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Abstract

This paper demonstrates the effectiveness of a Modified Linear Integral
Resonant Controller (MIRC) based on its original LTI cousin, known just as
the ‘IRC’, for suppressing Jump-Phenomenon and hysteresis found in Micro-
Cantilevers. A Method of Multiple Scales frequency response is derived, ex-
plored and compared with a Runge-Kutta based numerical integration method
in order to understand any shortcomings in approximate analytical methods for
the analysis of closed-loop nonlinear systems with the inclusion of a stability
analysis. It is found that there exist some mild inconsistencies when compar-
ing closed-loop Method of Multiple Scales to traditional numerical integration.
A suitably designed Modified Integral Resonant Controller is implemented in
closed-loop. Both analytical and numerical results agree with each other and
show significant damping performance. Efficacy of the proposed control scheme
is validated via frequency response plots, phase portraits and quiver plots.

1. Introduction

With the advent of micro fabrication in the late 1990’s and early 2000’s
[1], many new Micro-Electromechanical systems (MEMS) were born. MEMS
have provided numerous new and innovative ways to measure and interact with
systems on the nano and micrometer scale. Cantilever-Nanotubes for sensing
tiny mass changes and energy dissipation [2, 3], Comb-Drive Resonators [4, 5]
for multi-purpose applications such as; sensing [6], electro-mechanical filtering
[7], optical shutters [8], bio sensors [9], micro-grippers [10] and precise voltage
measurement [11] and generic Micro-Cantilevers for particle scanning [12], are
excellent examples of the progression of modern day technology allowing for the
better understanding of nature and the interaction of systems on the nano and
micro scales.
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Micro-Cantilevers possess multiple nonlinearities such as the cubic nonlinear-
ity and velocity and position squared nonlinearities [12, 2, 3]. The cubic nonlin-
earity alone introduces a famous resonance effect known as Jump-Phenomenon
[13]. Jump-Phenomenon is a sudden change in vibration amplitude in the event
of a small excitation frequency shift or change in resonant frequency. The dy-
namical cause of Jump-Phenomenon is a by-product of multiple different ampli-
tude solutions existing for a single frequency. Some of the amplitude solutions
are inherently unstable and thus, the system will force itself to the next nearest
stable amplitude solution based on the initial conditions of the micro-cantilever.
In sensing based applications [14], the nonlinear dynamics that produce Jump-
Phenomenon compromise the consistent and desired operation of the sensing
unit itself reducing scanning resolution and in image scanning, produce image
artifacts due to these nonlinear behaviours [15]. Under low excitation voltages,
these Micro-Cantilevers largely behave akin to linear second order resonant sys-
tems and thus are easy to operate and utilise in this specific regime. If one
wishes to excite these systems to produce a larger amplitude output for a de-
sired application, this will come at the price of increasing the nonlinearity in the
system and hence Jump-Phenomenon will present potential measuring instabil-
ities. In general, many Micro-Cantilevers can be sufficiently described by the
Duffing Oscillator because the significant nonlinearities present in their dynam-
ics can be lumped into the nonlinear cubic term that the Duffing Oscillator is
described by [16]. This cubic nonlinearity also produces hysteresis based on the
input frequency and thus, different amplitude solutions can be reached based
on prior initial conditions and is a non-negligible effect. If other significant non-
linearities exist, that cannot be lumped into the cubic nonlinearity term, these
nonlinearities are modelled and added to the structure of the Duffing Oscillator
[17, 18]. Virtually most MEMS, complicated or simple, possess the same uni-
versal cubic nonlinearity and are responsible for the nonlinear resonant effect of
Jump-Phenomenon, which arise from Euler-Bernoulli Beam theory derivations
[19]. Thusly, the second order resonant differential equation with cubic non-
linearity, derived from Euler-Bernoulli Beam theory coupled with a Galerkin
based method, is used in this paper as the default and universal model for the
nonlinear vibrations found in MEMS.

A number of effective linear control schemes that impart adequate damping
to the system resonance have been reported in literature. These include; Pole
Placement Control (PPC) [20], Positive Position Feedback (PPF) [21], Positive
Velocity Position Feedback (PVPF) [22] and Integral Resonant Control (IRC)
[23]. These controllers can provide a good starting point for providing inspi-
ration into designing equivalent nonlinear controllers. Papers [24, 25, 26] show
that an adapted form of PPF can be used to damp, with great success, a pri-
mary resonant mode for highly nonlinear Micro-Cantilevers [12]. This, however,
comes at the cost of introducing a single sub harmonic resonance and a single
super harmonic resonance around the central resonant mode.

