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Good Me Bad Me: Prioritization of the Good-Self During 
Perceptual Decision-Making 
Chuan-Peng Hu*,†, Yuxuan Lan‡, C. Neil Macrae§ and Jie Sui*,§

People display systematic priorities to self-related stimuli. As the self is not a unified entity, however, it 
remains unclear which aspects of the self are crucial to producing this stimulus prioritization. To explore 
this issue, we manipulated the valence of the self-concept (good me vs. bad me) — a core identity-based 
facet of the self — using a standard shape-label association task in which participants initially learned the 
associations (e.g., circle/good-self, triangle/good-other, diamond/bad-self, square/bad-other), after which 
they completed shape-label matching and shape-categorization tasks, such that attention was directed to 
different aspects of the stimuli (i.e., self-relevance and valence). The results revealed that responses were 
more efficient to the good-self shape (vs. other shapes), regardless of the task that was undertaken. A 
hierarchical drift diffusion model (HDDM) analysis indicated that this good-self prioritization effect was 
underpinned by differences in the rate of information uptake. These findings demonstrate that activation 
of the good-self representation exclusively facilitates perceptual decision-making, thereby furthering 
understanding of the self-prioritization effect.
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Introduction
To optimize social-cognitive functioning, people need 
to prioritize processing so that stimuli relevant to 
their goals are selected for action. As such, a crucial 
stimulus property is self-relevance. People prioritize 
information related to themselves compared to others, 
such as the cocktail party effect (Moray, 1959) and the 
self-referential advantage in memory (Rogers, Kuiper, 
& Kirker, 1977). These self-prioritization effects on 
stimulus processing even extend to arbitrary stimuli. 
For example, when people learned associations between 
neutral shapes (of equal familiarity) and personal labels 
(You, Friend, Stranger) representing themselves, a close 
other, or a stranger and then responded whether the 
shapes and labels matched these associations, there 
was an immediate and highly robust advantage for the 
self-pair (e.g., square-you) compared to other pairs (e.g., 
circle-friend; see Sui, He, & Humphreys, 2012). This 
self-prioritization effect during perceptual matching is 
maintained throughout the life span (Sui & Humphreys, 
2017). Additional findings indicate that self-association 
modulates access to visual awareness under continuous 
flash suppression (Macrae, Visokomogilski, Golubickis, 

Cunningham, & Sahraie, 2017), and the effects are more 
pronounced in explicit (e.g., self-relevant) than implicit 
tasks (e.g., self-irrelevant, judging the orientation of 
stimuli; Falbén et al., 2019; Reuther & Chakravarthi, 
2017). Evidence from mathematical modeling analysis 
has further shown that self-association changes 
particular functional processes (Golubickis et al., 2017; 
Sui, Enock, Ralph, & Humphreys, 2015). In the perceptual 
matching task, people first learned associations between 
one personal label and two shapes (e.g., self-triangle, 
self-square), after which they were asked to identify 
single or pairs of shapes as referring to the self or a close 
other. When the shapes referred to the self, there was a 
substantial benefit from presenting two shapes than one 
shape. This enhanced redundancy gains suggest that self 
associations are integrated into a single representation 
so that people respond to an integrated self during 
perceptual processing (Sui & Humphreys, 2015). Using 
a hierarchical drift diffusion model (HDDM), researchers 
have demonstrated that self-relevance influences both 
perceptual and decisional processes that underlie visual 
processing (Golubickis et al., 2019; Macrae et al., 2017).

Despite long-standing interest in these self-prioritization 
effects on performance, most evidence comes from 
studies in which participants are instructed to refer a 
stimulus to the global self (e.g., a triangle represents the 
self). One possibility to account for self-prioritization 
is that these self-referential tasks may activate a default 
(currently accessible) self-concept in individuals that 
modulates stimulus processing and subsequently leads to 
the self-prioritization effect. Although there are individual 
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variations in a default self-concept, one could expect that 
the effect of the default self on performance should be 
greater than other aspects of the self. For example, the 
self is an inherently multifaceted, dynamic construct 
that is influenced by current goals, temporary contexts, 
chronic experiences, and established self-knowledge 
(Higgins, 1987; C. Hu et al., 2016; Reich, Kessel, & Bernieri, 
2013). Key but controversial questions remain regarding 
which aspects of self are crucial to producing the self-
prioritization effects and at which level(s) self-relevance 
affects performance.

A recent dominant explanation for self-prioritization 
effects is that they reflect the intrinsic positive valence of 
self-related stimuli. Supporting evidence comes from the 
elimination of self-prioritization in face perception when 
people are required to evaluate unfavorable personality 
traits in relation to themselves (Ma & Han, 2010) and 
reduced self-prioritization in perceptual matching when 
people’s mood is low (Sui, Ohrling, & Humphreys, 2016). 
Relatedly, researchers have reported that the attentional 
benefits of self-relevance are greater when targets are 
probed by positive identity-based (vs. irrelevant) cues 
(Macrae, Visokomogilski, Golubickis, & Sahraie, 2018). 
The converging evidence implies that positively identity-
related self-concepts (e.g., good me) may be crucial to 
the presence of self-prioritization. Recent studies suggest 
that the morally good self is the core component of the 
self (De Freitas, Cikara, Grossmann, & Schlegel, 2017, 
2018; De Freitas, Sarkissian, et al., 2018; Strohminger, 
Knobe, & Newman, 2017). The self-prioritization effects in 
cognitive psychology are also consistent with the theory 
of self-enhancement in that individuals are motivated 
to ignore or downplay negative information, thereby 
protecting the self-concept from challenge and enabling 
people to maintain an unrealistically positive conception 
of themselves (Sedikides & Strube, 1997). Work in social 
psychology has repeatedly demonstrated the effects of 
valence on self-referential processing and self-evaluation 
(i.e., good-self vs. bad-self;, Greenwald, 1980; Pronin, 2008; 
Sedikides & Strube, 1997). Researchers have reported 
that participants spend more time reading positive than 
negative information about themselves (Baumeister & 
Cairns, 1992), unfavorable self-related events are more 
likely to be forgotten than their favorable counterparts 
(X. Hu, Bergström, Bodenhausen, & Rosenfeld, 2015), 
and positive outcomes are more likely to be ascribed to 
the self than others, with negative outcomes exhibiting 
the opposite attributional pattern (Pronin, 2008). 
Notwithstanding these consistent findings, there is little 
direct evidence of whether the self-prioritization effect 
on stimulus processing results from a core identity-
centred aspect of the self (e.g., good me); that is, whether 
the positive (vs. negative) valence of the self-concept is 
crucial to the emergence of self-bias and at which level(s) 
the identity-centred aspect of the self influence task 
performance. 

