortex (–4, 30, 50).

Additionally, a positive correlation with QIDS scores was

found in the occipital lobe (10, –86, 20) (–8, –90, 10).

A conjunction analysis of correlations with group-level

activations and deactivations was done revealing that higher

depressive symptoms were associated with decreased activa-

tion in the ventral striatum, and increased deactivation in

caudate/dorsal striatum, anterior insula and dorsomedial

PFC. As expected, results of RPE signal encoding correla-

tions were similar (Supplementary material) because of a

correlation between the RPE signal and simple binary re-

ward outcome signals. Notably though, higher depressive

symptoms were associated with decreased RPE signal encod-

ing (only) in two additional areas: midbrain/ventral tegmen-

tal area (–2, –16, –16) and mPFC (–2, 34, 14). These results

are shown in Fig. 2.

Across participants, reward activations were significantly

larger during choice compared to no-choice conditions in

regions including mPFC (0, 52, 16), insula (36, 18, –12)

(–28, 18, –14) and amygdala (–22, –6, –14) (22, –4, –12)

(Fig. 3). Higher depressive symptoms were also associated

Figure 3 Activations comparing choice with no-choice conditions. Activated regions during reward outcomes during choice compared

to reward outcomes during no-choice conditions: (A) insula, (B) amygdala, (C) mPFC. Regions significant at P5 0.001 whole-brain corrected.
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with decreased choice versus no-choice response difference in

regions including the precuneus (0, –46, 36) and increased re-

sponse difference in regions including left insula (–36, 16, 0)

and subgenual anterior cingulate cortex (4, 28, 0). Additional

results are presented in the Supplementary material.

Dynamic causal modelling of
event-related effective connectivity

The mean of the explained variance across the 165 partici-

pants with sufficiently strong functional MRI signals was

21.90%. There were no statistically significant differences in

mean QIDS scores between the 165 participants with

explained variance 510% (mean QIDS = 4.6) and excluded

(mean QIDS = 4.4) participants (Welch’s t-test: P = 0.618).

Additional analyses showed that alternative variance thresh-

olds led to similar DCM results (Supplementary material).

At the group level and consistent with known anatomy,

there was insufficient evidence for effective connectivity from

the visual area to ventral striatum and from ventral striatum

to mPFC, but all other connections had a high probability.

Details about group-commonalities are presented in the

Supplementary material; here we focus on associations with

QIDS mood symptoms. Of particular interest was the

directed influence (connectivity) from the mPFC to the ven-

tral striatum. This was found to be negatively correlated

with mood symptom scores (Fig. 4B); higher depression

scores were related to a decreased top-down mPFC to ven-

tral striatum influence. Notably, we did not find this associ-

ation with anxiety scores (Supplementary material). The

analyses also revealed complicated indirect interactions

Figure 4 Effective connectivity analyses. (A) Individual DCMs were taken to the second level where Bayesian model reduction (BMR) was

performed to ‘prune’ connections. Bayesian model averaging (BMA) was then used to average the DCMs, weighted by their probabilities. (B)

Top-down control of the prefrontal cortex over the ventral striatum (VS) was decreased with increasing depression symptom severity.
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between the visual cortex and both cortical and subcortical

regions. Specifically, higher depressive symptoms were nega-

tively associated with the connection from the accumbens

and positively associated with the connection to the mPFC.

Additional control analyses were carried out to verify that

our results did not depend on the exact specifications of the

model, covariates and variance threshold criteria. The nega-

tive association between depressive symptom severity and

directed influence from the mPFC to ventral striatum was

found for each analysis strategy (Supplementary material).

We investigated the association of connection strengths

with individual symptoms assessed with QIDS (rather than

the sum-of-scores) and also performed this analysis after

excluding current and past MDE participants. This explora-

tory analysis revealed a more specific negative association

between symptoms of ‘concentration or decision making dif-

ficulties’ and the top-down connection from mPFC to ven-

tral striatum and this result was replicated after a stepwise

exclusion of current MDE and past MDE participants

(Supplementary material).