Application of the IRC scheme to suppress vibrations in micro-cantilevers
has been reported in [25, 27]. In this paper, the same IRC controller proposed
by Namavar et al., [23] is modified and adapted for use with nonlinear Micro-
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Cantilevers and its effects on nonlinear vibration suppression are expanded upon
in significant detail compared to the aforementioned paper[27]. The traditional
IRC for linear resonant systems is a robust control design which provides damp-
ing under system parameter uncertainties as well as in the event that system
damage or alteration occurs. In addition, the design of the IRC for linear res-
onant systems is always guaranteed to be stable, thus further enhancing its
desirable properties as controller. Lastly, the IRC possesses just two tuneable
parameters, namely; the ‘feed-through’ term d and the integral gain k. This
greatly simplifies and streamlines the design and the optimisation process for
the controller. Omidi and Mahmoodi [26] provide an alternative damping con-
troller to the PPF presented in [12] which does not cause the introduction of
sub-harmonic and harmonic resonances about the primary resonant mode by
utilising a lossy nonlinear integrator scheme which evolved from the original
IRC. In this paper, a new linear modified IRC (MIRC), based on [23], is pro-
posed as solution to damp Jump-Phenomenon as well as the hysteresis effect
that comes along with it. The MIRC makes use of the same feed-through and
integral gain terms with the addition of a new ‘position feedback’ term λ. The
MIRC presented in this paper also addresses the problem found in [12] in a sim-
ilar manner to [26], namely not introducing sub and super harmonics around
the primary resonance. The advantage of this controller over other nonlinear
controllers is the linearity and simplicity of the design. Furthermore, a complete
novel dynamical analysis is presented for the proposed MIRC scheme using stan-
dard frequency response curves, phase-portraits and vector field quiver plots.
These plots are unified in a novel fashion (hitherto not reported in literature to
the best of the authors’ knowledge) to give an in-depth, intuitive understanding
of the open- and closed-loop dynamics.

The remainder of this paper is structured as follows. Section Two details the
model of the MEMS cantilever and presents its open-loop frequency response
over a range of forcing amplitudes. Section Three presents the design of the
proposed damping scheme - Modified IRC (MIRC). Section 4 provides a detailed
stability analysis on the closed-loop system using a perturbation method with
Jacobian Linearisation. Section Five presents a number of closed-loop results
and detailed analysis thereof. Sections Six and Seven conclude the paper.
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2. Beam Modelling

Figure 1: Simplified Micro-Cantilever beam diagram. By applying an electrostatic sinusoidal
force to the beam, both nonlinear and linear vibrations will occur in the beam assuming f0
is large enough. Both these nonlinear and linear vibrations occur around the linear resonant
frequency ω1.

Beam Theory can take two main forms, namely traditional Euler-Bernoulli
methods and Hamilton’s Principle with the Euler-Lagrange Equation [25, 28,
29]. In paper [25], Hamilton’s Principle is used along with the method of sep-
aration of variables combined with a Galerkin method [28, 29] to solve for the
time differential equation of the cantilever beam. Consider the beam deflec-
tion variable, from the neutral X axis, to be W (s, t) (where ‘s’ is the beam
length segment from the base of beam at the fixed end, ‘t’ is time and ∂var cor-
rosponds to the relevant partial deriva tive) then the simplified nonlinear PDE
from [28, 29] can be shown to be:

EI
∂4W

∂s4
+ EI

∂

∂s

[
∂W

∂s

∂

∂s

[
∂W

∂s

∂2W

∂s2

]]
+ µ

∂2W

∂t2
+ c

∂W

∂t
+ · · ·

µ

2

∂

∂s

[
∂W

∂s

∫ s

L

∫ s

0

[(
∂2W

∂t∂s

)2

+

(
∂W

∂s

∂3W

∂t2∂s

)]
dsds

]
= F (s, t) (1)

subject to the following boundary conditions:

W (0, t) =
∂W (0, t)

∂s
= 0 at s = 0, (2)

∂2W (0, t)

∂s2
=
∂3W (0, t)

∂s3
= 0 at s = L (3)

where E is Young’s Modulus (kgm−1s−2), I is the second moment of intertia
(m4), µ is the mass of the beam per unit length (kgm−1), C is a generic internal
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damping term (kgs−1), L is the length of the beam (m) and F (s, t) is the
forcing function applied to the beam per unit length. By using the separation
of variables, W (s, t) can be expressed as the sum of linear combinations of
infinitely many modes as follows, namely the combinations of the time based
nth amplitude pn(t) and the nth undamped linear mode shapes φn(x):

W (s, t) =

∞∑

n=1

φn(s)pn(t) (4)

For this paper, only the first fundamental mode (n = 1) is considered. This
is due to the fact that micro-cantilevers are primarily affected by their first fun-
damental mode and harmonics of the fundamental often do not greatly impact
the overall response of the system. Since this is the dominant mode for the
micro-cantilever, subsequent modes can be ignored. Furthermore, this micro-
cantilever, and the corrosponding controller, will be closely around its primary
resonant mode which is far from the next harmonic at n = 2. The undamped
linear mode shapes are derived from equation (1) by ignoring the forcing, nonlin-
earity and non-conservative damping terms to yield the following linear spatial
PDE:

EI
∂4W

∂s4
+ µ

∂2W

∂t2
= 0 (5)

By substituting in equation (4) into (5), the following spatial ODE can be
derived by using the principle of separation of variables:

∂4φn(s)

∂s4
= β4

nφn(s) (6)

where β4
n = Mω2

1/EI. Equation (6) has the following general solution:

φn(s) = Cn1 cosh (βns) + Cn2 sinh (βns) + Cn3 cos (βns) + Cn4 sin (βns) . (7)

When applying boundary conditions (2) and (3) to (7), the following formula
for the non-trivial solutions is shown to be:

1 + cosh (βnL) cos (βnL) = 0 (8)

Using the aforementioned boundary conditions, the nth mode shape can
further be shown to be:

φn(s) = Cn [(cosh (βns)− cos (βns)) + · · ·

· · ·+ cosh (βnL) + cos (βnL)

sin (βnL) + sinh (βnL)
[sin (βns)− sinh (βns)]

]
. (9)