We set out to address these issues using a standard 
shape-label association task that has been used to explore 
self-prioritization during perceptual decision-making 
(Sui, Rotshtein, & Humphreys, 2013). Participants first 

associated good and bad aspects of the self (and stranger) 
with different geometric shapes, then judged whether 
a subsequent series of shape-label pairings matched or 
mismatched the previously learned associations (Sui et 
al., 2012). Previous studies have consistently shown that 
people reliably favour self-related shapes compared to 
shapes associated with others (e.g., Sui et al, 2012). We 
therefore considered whether this self-prioritization 
effect in perceptual matching is modulated by valence, 
such that self-bias is sensitive to the identity-based 
aspect of the self (i.e., good me) with which stimuli are 
associated. In addition, we had participants carry out a 
shape-categorization task in which they were required 
to classify briefly presented shape stimuli according to 
valence, self-relevance, or importance.1 This task probed 
stimulus prioritization in a task context in which the self-
relevance of the material was orthogonal to the dimension 
of interest. From the previous findings, we predict that 
self-prioritization will be greater when geometric shapes 
are paired with the good- compared to bad self (or good 
other), regardless of the task that is undertaken on the 
stimuli.

The perceptual matching task and categorization tasks 
were fit with a hierarchical drift diffusion model (HDDM) 
analysis that has widely been used to decompose the 
processes underpinning task performance (Ratcliff, 1978; 
Ratcliff, Smith, Brown, & McKoon, 2016; Wiecki, Sofer, & 
Frank, 2013). Data will be submitted to the HDDM analysis 
to examine the level(s) at which the identity-centered aspect 
of the self influence stimulus processing. DDM assumes 
that, in a speeded decision-making task (e.g., perceptual 
matching, item classification), people make decisions by 
gradually accumulating evidence that is sampled from a 
noisy environment, until a threshold is reached. Typically, 
there are four parameters to model decisional processing. 
Drift rate (v) estimates the rate of information acquisition, 
which is an index of task difficulty or stimulus quality. 
Threshold separation (a, also called boundary separation) 
represents the level of caution; increasing threshold 
separation results in fewer errors but at the cost of slower 
responding. A single starting value (z) represents an a 
priori bias or preference for one or other response, and 
the parameter (t0) represents all non-decisional processes 
(e.g., stimulus encoding, response execution). Human and 
animal studies have linked these parameters to different 
neural and psychological processes in speeded binary 
forced-choice tasks (Forstmann, Ratcliff, & Wagenmakers, 
2016; Johnson, Hopwood, Cesario, & Pleskac, 2017; Voss, 
Rothermund, & Voss, 2004). For example, Golubickis et al. 
(2017) manipulated the temporal construal of the self 
and found that only stimuli associated with the current 
self (vs. future self) were prioritized and that the effect 
originated in the drift rate. From this, we expect identity-
based self-prioritization (good me) to be underpinned by 
a stimulus bias (i.e., rate of evidence accumulation) during 
decisional processing.

Disclosures
The pilot study was pre-registered at https://osf.
io/324up/; the confirmatory study was pre-registered at 
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https://osf.io/abf6q/. All deviations from the original plan 
are reported (see the Deviations from pre-registration in 
the Supplementary Materials).

All stimuli and scripts used for experimental 
presentation and data collection are available at the Open 
Science Framework (OSF) (https://osf.io/4zvkm/) or 
Github: (https://github.com/hcp4715/moralSelf_ddm). 
All the raw data (in CSV format), summary results (in JASP 
format), and related R scripts are also available.

We reported all the main results in the text. Participants 
in both studies completed a series of questionnaires after 
completing the experimental tasks. Questionnaire data are 
not reported in the current study (but see Liu et al. (2020)). 
Additional methodological details, results, and plots can 
be found in the Supplementary Materials (see Table 1).

Pilot Study
Materials and Methods 
Participants 
Thirty-five college students (14 females, age: 
21.65 ± 2.03) from Tsinghua University were recruited via 
an advertisement on the campus and compensated ¥60 
(~$ 8.7) per hour. All participants were right-handed and 
had normal or corrected-to-normal visual acuity. Informed 
consent was obtained from participants prior to the 
experiment and the protocol was reviewed and approved 
by the Ethics Committee at the Department of Psychology, 
Tsinghua University. 

A priori power analysis was conducted with G*Power 
3.1.9.2 (Faul, Erdfelder, Buchner, & Lang, 2009; Faul, 
Erdfelder, Lang, & Buchner, 2007), based on a series of 
experiments with a similar design to an unpublished 
study (C.-P. Hu, 2017; see the open notebook: https://
osf.io/nukwz/). A sample size of 32 participants was 
determined to be sufficient to have a similar effect size 
(Cohen’s d = 0.6) with a desired power of .90 and α = .05 
for the critical comparison in reaction times (RTs) between 
good-self vs. bad-self.

