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Abstract In this review we identify a new category of meth-
ods for implementing and solving structural optimization
problems that has emerged over the last 20 years, which we
propose to call feature-mapping methods. The two defining
aspects of these methods are that the design is parameterized
by a high-level geometric description and that features are
mapped onto a non-body-fitted mesh for analysis. One mo-
tivation for using these methods is to gain better control over
the geometry to, for example, facilitate imposing direct con-
straints on geometric features, while avoiding issues with
re-meshing. The review starts by providing some key defi-
nitions and then examines the ingredients that these meth-
ods use to map geometric features onto a fixed mesh. One of
these ingredients corresponds to the mechanism for mapping
the geometry of a single feature onto a fixed analysis grid,
from which an ersatz material or an immersed-boundary ap-
proach is used for the analysis. For the former case, which
we refer to as the pseudo-density approach, a test problem
is formulated to investigate aspects of the material interpo-
lation, boundary smoothing and numerical integration. We
also review other ingredients of feature-mapping techniques,
including approaches for combining features (which are re-
quired to perform topology optimization) and methods for
imposing a minimum separation distance among features. A
literature review of feature-mapping methods is provided for
shape optimization, combined feature/free-form optimiza-
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tion, and topology optimization. Finally, we discuss poten-
tial future research directions for feature-mapping methods.
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1 Introduction

Structural optimization methods can be classified into size,
shape and topology optimization. Size optimization modi-
fies dimensions of the structure such as the cross-section of
truss members or the point-wise thickness of plates. Shape
optimization modifies the boundaries of the structure, but
without altering its topology, i.e., without adding or re-
moving holes. Topology optimization can simultaneously
change the shape of the structure and its connectivity.

A key aspect of these methods is the mechanism they
employ to update the analysis model upon design changes.
Some methods deform the analysis mesh when the design
changes. Most topology optimization methods, and some
shape optimization methods, use a mesh that does not con-
form to the boundaries of the structure. Density-based meth-
ods, which are the most prevalent topology optimization
techniques, employ a pixel/voxel representation of the de-
sign, typically based on the analysis grid. Level-set meth-
ods, which can be used both for shape and topology opti-
mization, use the zero level-set of a function to define the
structural boundaries. Density-based and level-set methods
endow the optimizer with substantial freedom, rendering or-
ganic, free-form designs.

In recent years, new methods have been developed to
implement and solve structural optimization problems that
are motivated by obtaining designs that have some de-
sired “high-level” geometric features (which we will define
later in this article) without the need to re-create a body-
fitted mesh upon design changes. These methods have been
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largely motivated by the need to embed primitive-shaped
components in free-form designs, to design structures made
of stock material, to control certain dimensions of the struc-
ture, and ultimately, to provide a geometric representation
that is directly understood by computer aided design (CAD)
systems. In addition, these methods may represent designs
with a low number of variables, which may be beneficial
to, for example, the use of gradient-free optimizers. These
methods build on aspects of existing techniques in (density-
based) topology optimization, shape optimization and level-
set methods. Despite their similarities, these methods orig-
inated independently and hence do not describe themselves
as part of a common approach within structural optimiza-
tion. Consequently there is no commonly used label for
these new methods. We propose the term feature-mapping,
which is defined as a method that uses a high-level geomet-
ric feature parameterization that is mapped on a non-body-
fitted (and typically fixed) mesh for analysis, see Sec. 2.4 for
the definition.

We note that density-based and level-set methods have
successfully incorporated techniques to introduce some ge-
ometric constraints that are driven by manufacturing con-
siderations (so-called ‘manufacturing constraints’), cf. for
instance the reviews by Liu and Ma (2016) and Liu et al
(2018b) and the references therein. However, these tech-
niques with low-level geometric parameterizations cannot
readily impose constraints on high-level geometric features,
and thus they are not considered in this review.

We recognize that some methods covered in this review
have possibilities that other methods do not. However, from
the perspective of numerical implementation, all methods
considered have two things in common: a high-level geo-
metric description and mapping to a non-body-fitted mesh
for analysis. Thus, the scope and focus of this review is
on the numerical implementation (e.g. the feature-mapping),
regardless of what the method is named, or whether it has
other possibilities—although these are discussed in detail in
Sec. 6 to Sec. 8. Furthermore, we also recognize that some
methods covered in this review could, or have been imple-
mented without using a non-body-fitted mesh, e.g. they use
the same high-level geometric description, but use a fitted
mesh or the boundary element method (for example). How-
ever, this review is from the perspective of numerical imple-
mentation and the inclusion of a method here does not ex-
clude it being implemented in different ways, or belonging
to a different categorization.