It should be noted that the constant Cn is defined as follows using the
orthonormality property of mode shapes φn(s):
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Cn =

∫ L

0

φn(s)2ds = 1 (10)

Letting βnL = Ψn, the formula to produce the resonant frequency of the
beam for the mode of interest is:

ωn =

(
Ψn

L

)2
√
EI

µ
(11)

The first numerical solution to equation (8) is β1L = Ψ1 = 1.875... which
corrosponds to the first fundamental mode’s linear frequency. By subtituting
equation (4) (for n = 1) into equation (1), multiplying the entire equation (1) by
φ1(s), integrating over the length of the beam L and using the orthonormality
properties of linear mode shapes, the resulting non-linear time based ODE is as
follows:

p̈1(t) + 2ζω1ṗ1(t) + ω2
1p(t) + αp1(t)3 + · · ·

· · ·+ β
[
p1(t)2p̈1(t) + p1(t)ṗ1(t)2

]
= f(s, t). (12)

The definition for each of the system parameters is as follows:

ω2
1 =

EI

µ

∫ L

0

φ1(s)φiv1 (s)ds (13)

α =
EI

µ

∫ L

0

φ1(s)
[
φ′1(s) [φ′1(s)φ′′1(s)]

′
]′
ds (14)

β =
1

2

∫ L

0

φ1(s)

[
φ′1(s)

∫ s

L

∫ s

0

φ′1(s)2dsds

]′
ds (15)

2ζω1 =
C

µ
(16)

f(s, t) =
1

µ

∫ L

0

φ1(s)F (s, t)ds (17)

where (′) stands for a single partial spatial derivative and (iv) stands for
the fourth. The focus of this paper is primarily on the behaviour of the Jump-
Phenomenon and hysteresis caused by the cubic nonlinearity term. To this end,
equation (17) is assumed to be of sinusoidal forcing. The inertia nonlinearity
β is responsible for decreasing the maximum oscillatory amplitude that can
obtained while also increasing the fold-over effect where in the resonance curve
pushes to one side or the other. To produce open-loop behaviour of the Micro-
Cantilever, the Method of Multiple Scales [30] is used on equation (12). The
following amplitude resonance polynomial can be derived:

f2

4ω2
1

= ζ2ω2
1a

2 +

(
1

8ω1

(
3α− 2βω2

1

)
a3 − σa

)2

(18)
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A full derivation of the above (shown in Section 3), including closed-loop
control parameters, is shown in detail later along with a stability analysis which
is shown in Section 4. By solving this equation for the perturbation frequency σ
instead of the amplitude a, the theoretical frequency response shape, including
unstable solutions, can be properly shown. Tab.1 details the parameters used
for the following open-loop plot.

Table 1: Open-Loop Parameter Table

Symbol Value(s)
Damping Ratio ζ 0.008
Resonant Frequency ω1 10
Curvature Nonlinearity α 22.5
Inertia Nonlinearity β −4.5
Amplitude Values a {0.0001, . . . , 0.32}

8 9 10 11 12

0

0.1

0.2

0.3

f=0.05

f=0.10

f=0.25

f=0.50

Figure 2: In this open-loop simulation, equation (18) is used to produce the following nonlinear
resonance plots. The parameters in Tab.1 are used. Here it is observed that increasing the
forcing amplitude causes the nonlinear resonance plot to shift to the right hand side, due to
the hardening effect of having a positive α, therefore producing multiple amplitude solutions
for the same frequency value namely; two stable and one unstable. The initial conditions
determine which stable amplitude the system will gravitate towards and can never settle on
the unstable amplitude. As a result of this, this cubic nonlinearity also embodies the effects
of hysteresis with the dependence on previous initial conditions.
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3. Control Design of the Modified IRC

In order to explain the modification inherent to the MIRC, the original IRC
[23] needs to be shown. Consider the following linear resonant second order
system that is sinusoidally excited with the closed-loop IRC around it:

f cos (Ωt)

ψ

ηψ

ψ̇

+
+

+
−

p̈+ 2ζω1ṗ+ ω2
np

κ

∫
η

p(t)

Linear Resonant System

Integrator with Gain

Feed-Through Gain

Figure 3: Traditional implementation of the linear Integral Resonant Controller (IRC) on
a linear system with lowly-damped resonance. As this is a pure damping controller, the
extra input to the system is zero. In the traditional IRC there are two gains, namely; the
feed-through gain κ and integrator gain η.

The open-loop parameters used in Fig.3 also partly appear in Tab.1 with
the exception of nonlinearity coefficients α and β. The ‘Feed-Through Gain’ κ
is responsible for introducing additional damping to the linear resonance of the
system when combined with the linear integrator and gain η. In this paper, to
damp the aforementioned Jump-Phenomenon and suppress hysteresis found in
nonlinear Micro-Cantilevers, the following Modified-IRC (MIRC) is presented:

f cos (Ωt)

ψ

ηψ

ψ̇

+
+

+
−

p̈+ 2ζω1ṗ+ ω2
1p+ fnl(p, ṗ, p̈, t)

κ

λ

∫
η

p(t)

Nonlinear Resonant System

Position Feedback Gain

Integrator with Gain

Feed-Through Gain

Figure 4: Closed-loop block diagram of the proposed Modified Integral Resonant Control
(MIRC) scheme on a system with nonlinear resonant behaviour. The MIRC is still linear and
the modification is the introduction of the position feedback gain λ. Here, the extra system
term, fnl(p, ṗ, p̈, t), implies the presence of nonlinearities common to micro-cantilevers and
other MEMS.