Data from six participants were excluded from data 
analysis, four of them due to a procedural error during 
data collection, and two because of chance levels of 
performance in the matching task. Thus, data from 29 
participants (13 females, age: 21.55 ± 1.99 years) were 
included in the analysis. 

Stimuli and tasks 
The experiment was conducted on a PC with a 22-in CRT 
monitor (1024 × 768 at 100Hz) using Matlab (2016a, 
MATLAB) and PsychToolbox-3 (Brainard, 1997). All stimuli 
were displayed in white against a grey background. 
Participants carried out the experiment individually in 
a quiet testing room. They first completed 48 practice 
trials for the perceptual-matching task, followed by 
two blocks of perceptual-matching task, each with 120 
experimental trials. After that, they completed 6 blocks 
of shape-categorization task, each had 144 trials, with five 
short interleaved perceptual-matching blocks of 48 trials 
(see Figure 1A). To avoid forming shape-key associations 
in the categorization task, different pairs of buttons 
were used, one pair for each type of categorization 
task. The associations between buttons and categories 
(Good/Bad, Self/Other, Important/Un-important) were 
counterbalanced across participants (see below). 

Perceptual-Matching Task 
Prior to the task, participants were asked to select a gender-
matched forename from a list of common names for people 
they did not know personally (i.e., stranger condition). 
They then learned the association between four geometric 
shapes and four labels. One of the four geometric shapes 
(square, diamond, trapezoid, circle) was randomly assigned 
to a good or bad aspect of the participant and the stranger 
(good-self, bad-self, good-other, bad-other). For example, 
a participant was instructed, “a square represents the 
good-self, the morally good aspect of yourself; a diamond 
represents the bad-self, the immoral aspect of yourself; a 

Table 1: Information disclosed in supplementary materials.

Content Experiments Short title Information

1 Pilot Deviations Deviations from pre-registration.

2 Pilot Fig. S1 Robust check of Bayesian t-tests (matching task).

Fig. S2 Robust check of Bayesian t-tests (categorization task).

3 Pilot ex-Gaussian Details about the ex-Gaussian analysis.

Fig. S3 Results from the ex-Gaussian analysis.

4 Confirmatory Deviations Deviations from pre-registration.

5 Confirmatory Fig. S4 Robust check of Bayesian t-tests (matching task).

Fig. S5 Robust check of Bayesian t-tests (categorization task).

6 Both Table S1 Results of cross-task correlation (pilot and confirm study separately).

7 Confirmatory Table S2 Model comparison in DDM analysis.

Fig. S6 Drift rate for mismatching trials in matching task.

Table S3 Comparison of initial bias (z) and non-decision time (t) from DDM.

8 Both Suppl. Results Results from comparing Bad-other and Good-self in all tasks.
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trapezoid with a good-other (i.e., the morally good aspect 
of the stranger [replaced with the named participant had 
chosen]); and a circle with a bad-other (i.e., the immoral 
aspect of the stranger”). The shape-label assignment and 
the order of presentation of shape-label associations were 
counterbalanced across participants. The instruction was 
presented until participants pressed the space bar to 
begin the practice phase. 

The shape-label learning phase took approximately 
1 minute to complete. Following the learning phase, 
participants immediately carried out the shape-label 
matching task to judge whether a shape-label pair, 
which was presented for 100 ms in the centre of the 
screen, matched or mismatched the previously learned 
associations (see Figure 1B). The same four shapes were 
used throughout all the experimental trials. The shapes 
were presented with 3.7° × 3.7° of visual angle and the 
labels with 3.6° × 1.6° of visual angle above and below a 
central fixation cross with 0.8° × 0.8° of visual angle. The 
distance between the centre of the shape or the label and 
the fixation cross was 3.5° of visual angle. There were 60 
experimental trials per condition (match good-self, match 
bad-self, match good-other, match bad-other, mismatch 
good-self, mismatch bad-self, mismatch good-other, 
mismatch bad-other).

Shape-Categorization Task 
Following the perceptual-matching task, participants 
immediately carried out the shape-categorization 
task, in which a shape with 3.7° × 3.7° of visual angle 
was presented for 200 ms in the centre of the screen. 
Participants were instructed to discriminate the stimulus 
based on its identity (self vs. other), valence (good vs. bad), 
or its relative importance (important vs. unimportant) in 

different blocks (see Figure 1C). The order of the blocks 
was counterbalanced across participants. There were 72 
trials per condition in total (with four person-valence 
combinations for the self-relevance and valence tasks). 

Data Analyses 
All raw data were first preprocessed by R 3.5.3 (R Core 
Team, 2018) to remove participants with chance levels 
of performance, practice trials, and trials with RTs faster 
than 200 ms. We also re-coded trials with no response 
as incorrect trials (3.98% for matching task, 2.95% for 
categorization task) for ANOVAs, and these trials were 
excluded from the HDDM analysis. 

The sensitivity (d prime) of shape stimuli in the matching 
task was measured using a signal detection approach in 
which the performance in each matching condition was 
combined with that in the mismatching condition with 
the same shape to form a measure of d prime (Sui et al., 
2012). Based on previous research, mismatching trials 
were excluded from the RT (C.-P. Hu, 2017; Sui et al., 2012). 
Although the distribution of raw RTs were not normally 
distributed, a recent simulation study showed that 
transformation of RT data does not necessarily improve 
statistical power (Schramm & Rouder, 2019). Therefore, 
the averaged RTs for matching trials were used for analysis 
(Sui et al., 2012).