This review article is structured as follows. Sec. 2 pro-
vides some key definitions. Sec. 3 reviews methods for
mapping a single feature to a fixed-grid, including pseudo-
density and immersed-boundary methods. For pseudo-
density methods we also use a test case to investigate ma-
terial interpolation, boundary smoothing and numerical in-
tegration. Methods for combining features are reviewed in

Sec. 4. Some feature-mapping methods employ separation
constraints, which are reviewed in Sec. 5. We then give a
literature review of feature-mapping methods for: shape op-
timization (Sec. 6), hybrid methods (which combine feature-
mapping with free-form topology optimization, Sec. 7) and
topology optimization (Sec. 8). Finally, we discuss poten-
tial future research directions for feature-mapping methods
in Sec. 9.

2 Definitions and key components

2.1 High-level geometric features

In this paper, we define a geometric feature as a geomet-
ric solid with a high-level parameterization. A geometric
solid is here understood as a closed regular set of points,
i.e., a set that equals the closure of its interior (cf. Shapiro
(2002)). Physically, we consider the feature can either be a
solid component or a hole in a solid component. By high-
level parameters, we refer to those with a direct spatial di-
mension associated with the feature’s size, position or ori-
entation. Examples of these parameters are the radius of a
fillet, the thickness of a plate, or the location of a primitive
(e.g., a bar or circle). Notably, these high-level parameters
are the ones often employed to represent solids in CAD sys-
tems. The advantage of having these dimensions as direct
design variables is that they simplify enforcing the presence
of these features and to control their dimensions, as opposed
to the indirect and more verbose low-level representations
of solids, such as those that are pixel or voxel-based.

2.2 Design region, body-fitted mesh and fixed-grid

The design region corresponds to the sole region of space
where material can be placed. A mesh is a spatial partition
of the design region for the purpose of computing a nu-
merical approximation of the structural response. A body-
fitted mesh is one that conforms to the boundaries of the
structure for any given design, i.e., a mesh in which no ele-
ment boundary is cut by a structural boundary. While some
changes in the shape of the structure can be accommodated
by re-positioning the nodes in a body-fitted mesh, signifi-
cant shape changes and all topological changes require the
mesh to be entirely re-created in at least some portion of
the structure. These changes can be involved and computa-
tionally expensive, particularly for practical mesh sizes; and
in the case of quadrilateral and hexahedral element meshes,
this re-meshing cannot be robustly automated.

The opposite approach is that of non-body-fitted meshes,
in which the element boundaries need not follow the struc-
tural boundaries. This is the prevalent approach in density
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based topology optimization techniques, as it greatly facili-
tates accommodating design changes in the analysis. Limi-
tations or additional effort in interpreting design boundaries
are accepted in this approach. If the mesh remains fixed dur-
ing the optimization process, it is often referred to as a fixed-
grid. The term “mesh” is perhaps more adequate to describe
this spatial discretization in that it does not necessarily con-
vey that the partition is structured (as in, for example, a
“10× 10 grid”). However, the term “fixed-grid” is widely
used in the structural optimization and computational me-
chanics literature to refer to the same concept and hence we
adopt it here. Accordingly, when used alone (i.e., “grid” or
“mesh”), we use these terms interchangeably.

The majority of the works reviewed in this manuscript
use a fixed-grid approach (with the exception of some adap-
tive resolution methods referenced in Sec. 8.6), therefore we
henceforth only refer to feature-mapping to a fixed-grid.

2.3 Explicit and implicit geometric representations

For reasons of clarity we first define the terms explicit and
implicit with respect to the geometric representation of solid
objects. During the course of our review, we encountered
inconsistencies in the way these terms are used in the struc-
tural optimization community. In particular, the term explicit
seems to be used in several instances whenever the geomet-
ric representation employs high-level parameters, regardless
of the actual representation mechanism. An explicit repre-
sentation is one where points on the solid (or its boundary)
are generated by a rule, whereas an implicit representation
is one where a rule provides a test as to whether or not a
point belongs to the solid (Shapiro, 2002). For example, an
explicit representation of a disc of radius R centered at the
origin is given by f (t,r) = {r cos(t),r sin(t)}, where val-
ues of the parameters 0 ≤ t ≤ 2π and 0 ≤ r ≤ R generate
points within the disc. On the other hand, an implicit repre-
sentation of the same disc is given by f (x) = {1 if ‖x‖2 ≤
R,0 otherwise}.