where the controller variables are; the position feedback gain λ, the feed-through
gain κ and the integrator gain η. The addition of the position feedback gain as
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seen in Fig.4, highlighted in the feedback path, is an essential new addition to
provide extra resonance suppression previously not accomodated by the tradi-
tional IRC structure. The closed-loop differential equations for Fig.4 are shown
as follows (dropping the subscript of 1 as the first mode is implied);

p̈(t) + 2ζω1ṗ(t) + ω2
1p(t) + αp(t)3 + · · ·

+ β
[
p(t)2p̈(t) + p(t)ṗ(t)2

]
= f cos (Ωt) + ηψ(t) (19)

ψ̇(t) + κηψ(t) = λp(t) (20)

In order to analyse the effects of the IRC on the Duffing Oscillator, an
approximate analytical perturbation method known as the Method of Multiple
Scales [30] as well as traditional numerical integration is used. The primary
goal is to conclusively prove that the proposed MIRC adequately damps the
nonlinear resonance of the system. By the Method of Multiple Scales, the
following definitions are made;

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ · · ·

def

≈ D0 + εD1 (21)

d2

dt2
=

∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ · · ·

def

≈ D2
0 + 2εD0D1 (22)

p(t)
def

≈ p0(T0, T1) + εp1(T0, T1) + · · · (23)

ψ(t)
def

≈ εψ0(T0, T1) + ε2ψ1(T0, T1) + · · · (24)

The Method of Multiple Scales works by splitting linear and damp-
ing/nonlinear effects into separate time-scales, namely T0 (unscaled time) and
T1 = εT0 (slowed scaled time for some 0 < ε < 1). The following equations are
derived from the expansion above. By substituting in equations (21), (22), (23)
and (24) into (19) and (20) the following equations are derived and split in
increasing order of ε with O(ε2) being ignored and in addition, the closed-loop

system parameters are scaled as follows; ω1 = ω̂1, ζ = εζ̂, α = εα̂, β = εβ̂,
f = εf̂ , κ = κ̂, λ = ελ̂ and η = η̂;

O(ε0) :D2
0p0 + ω̂2

1p0 = 0 (25)

O(ε1) :D2
0p1 + ω̂2

1p1 = f̂ cos (ΩT0) + η̂ψ0 + · · ·

− 2D0D1p0 − 2ζ̂ω̂1D0p0 + · · ·

− β̂
[
p2

0

(
D2

0p0

)
+ p0 (D0p0)

2
]
− α̂p3

0 (26)

O(ε1) :D0ψ0 + κ̂η̂ψ0 = λ̂p0 (27)

It should be noted that the controller variable ψ(t) was upscaled by a factor of ε
and the controller variables also carefully scaled when compared to a traditional
perturbation problem. This was done so that the controller terms do not show

9



up in the O(ε0) harmonic oscillator equation as this would produce an incorrect
result. Equations (25) and (27) have the following solutions;

p0 = A(T1)eiω̂1T0 + Ā(T1)e−iω̂1T0 (28)

ψ0 =
λ̂

ω̂2
1 + κ̂2η̂2

(κ̂η̂ − iω̂1)A(T1)eiω̂1T0 + CC (29)

where CC stands for the complex conjugate solution. In order to derive
the frequency response for the closed-loop system, solutions (28) and (29) are
substituted into (26). The secular terms are the terms that are resonant in
the primary resonance ωn and produce an unbounded solution as per perturba-
tion approximation. By setting the secular terms equal to zero, the frequency
response can be derived. Here, the secular terms are derived from the afore-
mentioned subsitutions (note that the sinusoidal forcing term is converted into
its complex exponential form). Terms are gathered in terms of powers of iωnT0

and for brevity, it is assumed that A(T1) = A for space considerations:

D2
0p1 + ω̂2

1p1 =
f̂

2
eiΩT0 +

[
2β̂ω̂2

1 − α̂
]
A3e3iω̂1T0

· · ·+ Seiω̂1T0 + CC

(30)

where S is the secular resonant term in ωn and is:

S = −
(

3α̂− 2β̂ω̂2
1

)
A2Ā+ · · ·

−2iω̂1

(
ζ̂ω̂1A+D1A

)
+ · · ·

+
η̂λ̂

ω̂2
1 + κ̂2η̂2

(κ̂η̂ − iω̂1)A (31)

To solve for the closed-loop frequency response of the system, the secular
and forcing terms are summed and set equal to zero:

f̂

2
eiΩT0 + Seiω̂1T0 = 0 (32)

The following detuning parameter, Ω
def
= ω̂1 + εσ, is defined in order to

simplify equation (32). Remembering that T1 = εT0, by substituting in the
detuning parameter, equation (32) simplifies to:

f̂

2
eiσT1 + S = 0 (33)
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To solve for the modulation equations, the amplitude A(T1) = A is converted
to its polar form with:

A =
1

2
aeiθ (34)

where a = a(T1) and θ = θ(T1). By substituting in (34) into (33), gathering
complex and real part separately and dividing everything by eiθ, the following
modulation equations are derived:

ȧ = −

(
ζ̂ω̂1 +

η̂λ̂

2 (ω̂2
1 + κ̂2η̂2)

)
a+

f̂

2ω̂1
sin (σT1 − θ) (35)