ANOVAs for the Matching Task and the Categorization Task 
The summary data (d-prime, accuracy, and mean RTs 
of each condition for each participant) were analyzed 
using JASP 0.10.0.0 (C.-P. Hu, Kong, Wagenmakers, Ly, & 
Peng, 2018; Love et al., 2019; Wagenmakers et al., 2018). 
We tested the self-prioritization effect and the valence 
effect using both Frequentist repeated measures ANOVAs 

Figure 1: Flowchart of the pilot experiment. (A) The protocol of the tasks: participants first completed the practice 
session of the perceptual-matching task, followed by two experimental blocks, and then they carried out six blocks of 
the shape-categorization task with short interleaved matching tasks. Illustration of the procedure in the perceptual-
matching task (B) and the shape-categorization task (C).
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(rmANOVA) and the Bayes factor (BF) version. We also 
conducted planned one-tailed t-tests. Specifically, we were 
interested in four contrasts: good-self vs bad-self, good-
other vs. bad-other, good-self vs. good-other, and bad-self 
vs. bad-other. The first two comparisons reveal the valence 
effect in both the self and other conditions, while the 
latter two comparisons reveal the self-relevance effect in 
the positive and negative conditions. The effect sizes of 
the repeated measures ANOVAs (omega-squared, ω2) and 
t-tests (Cohen’s d) are reported, with the 95% confidence 
intervals of Cohen’s d. Note that the Cohen’s d estimated 
by JASP is the Cohen’s dz (for different indices of Cohen’s 
d, see Lakens (2013)).

Bayes Factors were calculated by using the default 
prior in JASP 0.10.0.0 (C.-P. Hu et al., 2018; Wagenmakers 
et al., 2018). That is, for the repeated measure ANOVA, the 
distribution of fixed effects is Cauchy distribution with 
a scale parameter γ = 0.5, the prior for random effects is 

Cauchy distribution with γ = 1, and the prior for covariates 
is Cauchy distribution with γ = 0.354. For the t-test, we 
used a Cauchy distribution with scale parameter γ = 0.707. 
Criteria for interpreting BF was based on Jeffreys (Jeffreys, 
1961; Wagenmakers et al., 2018), i.e., 0 < BF < 3 indicates 
anecdotal evidence, 3 < BF < 6 indicates weak evidence, 
6 < BF < 10 indicates moderate evidence, BF > 10 indicates 
strong evidence, and BF > 100 indicates overwhelming 
evidence. For the Bayesian ANOVAs analysis, we also 
reported the results from Bayesian model averaging 
(indexed by BFincl) (Etz & Wagenmakers, 2017), which 
retain model selection uncertainty by averaging the 
conclusions from each candidate model, weighted by that 
model’s posterior plausibility.

Modelling 
In our pre-registration, we planned to model the data 
using ex-Gaussian and drift diffusion model (DDM). The 

Figure 2: Behavioral results of the pilot study. Panel A: Reaction times (left) and d prime (right) from the matching 
task. Panel B: Reaction times (left) and accuracy (right) from the categorization task (collapsed crossed identity-based 
categorization and valence-based categorization blocks). Colored lines with standard error bars represent the group 
level statistics: mean ± 1.96*se, each grey line represents the data from one participant.
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DDM analysis were not reported (see Deviations from 
pre-registration). 

Results 
Perceptual-Matching Task  
ANOVAs 
The repeated-measures ANOVAs on RTs showed strong 
evidence for the main effect of Valence (Good vs. Bad), 
F(1, 28) = 38.126, p < 0.001, ω2 = 0.181, BF10 = 1.326e+6, 
BFincl = 1.1e+6. But no clear evidence for the main effect of 
self-relevance effect F(1, 28) = 0.078, p = 0.782, ω2 < 0.0001, 
BF10 = 0.198, BFincl = 0.349. Only very weak evidence for 
the interaction between Self-relevance × Valence in the 
perceptual matching task was observed, F(1, 28) = 3.939, 
p = 0.057, ω2 = 0.0161, BF10 = 1.41, BFincl = 0.99. 

The planned exploratory contrasts showed that there 
were faster responses to the good-self than bad-self 
association in the perceptual matching task (mean 
± std: 655 ± 85 ms vs. 744 ± 70 ms), t(28) = –5.669, 
p < .001, Cohen’s dz = –1.053, 95% CI [–1.503 –0.591], 
BF10 = 4443, as well as faster responses to the good-other 
than bad-other association (mean ± std: 678 ± 93 ms vs. 
725 ± 76 ms), t(28) = –3.164, p = .0037, Cohen’s dz = –0.587, 
95% CI [–0.978 –0.188], BF10 = 10.6 (see Figure 2A left). 
These effects were robust across different priors (see 
Supplementary Materials). There was no evidence for 
differences for the other two contrasts (i.e., good-self vs 
good-other or bad-self vs. bad-other).

There was strong evidence for the main effect of Valence 
(good vs. bad) on d prime, F(1, 28) = 10.74, p = 0.0028, 
ω2 = 0.0324, BF10 = 11.1, BFincl = 8.44. But no evidence 
for the main effect of Self-relevance, F(1, 28) = 0.813, 
p = 0.375, ω2 < 0.0001, BF10 = 0.284, BFincl = 0.297; or 
for the interaction between Self-relevance × Valence, 
F(1, 28) = 1.89, p = 0.18, ω2 = 0.0033, BF10 = 0.59, 
BFincl = 0.197. 