Density-based and classical level-set methods are im-
plicit. In the discretized representation of density-based
methods, given a point x, the element constant pseudo-
density of the element that contains x determines if x is
outside or inside the solid. This point classification test is
not ‘sharp’, however, since in most density-based methods
the density is a relaxed continuous variable. Level-set meth-
ods are implicit by definition, since the value of the level-set
function at x determines if x is inside or outside the structure.
In level-set methods, a sharp representation of the boundary
is available for any design throughout the optimization. This
is also true when a diffuse boundary is used for the analy-
sis, as in ersatz material methods, see Sigmund and Maute
(2013). That free-form density and level-set methods use im-
plicit representations of the geometry is not fortuitous, since

a) implicit representations more easily accommodate topo-
logical changes than explicit ones (Shapiro, 2002), and b)
the mesh can be used to parameterize the implicit represen-
tations, which facilitates coupling with fixed-grid analysis
techniques, leading to efficient, robust methods to solve the
governing equation and compute the design sensitivities.

We consider level-set methods as those that directly rep-
resent the design using an implicit function, independent of
the design update approach, as discussed by van Dijk et al
(2013). It should be noted that some feature-mapping meth-
ods reviewed in this paper also utilize implicit functions
in their formulation. Thus, they could be viewed as level-
set methods. However, our aim is to emphasize the ability
of feature-mapping methods to control high-level geomet-
ric features, which is not a property of level-set methods in
general.

2.4 Feature-mapping

We define feature-mapping methods as those that capture
high-level geometric features in their design parameteriza-
tion and that map those features onto a non-body-fitted mesh
to perform the analysis. Note that the high-level geometric
description can be either explicit or implicit.

3 Geometry mapping to fixed-grid

There are currently two main approaches to mapping
high-level geometric features onto a fixed-grid for analy-
sis: pseudo-density based mapping and immersed-boundary
mapping, as illustrated in Fig. 1. Both approaches utilize a
fixed-grid for the analysis, thus circumventing the need for
re-meshing during optimization.

Generally speaking, the purpose of fixed-grid analysis
methods is to replace volume integrals evaluated over the
structural domain ω with integrals over a domain Ω ⊇ ω

that encompasses the structure∫
ω

f (x)dx =
∫

Ω

χω(x) f (x)dx, (1)

where χω is the characteristic or indicator function defined
as

χω(x) :=

{
1 if x ∈ ω

0 otherwise
(2)

and f is the domain integrand (for example, the virtual strain
energy density in elasticity).

Feature-mapping techniques that employ element-
constant pseudo-densities accomplish this by replacing the
corresponding element volume integral over Ωe as∫

Ωe

χω(x) f (x)dx≈ ρe

∫
Ωe

f (x)dx, (3)
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with the element-constant pseudo-density

ρe =
1
|Ωe|

∫
Ωe

χω(x). (4)

Further, ρe might be subject to an interpolation function µ

(see Sec. 3.1.1). Consequently, the element stiffness matrix
is: Ke = µ(ρe)K0

e , where K0
e is the ‘fully-solid’ element

matrix. This approach is also known as the ersatz material
approach. In feature-mapping methods, ρe depends explic-
itly and (ideally) smoothly on the high-level parameteriza-
tion of the geometric features. This mapping typically leads
to elements of intermediate pseudo-density near the feature
boundary, see Fig. 1(a) and Fig. 2. If the mapping is differ-
entiable, the chain rule can be readily used to obtain sensi-
tivities with respect to the high-level geometric parameters,
as we explain in Sec. 3.1.5.

The immersed-boundary approach employs techniques
widely used in finite element analysis, such as the extended
finite element method (XFEM), to capture sharp interfaces
on a fixed-grid. In other words, the element volume integrals
are evaluated as

∫
Ωe

χω(x) f (x)dx =
∫

Ωe∩ω

f (x)dx. (5)

These techniques have the advantage over pseudo-density
approaches that there are no ‘gray regions’, which require
some assumption on their material properties. For the same
reason, immersed-boundary methods (in principle) render
more accurate analysis solutions. These advantages come at
the expense of challenges on, e.g., numerical evaluation of
integrals in elements cut by the structure boundary and sen-
sitivity calculation. These challenges and proposed solutions
from the literature are discussed in Sec. 3.2.

In the remainder of this section some important aspects
of these approaches are discussed and examined using test
case examples, in relation to their application to feature-
mapping methods.

(a) (b)

Fig. 1: Fixed-grid mapping methods: a) pseudo-density, and
b) immersed-boundary based.

3.1 Element-constant pseudo-density

Feature-mapping techniques that use pseudo-densities es-
sentially differ in the way they compute ρe to be used in
(3).