θ̇ =
1

8ω̂1

(
3α̂− 2β̂ω̂2

1

)
a2 − κ̂η̂2λ̂

2ω̂1 (ω̂2
1 + κ̂2η̂2)

+ · · ·

· · · − f̂

2ω̂1a
cos (σT1 − θ) (36)

Another substitution must be made in order to extract the final frequency
response as well as the amplitude and phase modulation equations, namely;

Γ = σT1 − θ and Γ̇ = σ − θ̇ (37)

At this point, the scaled circumflex symbol can be dropped from the vari-
ables. The final modulation equations can be solved for by substituting in (37)
into (36):

ȧ = −
(
ζω1 +

ηλ

2 (ω2
1 + κ2η2)

)
a+

f

2ω1
sin (Γ) (38)

aΓ̇ = − 1

8ω1

(
3α− 2βω2

1

)
a3 +

κη2λ

2ω1 (ω2
1 + κ2η2)

a+ · · ·

· · ·+ aσ +
f

2ω1
cos (Γ) (39)
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Finally, to derive the steady-state frequency response, the modulation equa-
tions above are used and the derivative terms ȧ and Γ̇ are set equal to zero and
both equations are rearranged for their sine or co-sinusoidal terms. Then both
sides, are squared and added:

f2

4ω2
1

=

(
ζω1 +

ηλ

2 (ω2
1 + κ2η2)

)2

a2 + · · ·

· · ·+
(

1

8ω1

(
3α− 2βω2

1

)
a3 − κη2λ

2ω1 (ω2
1 + κ2η2)

a− σa
)2

(40)

With the following phase equation:

tan (Γ) =

(
ζω1 +

ηλ

2 (ω2
1 + κ2η2)

)

1

8ω1
(3α− 2βω2

1) a2 − κη2λ

2ω1 (ω2
1 + κ2η2)

− σ
(41)

4. Stability Analysis

In order to produce appropriate stability criteria for the closed-loop system,
small perturbations of equations (38) and (39) are considered. The following
additional definitions are made for space considerations:

Π0 = −
(
ζω1 +

ηλ

2 (ω2
1 + κ2η2)

)
(42)

Π1 =
f

2ω1
(43)

Π2 = − 1

8ω1

(
3α− 2βω2

1

)
(44)

Π3 =
κη2λ

2ω1 (ω2
1 + κ2η2)

(45)

The following perturbation parameters are used:

a = a0 + a1 (46)

Γ = Γ0 + Γ1 (47)

where a0 and Γ0 are constants that satisfy the equilibria of equations (38) and
(39) and a1 and Γ1 are time dependent perturbation variables from equilibrium.
At steady state, equilibria exist thus, equations (38) and (39) become:

Π1 sin (Γ0) = −a0Π0 (48)

Π1 cos (Γ0) = −a0

(
Π2a

2
0 + Π3 + σ

)
. (49)
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These equations will assist in cancelling out terms found in the following
expansion. By substituting equations (46), (47), (48) and (49) into (38) and (39)
and only keeping linear terms in a1 and Γ1, the following expanded equations
are found:

ȧ1 = Π0a1 + Π2 cos (Γ0) Γ1 (50)

Γ̇1 =
1

a0

(
σ + Π3 + 3Π2a

2
0

)
a1 −

Π1

a0
sin (Γ0) Γ1. (51)

To determine the stability of steady-state solutions, equations (50) and (51)
can be represented by a matrix system of equations using the state variable
Z =

[
a1 Γ1

]
. Taking the appropriate partial derivatives with respect to the

state variables of Z, the linearised state-space system is found to be:

d

dt

[
a1

Γ1

]
=




Π0 −a0

(
Π2a

2
0 + Π3 + σ

)
1

a0

(
σ + Π3 + 3Π2a

2
0

)
Π0



[
a1

Γ1

]
(52)

The eigenvalues of (52) can be found by solving det (sI − J) = 0 where I
is the 3× 3 identity matrix and J is the Jacobian system matrix. Referring to
each element of the Jacobian as:

J11 = Π0 J12 = −a0

(
Π2a

2
0 + Π3 + σ

)

J21 =
1

a0

(
σ + Π3 + 3Π2a

2
0

)
J22 = Π0

the eigenvalues can be determined by the following stability polynomial:

s2 − (J11 + J22) s+ J11J22 + J12J21 = 0. (53)

If any eigenvalue ‘s’ has a negative real part, this indicates an unstable
solution and further infers the incorrect choice of controller gains to ensure
stability. The criteria for stability are the following:

J11 + J22 < 0 and J11J22 + J12J21 > 0 (54)
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5. Results and Analysis

In this section, equation (40) is used to analyse the theoretical effectiveness
of the MIRC’s damping capabilities for Micro-Cantilevers. In addition to this,
numerical integration using a Runge-Kutta scheme is used as a benchmark to
compare the Method of Multiple Scales for closed-loop performance. To under-
stand why the MIRC even produces any damping effects, looking at equation
(40) and labelling it is essential:

f2

4ω2
1

=

ζω1+MIRC︷ ︸︸ ︷(
ζω1 +

ηλ

2 (ω2
1 + κ2η2)

)2

a2 + · · ·

· · ·+




1

8ω1

(
3α̂− 2βω2

1

)
a3 −

MIRC︷ ︸︸ ︷
κη2λ

2ω1 (ω2
1 + κ2η2)

a− σa




2

For normal linear systems, the traditional IRC effectively serves to increase
the damping ratio ζ in the system, thus reducing the maximum resonance am-
plitude. For highly nonlinear Micro-Cantilevers, this is no different and can be
observed by the labelled parts in the frequency response. The MIRC directly
adds to the damping ratio ζ term with and also appears in the other half of the
frequency response polynomial which theoretically shows why the MIRC can
damp even highly nonlinear systems. To demonstrate this, an analytical open-
and closed-loop simulation is shown using equation (40). The following micro-
cantilever parameters in Tab.2 are used in addition to the parameters used in
Tab.1.