Planned exploratory contrast analyses showed that d 
prime was larger in the good-self compared to the bad-self 
in the perceptual matching task (mean ± std: 1.749 ± 0.936 
vs. 1.233 ± 1), t(28) = 3.26, p = 0.0029, Cohen’s d = 
0.606, 95% CI[0.204 0.998], BF10 = 13.1 see Figure 2A 
right. This effect was robust across different priors (see 
Supplementary Materials). There was no evidence of 
differences for the other contrasts (i.e., good-other vs. bad-
other, good-self vs. good-other or bad-self vs. bad-other).

Shape-Categorization Task  
ANOVAs  
The three-way repeated-measures ANOVA on RTs 
showed weak evidence for the interaction between 
Self-relevance × Valence in the categorization task: 
F(1, 28) = 3.553, p = 0.0699, ω2 = 0.006, BF10 = 1.34, 
BFincl = 1.69, but no clear evidence for the main effect of 
Valence, Self-relevance, task type, or for the other two-
way interactions, or the three-way interaction. Planned 
exploratory contrast analyses, in which we collapsed data 
from the two different tasks (valence-based categorization 
and identity-based categorization), showed that responses 
to the good-self were faster than to the bad-self (mean ± std: 
513 ± 52 vs. 535 ± 58), t(28) = –3, p = 0.0056, Cohen’s 
d = –0.558, 95% CI[–0.946 –0.162], BF10 = 7.5, but no 

evidence for the difference between the other contrasts of 
interest (see Figure 2B left).

The three-way repeated measure ANOVA on accuracy 
in the categorization task found weak evidence for 
the interaction between Self-relevance × Valence, 
F(1, 28) = 4.043, p = 0.0541, ω2 = 0.0109, BF10 = 2.29, 
BFincl = 2, but no evidence for other main effects or 
interactions. Planned exploratory contrasts, after 
collapsing data from the different tasks, revealed more 
accurate responses for the good-self than the bad-self 
(mean ± std: 0.923 ± 0.08 vs. 0.884 ± 0.098), t(28) = 3.591, 
p = 0.0012, Cohen’s d = 0.667, 95% CI[0.259 1.065], 
BF10 = 27.6. Also, the good-self conditions were more 
accurate than the good-other conditions (mean ± std: 
0.923 ± 0.08 vs. 0.883 ± 0.097), t(28) = 3.43, p = 0.0019, 
Cohen’s d = 0.637, 95% CI[0.233 1.033], BF10 = 19.2 (see  
Figure 2B right), but no evidence for differences between 
the other contrasts of interest. 

Confirmatory Study
Materials & Methods  
Participants  
The sample size of the study was determined in a dynamic 
way (Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 
2017). Specifically, we kept collecting data and analysing 
the strength of evidence for the critical hypothesis, 
including the interaction between Self-Relevance × 
Valence on RT data and two Bayes factor paired t-tests 
(good-self vs. bad-self, good-self vs. good-other). We 
stopped recruiting new participants when both paired 
t-tests reached BF10 ≤ 0.1 or BF10 ≥ 10. Participants who 
were already recruited at that moment continued to 
complete the experiment. See https://osf.io/w6hrj/ for 
the change of Bayes factor during the data collection. In 
total, 46 college students (27 females, age: 20.91 ± 2.58) 
were recruited. Four participants were excluded from data 
analysis because of procedural failures. 

Stimuli and Tasks  
The data was collected using the same settings as described 
in the pilot study, with several differences: 

(1) In the shape-categorization task, the shapes were 
presented for 100 ms, instead of 200 ms in the pilot 
experiment, and feedback was Chinese character 
‘Correct’ or ‘Incorrect’, instead of happy or sad 
symbolic faces. 

(2) There were only two different types of blocks in 
the categorization task in the confirmatory study 
because the importance judgments resulted in 
unbalanced trials between participants.

(3) There were more trials per condition: 72 
experimental trials for the matching task and 90 
trials for the categorization task. 

(4) The questionnaires were different from the pilot 
study.

Data Analyses  
As in the pilot study, the data were cleaned and analyzed 
in both Frequentist hypothesis testing (i.e., ANOVA and 
t-tests) and the Bayes factor version. 
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Diffusion Modelling 
To examine the processes underpinning task performance, 
we used a drift-diffusion model (DDM) to decompose the 
RTs and accuracy data. As mentioned above, the diffusion 
process is characterized by different parameters: drift rate 
(v), starting value (z), threshold separation (a), and non-
decisional processes (t0).

We estimated the parameters of the DDM using a 
hierarchical Bayesian model (HDDM) (http://ski.clps.brown.
edu/hddm_docs; Wiecki et al., 2013), with a default group 
prior roughly matching the parameter values reported 
by Matzke and Wagenmakers (2009). Based on previous 
research (e.g., Golubickis et al., 2017), we fixed the threshold 
a because it has been suggested that threshold should 
remain constant throughout a task when the luminance of 
the stimuli is constant across the trials. Note that we used 
the response coded approach (see the Deviations from 
Registration in the Supplementary Materials). 

All model parameters were estimated using four Markov 
Chain Monte-Carlo (MCMC) chains of 10,000 samples, 
each with 1000 burn-in samples to allow the chain to 
converge (see our online open scripts). The four chains 
were used to calculate the Gelman–Rubin convergence 
statistic for all model parameters. This statistic was close 
to 1, indicating that 10,000 samples were sufficient for 
MCMC chains to converge (Wiecki et al., 2013). Each 
HDDM parameter for each participant and each condition 
was modeled to be distributed according to a normal (or 
truncated normal, depending on the bounds of parameter 
intervals) distribution centered around the group mean 
with group variance. 