Bootstrap split-sample replication of
mPFC to ventral striatum effective
connectivity correlation

The dataset was randomly split into two halves repeatedly

and the second level PEB model (without Bayesian model re-

duction) estimated for each half. Figure 5 shows the histo-

gram of results for 100 splits (200 second level models) of

the association between QIDS and mPFC to ventral striatum

effective connectivity. The association was negative in 98%

of cases, showing the QIDS blunted effective connectivity re-

sult can be replicated on a split-sample basis.

Discussion
Data from a large community-based study was used to test

hypotheses that mood symptoms were associated with

blunted reward signal. Increased depressive symptoms were

indeed found to be negatively correlated with reward-linked

signals in the striatum, consistent with many independent

studies (Forbes et al., 2006; Steele et al., 2007; Kumar et al.,

2008, 2018; Pizzagalli et al., 2009; Eshel and Roiser, 2010;

Gradin et al., 2011; Zhang et al., 2013; Pizzagalli, 2014;

Johnston et al., 2015; Rothkirch et al., 2017; Keren et al.,

2018) and large community-based studies that used reward

anticipation during a monetary incentive delay task, which

did not include a decision-making component (Stringaris

et al., 2015; Pornpattananangkul et al., 2019). We also

tested whether individuals learned differently from outcomes

depending on whether they had control over decisions.

Subjects did learn differently from outcomes depending on

whether they had control over their decisions that lead to

the outcomes; however, we did not find a clear influence of

depressive symptoms. Matched behaviour but differences in

brain function might indicate a compensatory mechanism.

Future studies should consider the possibility that depression

might also alter the interaction between cortico-limbic con-

nectivity and task-related events such as choice versus no-

choice reward outcomes.

Previous independent clinical studies have reported RPE

abnormalities in MDD (Kumar et al., 2008, 2018; Gradin

et al., 2011; Dombrovski et al., 2013). Here we found

decreased RPE signal encoding in many of the same striatal

areas as decreased reward responses. It is difficult to disentan-

gle RPE encoding from a binary reward signal (Chowdhury

et al., 2013) in our task as the signals are correlated, which is

common. However, we also found the ventral tegmental area

was associated with an RPE (but not binary) signal, which

was negatively correlated with mood score, consistent with

an independent study on treatment-resistant depression

(Gradin et al., 2011). The ventral tegmental area is strongly

implicated in the brain’s reward system and RPE signals

(Schultz et al., 1997) and is a source of dopaminergic projec-

tions to the ventral striatum and frontal cortex (Alexander

and Crutcher, 1990; Alexander et al., 1990). Reduced re-

ward-linked effective connectivity from the ventral tegmental

area to striatum has been reported (Kumar et al., 2018).

There is substantial evidence for resting state connectivity

abnormalities in MDD (Kaiser et al., 2015, 2016), indicating

that this illness is not only associated with abnormalities in

isolated brain regions, but also interactions between these

brain regions. Recent reviews and meta-analyses point to-

wards widespread network dysfunction in MDD but much

of the work has focused on undirected functional connectiv-

ity or connectivity measured during the resting state.

Notably, a recent functional connectivity study using

resting state functional MRI reported decreased cingulo-stri-

atal connectivity in children related to anhedonia

(Pornpattananangkul et al., 2019).

Here we identified significant directed mPFC to striatal re-

ward-linked effective connectivity. This projection has been

reported to consist of excitatory glutamatergic neurons from

studies on animals (Alexander and Crutcher, 1990;

Alexander et al., 1990). A glutamatergic hypothesis of de-

pression has been proposed (Sanacora et al., 2012) and

Figure 5 Association between QIDS and mPFC to ventral

striatum effective connectivity. Histogram after 100 random

splits in the total data.
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reduced glutamatergic projections from the prefrontal cortex

to the striatum have been argued to underlie motivational

disorders such as addiction (Kalivas, 2009) and depression

(Russo and Nestler, 2013). Indeed, many prominent

theories of MDD propose a role for abnormal cortical-

limbic connectivity such as Beck’s cognitive model (Disner

et al., 2011), Mayberg’s cortical-limbic dysregulation

model (Mayberg, 1997), Pizzagalli’s stress interaction model

(Pizzagalli, 2014) and Roiser’s neuropsychological model

(Roiser et al., 2012). Different abnormalities have been

reported for the medial prefrontal cortical region. Mayberg’s

deep brain stimulation was applied to the subgenual cingu-

late Brodmann area 25, which they found to be overactive

in depression using long timescale PET imaging (Mayberg

et al., 2005), while reward-related activity in the medial pre-

frontal region used in our connectivity model has been

reported to be decreased using short timescale event-related

functional MRI (Johnston et al., 2015).