Table 2: System and controller parameters used in the simulations.

Symbol Value(s)
Forcing Amplitude f 0.5
Position Feedback Gain λ 4
Feed-Through Gain κ 0.1
Integrator Gain η 10

14



9 10 11
0

0.1

0.2

0.3

Open-Loop

Closed-Loop

Figure 5: Simulated frequency responses of the open-loop and the MIRC-controlled closed-
loop system clearly demonstrate the effectiveness of the proposed control scheme in imparting
significant damping to the nonlinear resonance mode of the system.

In this analytical simulation, the suppression of the resonance peak is ob-
served along with the removal of Jump-Phenomenon caused by the cubic non-
linearity term as seen by the closed-loop curve with circle markers (versus the
open-loop simulation marked with squares). The effects of the MIRC are im-
mediately apparent due to the significant decrease in maximum amplitude. Ad-
ditionally, due to the fold-over effect disappearing from the frequency response,
this further indicates the removal of the hysteresis effect caused by the cubic
nonlinearity. This will later be explored numerically to see if this is true. Fur-
thermore, it should be noticed that for these gains chosen, the DC gain is largely
unaffected which is optimal in the sense of preserving non-resonant dynamics
and ultimately the DC gain of the system. In this paper, analytical and numer-
ical methods are used to verify the behaviour and effectiveness of the MIRC.
Hysteresis is a future state’s dependence on a past state and thus, extra care
is needed to simulate this numerically. In order to properly simulate the hys-
teresis in these systems, the following must be in place: for a specific frequency
value, wait for the transient to die and produce a limit cycle and then take
sample initial conditions from this limit and then repeat this procedure for all
future frequency iterations. Repeat this for the same set of frequencies but in
reverse. Fig.6 demonstrates a numerically produced frequency response using
Runge-Kutta integration with the aforementioned procedures (parameters used
are the same as in Tab.2):
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Figure 6: Open- and MIRC-controlled closed-loop frequency responses plotted in the forward
and the reverse direction clearly highlights the Jump-Phenomenon present in the system
dynamics. ‘FWD’ stands for a forward frequency sweep. ‘BWD’ stands for a backward
frequency sweep. Here, the circle markers represent open-loop data and the diamond markers
represent closed-loop data.

When looking at the open-loop simulation given by the circles, the difference
between sweep forward and backward simulations show how different amplitudes
can be reached for the exact same frequency depending on previous initial con-
ditions. This is signalled by the grey dotted line and black dashed line showing
different paths taken from Ω = 10.48rad s−1 → 10.96rad s−1. They also show
the Jump-Phenomenon given by the large changes in amplitude around the lin-
ear resonant frequency accompanied by the resonance curve shifting to the right
due to the hardening nature of the curvature nonlinearity α being positive and
inertia nonlinearity β being negative. The closed-loop plot, given by inverted
triangles, shows that there is no dependence on previous initial conditions any
more, thus proving the suppression of Jump-Phenomenon and hysteresis. Ad-
ditionally, there is a decrease in maximum amplitude demonstrating vibration
suppression. The λ, η and κ gains are studied in great detail and their effects
on the closed-loop system are visualised in the rest of the paper in the same
manner as just shown in Fig.5 and Fig.6. The parametric analysis begins with
the position feedback gain λ:

Table 3: Simulation parameters for studying the effect of λ on closed-loop behaviour.

Symbol Value(s)
Position Feedback Gain λmms ∈ {5, 10}
Position Feedback Gain λnum ∈ {5, 10}
Feed-Through Gain κ 0.1
Integrator Gain η 4
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Figure 7: Closed-loop analytical (a) and numerical (b) frequency responses for different values
of λ.

In Fig.7(a), the position feedback gain λ is investigated using Tab.3 analyt-
ically. By applying the controller value of λ = 5 there is already a significant
decrease in the maximum amplitude, however, this is not enough to suppress
Jump-Phenomenon. Increasing this gain further to λ = 10 shows even greater
amplitude suppression along with the removal of Jump-Phenomenon. The re-
moval of Jump-Phenomenon also signals the removal of hysteresis that comes
along with it showing the effectiveness of the MIRC’s position feedback gain
in the suppression of nonlinear effects. In Fig.7(b), a numerical simulation is
carried out using the values in Tab.3 where the same values of λ = 5, 10 are
used. For larger λ values, there is strong agreement between both the analytical
and numerical results. This comes as a consequence of the Method of Multi-
ple Scales agreeing with numerical results more closely for systems that possess
lower amplitudes wherein the hardening effects of the system is minimal. The
Method of Multiple Scales exaggerates amplitude values for strongly nonlinear
hardening systems. Both the analytical and numerical results agree the same
generic trend of the Jump-Phenomenon, hysteresis and amplitude all decreasing
with an increasing λ. The next parameter analysed is the integrator gain η.
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Figure 8: Closed-loop analytical (a) and numerical (b) frequency responses for different η.