To select the best fitting model, we conducted a 
model comparison with additional models in which the 
parameters v and z were free to vary, using the Deviance 
Information Criterion (DIC) and posterior prediction check 
(PPC). DIC is a widely-used index for model comparison 
of hierarchical models. Typically, lower DIC values favor 
models with the highest likelihood and least degrees of 
freedom. However, DIC should not be the only criteria 
in deciding which model is best (see, http://ski.clps.
brown.edu/hddm_docs/howto.html#perform-model-
comparison). Hence, we also computed the mean square 
error (MSE) of the PPC to indicate the differences between 
the data generated by the model and the original data. 
The smaller the MSE of PPC, the better the model fit. 

Model comparisons showed that the best fitting model 
required the three-parameter model (see Supplementary 
Materials), consistent with the findings in prior research 
(Golubickis, Falben, Cunningham, & Macrae, 2018; 
Golubickis et al., 2017). We then extracted the parameters 
for each condition and tested the hypothesis by analyzing 
the posterior probability density of the parameters across 
the conditions. When comparing the difference of a 
parameter under two conditions or comparing a parameter 
with one fixed value, we reported the proportion of the 
posterior distribution that was greater or less than the 
other posterior or the fixed value.

Cross-Task Analysis 
To test the cross-task robustness of the self-relevance 
and valence effects, we further estimated the cross-task 

correlation of the self-relevance effect (good-self vs. good-
other) and the valence effect (good-self vs. bad-self).2

Results  
Perceptual-Matching Task   
ANOVAs   
As described in our preregistration, we focused on the 
matching trials for RTs. Repeated measures ANOVAs on 
RTs showed overwhelming evidence for the main effect of 
Valence, F(1, 40) = 57.88, p < 0.001, ω2 = 0.16, BF10 = 8.26e + 6, 
BFincl = 2.3e+8 but no strong evidence for the main effect 
of Self-relevance. Also, there was strong evidence for 
the interaction between Self-relevance × Valence, 
F(1, 41) = 14.65, p < 0.001, ω2 = 0.05, BF10 = 68.04,  
BFincl = 133.9. (Figure 3A left). Planned contrasts  
showed good-self (637 ± 63 ms) responses were faster 
than bad-self responses (720 ± 70 ms), t(41) = –8.42, 
p < .001, Cohen’s dz = –1.299, 95% CI[–1.708 –0.883], 
BF–0 = 1.19e + 8, and good-other (681 ± 81 ms) responses 
were faster than bad-other responses (707 ± 70 ms), 
t(41) = –2.37, p = 0.011, Cohen’s d = –0.367, 95% 
CI[–0.677 –0.052], BF–0 = 4.01. In addition, good-self was 
faster than good-other, t(41) = –3.34, p < 0.001, Cohen’s 
d = –0.515, 95% CI[–0.834 –0.190], BF–0 = 35.50, but 
there was no evidence for a difference between the bad-
self and bad-other.

The results of d prime were similar to the RT data. 
Evidence for the main effect of Valence was mixed, 
F(1, 41) = 5.71, p = 0.022, ω2 = 0.02, BF10 = 0.90, BFincl = 8.5, 
and no evidence for the main effect of Self-relevance 
was observed. The evidence for the interaction between 
Self-relevance × Valence was strong, F(1, 41) =12.03, 
p = 0.0012, ω2 = 0.01, BF10 = 70.90, BFincl = 24.7 (Figure 3A 
right). Planned contrasts showed that there was a larger 
d prime for good-self (2.33 ± 0.71) than either bad-self 
(1.80 ± 0.66), t(41) = 4.30, p < 0.001, Cohen’s d = 0.664, 
95% CI[0.326 0.995], BF+0 = 472.80, or good-other 
(1.91 ± 0.75), t(41) = 2.67, p = 0.0055, Cohen’s d = 0.411, 
95% CI[0.094 0.74], BF+0 = 7.38. No evidence for the other 
two contrasts of interest emerged.

Diffusion Modelling  
The posterior distributions showed evidence of a 
stimulus bias indexed by the drift rate (v) on matching 
trials, such that information uptake was faster for good-
self than both bad-self (Pposterier (match-good-self > 
match-bad-self) = 1) and good-other (Pposterier (match-good-
self > match-good-other) = 1) (Figure 4A). These 
effects were not observed on non-matching trials (see 
Supplementary Materials). The analysis of the starting 
point (z) showed a prior bias toward matching responses 
(z = 0.5), Pposterier (z > 0.5) = 1. Analyses of the non-decision 
time (t0) yielded no differences between conditions.

Shape-Categorization Task   
ANOVAs    
The three-way rmANOVA on RTs revealed main effects 
of Valence, F(1,40) = 15.3, p < 0.001, ω2 = 0.009, BF10 = 
4.28, BFincl =407, and Self-relevance, F(1,40) = 41.6, p < 
0.001, ω2 = 0.028, BF10 =12971, BFincl = 879324, as well 
as a Self-relevance × Valence interaction, F(1,40) = 41.6, 
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Figure 3: Behavioral results of the confirm study. Panel A: Reaction times (left) and d prime (right) from the matching 
task; Panel B: Reaction times (left) and accuracy (right) in the identity-based categorization task. Panel C: Reaction 
times (left) and accuracy (right) in the valence-based categorization task. Colored lines with standard error bars rep-
resent the group level statistics: mean ± 1.96*se, and each grey line represents the data from the same participant.

Figure 4: Posterior of drift-rate (v) of the confirm study. 
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p = 0.047, ω2 = 0.008, BF10 = 19.60, BFincl = 54.5 (Figure 3B 
left and Figure 3C left). Also, there was an interaction 
between Task type and Valence, between Task Type and 
Self-relevance, but no evidence for the main effect of Task 
Type or the three-way interaction (see online JASP files). 