An often used approach in earlier feature-mapping meth-
ods is to compute the element pseudo-density ρe as an ap-
proximation of the volume fraction, defined as the portion
of the element that intersects the feature, |ω ∩Ωe|/|Ωe|. By
making simplifying assumptions about the shape of the in-
tersected region, it is possible to use simple expressions to
approximate this volume fraction.

Fig. 2: Fixed-grid mapping in Garcı́a-Ruı́z and Steven
(1999) with I (inside), O (outside) and NIO (neither inside
nor outside) elements.

Garcı́a-Ruı́z and Steven (1999) is the earliest publica-
tion where the volume fraction approach on fixed-grids is
used in the context of feature-mapping methods, see Fig. 2.
Elements are classified as completely inside (I), completely
outside (O), or neither inside nor outside (NIO) the struc-
ture, i.e., if the element is cut by the boundary of the geo-
metric feature. I and O elements have pseudo-densities of 1
and ρmin, respectively (with 0 < ρmin� 1 a small bound to
prevent an ill-posed analysis). The pseudo-density of NIO
elements is computed as the volume fraction of the portion
of the element that intersects the feature (albeit few details
are provided as to how this fraction is computed), and there
is no further interpolation, i.e., µ(ρe) = ρe. See Sec. 3.1.1
and Sec. 3.1.2 for discussion on the limitations of the ele-
ment volume fraction approach.

As we will detail in Sec. 4, all pseudo-density techniques
employ an implicit geometric representation of the feature;
even when the high-level parametric representation is ex-
plicit (e.g. using a B-spline), it is first converted to an im-
plicit representation φω satisfying the properties


φω(x)> 0, x ∈ ω

φω(x) = 0, x ∈ ∂ω

φω(x)< 0, x /∈ ω,

(6)
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where x is a point in the fixed-grid design domain and ∂ω is
the feature boundary. Note that there is no convention in the
structural optimization literature on the meaning of the im-
plicit function sign. In (6), we define positive values as being
inside the feature. Also, the implicit function may be defined
as the signed-distance function, d(x), where the magnitude
is computed as the shortest distance from the point x to the
feature boundary ∂ω and the sign is the same as φω(x). The
distance can be computed by different approaches, which
are discussed in Sec. 3.1.7.

With the implicit function φω representing the feature,
the Heaviside function is:

H (φω(x)) =
{

1 if φω(x)≥ 0
0 if φω(x)< 0.

(7)

Clearly, H can directly replace χω in the left-hand side
(3). The volume fraction approach directly uses H. How-
ever, H (and χω ) is not differentiable, and so it is often re-
placed by a smooth approximation H̃, see Sec. 3.1.4 for a
detailed discussion of smooth boundary modeling functions.
One could consider the function values of H̃ as a continuous
pseudo-density field.

The element pseudo-density is then found by integrating
the Heaviside function, or continuous pseudo-density field,
over the element volume as

ρe =
1
|Ωe|

∫
Ωe

H̃(φω(x))dx, (8)

which may be evaluated directly, or approximated by numer-
ical integration in the form of a weighted sum

ρe =

Nip

∑
i

wi H̃(φω(xi)). (9)

The process of mapping conceptually consists of firstly gen-
erating the continuous pseudo-density field and then its in-
tegration. See Sec. 3.1.6 for more information on numerical
integration.

Thus, feature-mapping using pseudo-densities requires a
choice of several key ingredients: 1) the type of material in-
terpolation function, µ(ρe), 2) the form of the Heaviside (or
smooth boundary) function, H̃, 3) the form of the implicit
function, φω(x) (signed distance or otherwise) and, 4) the
integration method used to evaluate (8). These ingredients
are now discussed in detail, using test cases to highlight the
effect of certain choices.

3.1.1 Material interpretation of pseudo-density

Pseudo-density based feature-mapping approaches not only
inherit the advantages of density-based topology optimiza-
tion in terms of the easy analysis and sensitivity computa-
tion, but they also inherit one of its challenges, which is how
to interpret material properties for intermediate values of the

pseudo-density. This is dictated by the form of the function
µ(ρe) in (3).