Table 4: Simulation parameters for studying the effect of η on closed-loop behaviour.

Symbol Value(s)
Integrator Gain ηmms ∈ {5, 10}
Integrator Gain ηnum ∈ {5, 10}
Feed-Through Gain κ 0.1
Position Feedback Gain λ 4

In Fig.8(a), the integrator gain η is investigated using Tab.4 analytically.
By applying the controller value of η = 5 there is already a significant decrease
in the maximum amplitude, however as before, this is not enough to suppress
Jump-Phenomenon. Increasing this gain further to η = 10 shows even greater
amplitude suppression along with the removal of Jump-Phenomenon. The re-
moval of Jump-Phenomenon also signals the removal of hysteresis that comes
along with it showing the effectiveness of the MIRC’s integrator gain in the
suppression of nonlinear effects. In Fig.8(b), a numerical simulation is carried
out using the values in Tab.4 where the same values of η = 5, 10 are used. For
larger η values, there is about an equal amount of resonance suppression when
compared to the analytical results in Fig.8(a). Both gains serve to shift the nat-
ural resonance of the system back to where the linear resonance ω1 is, as seen
in both analytical and numerical simulations. Both simulations agree about the
same generic trend of the Jump-Phenomenon, hysteresis and amplitude all de-
creasing with an increasing η or λ. Furthermore, the analytical and numerical
simulations of the position feedback and integrator gains shows that the Method
of Multiple Scales exaggerates not just open-loop amplitudes, as seen in Fig.5
and Fig.6, but also the suppression of Jump-Phenomenon, hysteresis and the
maximum amplitude in the closed-loop case but only when the suppressive ef-
fects of the controller are not enforced greatly. Even then, the level of numerical
disagreement is strongest in the open-loop case This can be further observed by
overlaying the responses of Fig.5 and Fig.6:
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Figure 9: (a) Open-Loop Analytical VS Numerical Integration (b) Closed-Loop Analytical
VS Numerical Integration

Fig.9(a) shows that the Method of Multiple Scales is an excellent approxi-
mate method for producing realistic open-loop resonance plots that closely agree
in behaviour. Even so, the peak amplitudes for the open-loop cases disagree, al-
though this is not unusual, especially in the case of a hardening system like this
one. It should also be noted that numerical integration is unable to yield the
unstable solutions which can be shown analytically. In the case of the closed-
loop case, Fig.9(b) shows that the Method of Multiple Scales and numerical
integration agree even more than in the open-loop case and almost perfectly
match. Both the Method of Multiple Scales and numerical integration agree
on the behaviours that the outpout position feedback and integrator gains each
possess. The next parameter analysed is the feed-through gain κ.

Table 5: Simulation parameters for studying the effect of κ on closed-loop behaviour.

Symbol Value(s)
Feed-Through Gain κan ∈ {0.1, 5, 10}
Feed-Through Gain κnum ∈ {0.1, 5, 10}
Position Feedback Gain λ 4
Integrator Gain η 4
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Figure 10: Closed-loop analytical (a) and numerical (b) frequency responses for different
values of κ.

In Fig.10(a) the feed-through term κ is investigated using Tab.5. For κ = 0.1,
damping can be observed clearly as with the previous gains. By increasing κ
beyond first decimal place values, the system becomes more resonant again
which partially undoes any suppressive effects caused by position feedback and
integrator gains. For this specific system, there will exist some optimal κ that
maximises, for a given η and λ, the damping possible. The numerical analysis
in Fig.10(b) also displays the increase in resonance when going beyond κ = 0.1.
As in previous simulations, the exaggeration of the closed-loop amplitudes is
apparent and remains an issue with the Method of Multiple Scales in the case
where suppression is not at its greatest. Lastly, the removal of hysteresis (and
hence the collapse of two stable and one unstable amplitude solutions) due to
the MIRC are considered:

Table 6: Parameters used in the limit cycle study presented in Figs. 11.

Symbol Value(s)
Position Feedback Gain λ 10
Feed-Through Gain κ 0.1
Integrator Gain η 10
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Figure 11: (a) Open- and Closed-Loop Frequency Responses and (b) Zoomed in hysteresis
slice around Ω = 10.48rad s−1
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Figure 12: Open- and closed-loop limit cycles plotted for both forward (increasing) and reverse
(decreasing) frequency sweeps.

In Fig.11(a), a slice at the frequency of Ω = 10.48rad s−1 is made in order to
show the effects of hysteresis. Fig.11(b) represents a zoomed-in section of the
hysteresis region. At this selected frequency for the open-loop case Fig.11(b),
it is observed that the sweep forward amplitude (a0 ≈ 0.21), marked by a tri-
angle, is much greater than the sweep back amplitude (a0 ≈ 0.05) marked by
a diamond. This highlights the dependency of the system on previous initial
conditions. When applying the MIRC to the system, it can be seen that there
exists no hysteresis or Jump-Phenomenon due to the sweep forward and sweep
back amplitudes being the same (a0 ≈ 0.03, marked with a circle in Fig.11(b))
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at this exact chosen frequency (and neighbouring frequencies) highlighting the
effectiveness of the controller. The entire hysteresis band has been eliminated by
the MIRC. Fig.12 shows the sweep forward and sweep backward phase portraits
at this frequency slice for open- and closed-loop scenarios further reinforcing
and demonstrating the controller’s effect. Notice, that the open-loop sweep for-
ward and sweep back phase portraits (marked by circles) do not coincide. In
the case of the closed-loop scenario, the closed-loop sweep forward and sweep
back phase portraits (marked by diamonds) do coincide further reinforcing the
removal of hysteresis. Previously, it was discussed that the reason for the max-
imum amplitude decreasing was because of the MIRC effectively adding to the
linear damping of the system, however, this does not fully explain the cause
for the suppression of multiple solutions, namely the unstable and larger stable
solutions, and accompanying hysteresis. Numerical integration by itself is not
enough to uncover all the underlying system dynamics as numerical integra-
tion cannot reach an unstable amplitude solution. To this end, the analytical
equations (38) and (39) are analysed using phase-plane quiver plots and the pa-
rameters in Tab.7 in order to demonstrate the existence of the three co-exisiting
attractors and classify their local stability. This is again repeated for the closed-
loop case.