We therefore collapsed the data across Task Type and 
compared the pairs of conditions of interest given the 
purpose of the current study. Results showed faster 
responses to the good-self (484 ± 62) than both the 
good-other, (519 ± 70), t(40) = –4.37, p < 0.001, Cohen’s  
d = –0.684, 95% CI[–1.021 –0.339], BF–0 = 57, and bad-self 
(509 ± 68), t(40) = –3.18, p = 0.0014, Cohen’s d = –0.496, 
95% CI[–0.819 –0.169], BF–0 = 23.90. No other differences 
were observed.

The three-way rmANOVA on accuracy showed mixed 
evidence for the main effect of Self-relevance, and 
no evidence for the main effect of Valence. But there 
was strong evidence for the interaction between Self-
relevance × Valence, F(1, 40) = 8.76, p = .0052, ω2 = 0.06, 
BF10 = 256.50, BFincl = 14.7 Figure 3B right and Figure 3C 
right. The evidence for all other interactions were absent 
(see online JASP files). 

After collapsing data across the two categorization tasks, 
planned contrasts revealed that responses to the good-
self (0.947 ± 0.037) were more accurate than either the 
bad-self (0.902 ± 0.1), t(40) = 3.06, p = 0.002, Cohen’s d = 
–0.478, 95% CI[0.152, 0.798], BF+0 = 17.9, or good-other 
(0.89 ± 0.088), t(40) = 3.77, p < 0.001, Cohen’s d = 0.589, 
95% CI[0.253 0.917], BF+0 = 106.70. No evidence for other 
differences were found.

Diffusion Modelling   
The HDDM analysis of the shape-categorization tasks 
revealed that the drift rate (v) was higher for good-self 
than for good-other in both the valence-based task (Pposterier 
(good-self > good-other) > 0.994) and the identity-based 
task (Pposterier (good-self > good-other) > 0.996). The drift 
rate was also higher for good-self than for bad-self in both 
the valence-based (Pposterier (good-self > bad-self) = 0.99) and 
identity-based tasks (Pposterier (good-self > bad-self) = 0.99) 
(see Figure 4B, 4C, and Supplementary Materials).

For the starting point, there was no strong evidence for 
bias toward positive or negative valence in the valence-
based task (Pposterier (bias > 0.5) = 0.69), but there was a 
strong evidence for a bias toward the self compared to 
other in the identity-based task (Pposterier (bias > 0.5) = 1.00).  
Analyses of the non-decision processes (t0) showed that 
these activities were longer to good-self than good-
other, Pposterier (good-self > good-other) = 0.99 (see the 
Supplementary Materials for details). 

Cross-Task Analysis  
Cross-task analysis was conducted by combining the 
data from the pilot and confirmatory studies to increase 
the statistical power (Table 2). The valence effect in RT 
was robust across the perceptual-matching task and the 
identity-based categorization task for the positive self 
(good-self vs. bad-self) and positive other (good-other 
vs. bad-other), r = .454 and r = .398, respectively. The 
effect of the positive self-relevance (good-self vs. good-
other) was also stable across the perceptual matching 
and the valence-based categorization task, r = .621, and 
across the perceptual matching and the identity-based 
categorization task, r = .575.

General Discussion
Here we manipulated stimulus properties based on 
identity-relevant valence (i.e., good me, bad me, good 
other, bad other) to examine which facet of the self 
is crucial to the emergence of the self-prioritization 
effect. The results demonstrated a robust ‘good-self’ 
prioritization effect in perceptual decision-making, 
regardless of task type (i.e., perceptual-matching or shape-
classification). Specifically, compared to other shape-label 
stimulus combinations, the good-self yielded the most 
potent benefits during decisional processing. An HDDM 
analysis further revealed that the good-self association 
facilitated performance by improving the efficiency of 
visual processing. These findings suggest that, as a core 
identity-related component, stimuli associated with the 
good-self are prioritized during perceptual decision-
making (Sedikides & Strube, 1997). 

Table 2: Cross-task correlations for the self-prioritization effects and the positivity effects.

Contrast Task 1 Task 2 d prime-ACC
(r, 95%CI, BF10)

RT
(r, 95%CI, BF10)

Good-self v. Bad-self matching valance-based .194, [–.043 .410], 0.53 .164, [–.074 .384], 0.164

matching id-based .051, [–.186 .282], 0.16 .454, [.245 .623], 306.7

Good-other v. Bad-other matching valance-based 0.129, [–.109 .354] 0.26 .273, [.041 .477], 1.94

matching id-based 0.138, [–.099 .362] 0.28 .398, [.179 .578], 44

Good-self v. Good-other matching valance-based .271, [.038 .476], 1.86 .621, [.452 .747], 1.5e+6

matching id-based .326, [.099 .521], 6.2 .575, [.394 .714], 8.8e+4

Bad-self v. Bad-other matching valance-based –.082, [–.311 .156] 0.19 .067, [–.171 .297], 0.17

matching id-based –.117, [–.343 .121] 0.24 .268, [.035 .473], 1.74

* matching task = the perceptual matching task; valence-based task = the valence-based categorization task; id-based task = the 
identity-based categorization task. r = correlation coefficient; 95%CI = the 95% confidence intervals of the correlation coefficient; 
BF10 = the Bayes factor results of hypothesis testing of the correlation (H0: no correlation).
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One candidate explanation for the ‘good-self’ 
prioritization effect lies in the ‘integrative’ self view (Sui & 
Humphreys, 2015), such that activation of the self-concept 
facilitates the binding of external stimuli (e.g., shapes) to 
established self-representations and subsequently leads 
to prioritized responses to self-related stimuli. However, 
it remains unclear which aspect of the self is critical to 
the emergence of this effect. In this respect, recent studies 
have suggested that the positive aspect of the self-concept 
may comprise the core self-representation (i.e., true self, 
see De Freitas, et al., 2017; Strohminger, et al., 2017), 
consistent with the traditional positive self-bias account 
(Greenwald, 1980). Corroborating this viewpoint, the 
current results confirm that self-prioritization during 
perceptual matching is greater when stimuli are paired 
with the good- than bad-self. 