We also found evidence for changes in effective connectiv-

ity between the visual processing area and both striatum and

mPFC. Alterations in these indirect connections are more dif-

ficult to interpret and we did not have strong a priori
hypotheses about them. It is notable that the connection

from the striatum to the visual region may occur via the

amygdala (Dolan, 2002; Amaral et al., 2003), a region

strongly implicated in depression, so it is possible that the

back projection from the amygdala to early visual areas is

affected by depression.

Decreased accumbens activity may be due to decreased cor-

tical to striatal connectivity, consistent with prominent theo-

ries of depression. Most (95%) accumbens neurons are

GABAergic medium spiny neurons, so a decrease in blood

oxygen level-dependent (BOLD) activity during functional

MRI may reflect a change in the inhibitory output from the

accumbens, with opposite effects for D1-type direct pathway

versus D2-type indirect pathway neurons (Russo and Nestler,

2013). Reward-gain tasks are controlled by activation of the

D1-type direct pathway and punishment-avoidance tasks by

inactivation of the D2-type indirect pathway (Nakanishi

et al., 2014). Here the task was reward-gain similar to our

previous independent clinical case-control studies (Steele et al.,

2007; Gradin et al., 2011; Johnston et al., 2015) although we

have also reported punishment-avoidance accumbens abnor-

malities in treatment-resistant MDD (Johnston et al., 2015).

Striatal BOLD activation in the present study may therefore

predominately have reflected activation of D1-type direct

pathway medium spiny neurons, and blunting of this signal

with depressive symptoms impairment of the direct pathway.

The strengths of this work are between-study replication

of blunted reward-linked striatal signals in a large commu-

nity-based sample and the novel finding of blunted mPFC to

striatal event-related connectivity, which was replicated on a

split-sample within-study basis. There are, however, some

limitations as potential avenues for future work. During

both computational and imaging analyses a common model

was assumed for all participants although in principle, mod-

els could differ between subjects (Stephan et al., 2009).

DCM is a region of interest approach and we chose our

regions to test for hypothesized differences between activated

regions. Future studies should consider tasks that activate

additional regions, such as the amygdala and hippocampus

(Mayberg, 1997; Drevets et al., 2008; Roiser et al., 2012;

Pizzagalli, 2014; Johnston et al., 2015; Schmaal et al., 2015)

and explore trans-diagnostic (Cuthbert and Insel, 2013) con-

structs such as anhedonia. We did not have a hypothesis

about abnormal connectivity in one hemisphere compared

to another. To maximize the number of included subjects we

focused on the hemisphere that had the strongest signals

across subjects. Exploration of possible covariates was done

to determine whether our conclusions about a significant

negative association could be confounded by such effects,

not because we had specific hypotheses about these. Our

conclusions were unchanged (Supplementary material). To

make an unbiased estimate of cortico-limbic connectivity it

was necessary to include subjects who had sufficient signals

to allow valid estimation, despite depression being associated

with reward-signal blunting. When this was done a signifi-

cant negative association with depression severity was

found, which was not dependent on the precise criteria used

for selecting data. Including all subjects, even those with the

weakest signals, resulted in connectivity estimates being

dominated by noise, although a non-significant negative

trend remained (Supplementary Fig. 8). Importantly, none of

the analyses suggested significantly increased cortico-limbic

connectivity (Supplementary material). We did not have a

specific hypothesis about which sub-symptom of depression

would be associated with altered cortical-to-subcortical con-

nectivity and note that our finding of an association with

concentration or decision-making difficulties will need to be

independently replicated.

In conclusion, using an RDoC positive valence system ap-

proach with a large community-based sample, we found evi-

dence that depressive symptom severity was related to

blunting of reward-linked striatal activity, consistent with a

series of case-control studies on MDD. Decreased striatal ac-

tivity may be due to decreased cortical-to-striatal event-

related effective connectivity consistent with prominent theo-

ries of depression, and here have resulted in decreased direct

pathway basal ganglia output. Further study of basal ganglia

pathophysiology is required to better understand these

abnormalities and develop new treatments.
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