Table 7: Parameters used in the phase amplitude study.

Symbol Value(s)
Forcing Amplitude f 0.5
Position Feedback Gain λ 10
Feed-Through Gain κ 0.1
Integrator Gain η 4
Phase Values Γ {− 3

2π, . . . ,
1
2π}

Amplitude Values a {0, . . . , 0.25}
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Figure 13: (a) Open-Loop quiver plot showing stable attractors (triangles) and an unstable
repellor (square). (b) Closed-loop quiver plot showing a single stable attractor (circle).
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Figure 14: Stable and unstable amplitude-frequency slice for the open- and closed-loop sys-
tems.

In Fig.13(a) there exist two stable attractors and one unstable repellor. At
the bottom left and top right, exist the two stable amplitude solutions of a0 ≈
0.06 and a0 ≈ 0.21 respectively, shown by triangles, which are directly related to
the values Fig.14. The bottom right, given by a square, demonstrates unstable
saddle-node at amplitude a0 ≈ 0.16. This plot highlights the reason for the
existence of hysteresis as a whole. When the system moves from one frequency
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to another it has the chance, depending on initial conditions, to land near any
one of the attractors or near the repeller, or even bounce between either of the
stable attractors due to forcing frequency shifts. When applying the MIRC to
the system, Fig.13(b) shows that only one stable attractor remains (at a0 ≈
0.048). This is the complete reason for the removal of Jump-Phenomenon and
the hysteresis that comes with it.

6. Conclusion

In conclusion, a Modified Integral Resonant Controller is implemented for
use with micro-cantilevers which allows for the suppression of amplitude, Jump-
Phenomenon and the accompanying hysteresis. A Method of Multiple Scales
analysis is combined with Runge-Kutta based numerical simulations in order
to verify the behaviours of the open-loop system and each of the closed-loop
gains that the MIRC possesses. The output feedback and integrator gains, λ
and η respectively, possess the ability to suppress the nonlinear resonance in-
herent in the system. Appropriate choices of these gains can completely remove
jump-phenomenon and hysteresis. The feed-forward gain κ, also provides an
important factor when it comes to the damping of the closed-loop system. It
is observed that small values of κ produce better damping than larger values
above 0.1. When moving beyond this value, the system becomes more resonant
again thus partially undoing any damping the previous two gains had achieved.
This is confirmed both analytically and via numerical integration. When ap-
plying the MIRC, the nonlinear resonance plot begins to shift back to the left
where the original linear resonance is located. This shift can be tuned, at will if
needed, to move the system back to being a pseudo linear second order resonant
system once more.

An important finding is the exaggeration of open-loop, and weakly damped
closed-loop, amplitudes that the Method of Multiple Scales provides when com-
paring with numerical results. In the analytical plots produced, the cases of;
open-loop, smaller λ and η all produced a greater maximum amplitude when
compared with their numerically integrated counterparts. This is a downside
to the Method of Multiple Scales when it comes to analysing highly nonlinear
hardening system where the maximum amplitude achieved is actually lower. Re-
gardless, when it came to sufficiently damped closed-loop plots, the Method of
Multiple Scales and numerical integration both agreed almost exactly showing
the strength of the Method of Multiple Scales.

A complete analytical and numerical analysis is provided in order to uncover
why the MIRC can remove jump-phenomenon and hysteresis. It is found that
the MIRC, with appropriately chosen gains, removes two key pieces of dynamics
inherent to the system, namely; an unstable repellor and a larger stable attrac-
tor. It is these dynamics that produce the hysteresis and jump-phenomenon
by creating a prior dependence on initial conditions. By removing these dy-
namics via the MIRC, the system is left with a single stable attractor to which
the system will always evolve to no matter the initial conditions. These find-
ings were demonstrated in a novel way (hitherto not reported in literature to
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the best of the authors’ knowledge) by combining; nonlinear resonance plots,
phase portraits and quiver plots together to create a full dynamical understand-
ing for both open- and closed-loop behaviours. Both numerical and analytical
methodologies were needed to uncover all the details of the MIRC’s effects on
the micro-cantilever dynamics.

7. Further Work

As a result of the findings in this paper, there is the potential for new
work across different disciplines, namely; an experimental verification of the
MIRC on a cantilever beam undergoing large deflections, investigate the effect
of disturbances on the performance of the MIRC and to investigate the effects of
other damping controllers on the micro-cantilever and determine if they provide
better damping performance, without comprimising control input or introducing
unwanted dynamics.
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