A competing explanation is that the results may reflect a 
congruency effect (i.e., positive valence is more congruent 
with the self, while negative valence with non-self). If this 
were the case, however, then we would have observed 
faster responses to the congruent pairs, both the good-self 
and the bad-other, than the incongruent pairs, the bad-
self and the good-other. But this was not the case in our 
results (see the Supplementary Material).

The results of the present study extend previous work on 
self-prioritization in a number of interesting ways. First, 
information uptake was faster when stimuli were paired 
with the good-self (vs. bad-self or good-other), an effect 
that emerged in both perceptual-matching and shape-
categorization tasks. Going beyond perceptual-matching 
in which the self-relevance of stimuli must be considered 
to successfully perform the task (Sui et al., 2012), a good-
self prioritization effect emerged when only the shape of 
the stimuli were task relevant. Second, the magnitude of 
self-prioritization was modulated by the aspect of the self-
concept with which information was associated. That is, 
rather than the self-concept exerting a basic facilitatory 
effect on stimulus processing, performance was enhanced 
when information was tagged with an identity-based 
aspect of the self, the good-self. Third, to date, the effects 
of self-enhancement have largely been confined to aspects 
of higher-level cognition, such as attributions (Pronin, 
2008; Sedikides & Strube, 1997), social evaluation, and 
memory (X. Hu et al., 2015). In contrast, the current 
results provided evidence that self-enhancement also 
occurs during the early stages of processing, notably 
perceptual decision-making. Finally, using computational 
modelling, we demonstrated that self-prioritization (i.e., 
good-self prioritization) is underpinned by differences in 
the efficiency of visual processing (i.e., rate of information 
uptake) during decision-making (Sui & Humphreys, 2015).

Implications and Limitations
The current study examined social association using 
computer-based tasks taken from cognitive psychology, 
where the levels of the process involved in performance 
were decomposed using a mathematical model. These 
results have broad implications for understanding social 
behavior. For example, they may help to explain why 

healthy people become more sensitive to the positive 
identity-based self-concept during decision making 
since cognitive biases toward these self-concepts would 
be reinforced by enhanced perceptual processing. The 
effect may also be driven by conscious expectancies from 
people, in line with work in social psychology, such as 
self-enhancement and self-protection (Alicke & Sedikides, 
2009; Dunning, Leuenberger, & Sherman, 1995; Trope & 
Pomerantz, 1998). That is, healthy people tend to view 
themselves more positively, or less negatively, to maintain 
psychological wellbeing. The present results may reflect 
different motivational constructs, being positive or less 
negative, although they may lead to similar social behavior.

The generalizability of the current findings may be 
limited by the sample (young, healthy Chinese college 
students) that was tested (Yarkoni, 2019). Also, we assumed 
that participants had a positive self-concept (Hepper, 
Sedikides, & Cai, 2011), resulting in better performance 
for stimuli tagged with the good-self compared to the 
bad-self. This assumption should be examined in future 
research, particularly focusing on individuals with a 
negative self-concept. In addition, the present study 
demonstrated a spontaneous or natural self-prioritization 
effect in a laboratory setting. The ecological validity (e.g., 
contextually-relevant aspects of the self) of the findings 
should be tested in the future.

Conclusions
In two pre-registered studies, we found that geometric 
shapes associated with the good-self label were prioritized 
but not the bad-self or the good-other. These results 
indicated that only activating the positive aspect of the 
self-concept enhanced perceptual decision-making, 
thereby providing evidence for positive self-bias during 
early stages of information processing. 

Data Accessibility Statement
We embrace the values of openness and transparency in 
science (www.researchtransparency.org/). We report how 
we determined the sample size, data exclusions (if any), 
manipulations, and all measures in the study, and refer 
to the project documentation in the OSF and GitHub 
(https://osf.io/4zvkm/, https://github.com/hcp4715/
moralSelf_ddm). All raw data and the scripts for data 
analyses are also available (see the additional materials in 
the OSF and GitHub).

Notes
 1 Importance judgments were involved in the design 

because importance is a crucial variable in decision 
making, along with self-relevance and valence. To 
customize the relative importance of each shape 
for the participants, they were asked to judge the 
importance of each of four shapes at the beginning 
of the block, with the constraint that at least one 
shape was selected for the (un)important condition. 
This customized procedure, however, resulted in 
an unequal number of responses to the important 
and unimportant stimuli across individuals. The 
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importance variable was therefore excluded from data 
analysis to avoid response biases (see Deviation from 
Pre-registration. The data were available at https://
osf.io/4zvkm/).

 2 A recent simulation suggests that correlation might 
be unstable if the sample size is small (see the blog 
by Guillaume A. Rousselet: https://garstats.wordpress.
com/2018/06/01/smallncorr/). We, therefore, 
reported the result by combining the pilot and 
confirm studies. We also analyzed the pilot study and 
the confirm study separately, see the supplementary 
materials. 

Additional File
The additional file for this article can be found as follows:

• Supplementary materials. Good Me Bad Me: Prior-
itization of the Good-Self During Perceptual Decision-
Making. DOI: https://doi.org/10.1525/collabra.301.s1
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