In the pioneering work on topology optimization by
Bendsøe and Kikuchi (1988), the stiffness properties of
porous material, in between solid and void, were determined
by mathematical homogenization of a periodic structure.
This work showed that, due to its unfavorable stiffness-to-
porosity ratio, intermediate material was barely used. This
led to the famous power law approximation ρ p introduced
in Bendsøe (1989), now known as the Solid Isotropic Mate-
rial with Penalization (SIMP) model, to replace the homoge-
nization step, see also Rozvany et al (1992). In Bendsøe and
Sigmund (1999) it was shown that the power law

µPL(ρ) = ρ
p (10)

with exponent p = 3 never overestimates the maximal phys-
ical porosity-to-stiffness relationship of isotropic material
given by the upper Hashin-Shtrikman bounds, see Fig. 3.
Homogenization and the Hashin-Shtrikman bounds show
that the relative stiffness of porous isotropic material is be-
low its volume fraction. In Fig. 3 two further graphs are
given: the linear interpolation

µlin(ρ) = ρ (11)

corresponds to the case of interpreting the volume fraction
of an element covered by a geometry directly as pseudo-
density, and the RAMP (Rational Approximation of Mate-
rial Properties), Stolpe and Svanberg (2001)) interpolation

µRAMP(ρ) = ρ/(1+q(1−ρ)) (12)

is shown for q = 1 and discussed further below. Both lin-
ear and RAMP (with q = 1) interpolations are above the
upper Hashin-Shtrikman bounds and therefore overestimate
the stiffness of intermediate material in a non-physical
way (particularly the linear interpolation). Consequently, we
want to emphasize that the term penalization in SIMP does
not indicate a mathematical trick to prevent intermediate
material in the optimal design, but a realistic and physical
modeling of porosity to stiffness relationship.

3.1.2 Test problem to investigate the effect of intermediate
material

A test problem is introduced in Fig. 4 to investigate the effect
of intermediate material modeling, particularly in the con-
text of feature-mapping methods. The vertical bar is subject
to a continuous horizontal movement with position s. The
width of the bar is four elements. According to Fig. 2 we
assign a pseudo-density ρ = 1 for elements fully contained
in the bar (I), a very small value to elements fully outside
the bar (O), and for the partially covered elements (NIO) a
density value corresponding to the covered element volume
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Fig. 3: Different material interpolation functions, see
Sec. 3.1.1. Only the Hashin-Shtrikman bound and the com-
mon SIMP power law satisfy physical limits for an isotropic
material with intermediate density

fraction (which is the same as using the exact Heaviside in
(3)).

Note that if NIO elements along the left-hand boundary
of the bar have pseudo-density ρ , then NIO elements along
the right-hand boundary have a pseudo-density 1−ρ , since
the width of the bar is a multiple of the element size.

F
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(a) Continuous

F
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(b) Discrete

Fig. 4: H-shape test problem where the horizontal position
of the vertical bar is given by the variable s. The force vector
is applied on the upper left corner: (a) continuous setting; (b)
discretized problem.

The element pseudo-density ρe is then interpolated us-
ing the functions shown in Fig. 3. We refer to µ(ρ) as the
physical pseudo-density, since, according to (3), this is the

element-constant material property scaling in the finite el-
ement analysis. The upper Hashin-Shtrikman bounds are
given for a Poisson’s ratio of 0.3 as µ(ρ) = ρ/(3− 2ρ),
see Bendsøe and Sigmund (1999). To measure the grayness
of the boundary elements we introduce

g(µ(ρe)) = 4 µ(ρe)(1−µ(ρe)), (13)

where µ(ρe) = 0.5 results in the highest grayness value of
1.0.

The compliance for the test problem in Fig. 4, is eval-
uated for linear material interpolation (material stiffness di-
rect proportional to the covered element fraction) in Fig. 5(a)
and additionally for all material interpolation functions from
Fig. 3 in Fig. 5(c). The linear material interpolation shows
improved (lower) compliance when the bar edge is po-
sitioned between elements, giving a high grayness value,
see Fig. 5(a). Peaks of poorer (high) compliance are seen
when the bar is aligned with element edges, resulting in no
gray boundary elements. Using the upper Hashin-Shtrikman
bounds for material interpolation shows an increased com-
pliance when gray elements are involved, reflecting the inef-
ficient stiffness of porous structures in reality. This effect is
amplified for the classical SIMP power law. Realistic com-
pliance values are obtained only when the bar edges align
with element boundaries, as there are no intermediate, gray
densities.

These three material interpolation functions show that
the compliance is non-monotonic with respect to the bar po-
sition s. In an optimization problem, the linear interpolation
function will likely favor intermediate bar positions, while
the Hashin-Shtrikman bounds and the power law will likely
favor bar positions aligned to mesh elements - hence the
problem becomes somewhat mesh-dependent. We note that
this effect is caused only by the process of mapping the fea-
ture onto the fixed-grid using pseudo-densities, since anal-
ysis of this example with a conforming mesh would render
a monotonic compliance curve. Interestingly, the RAMP in-
terpolation function with parameter q = 1, which is µ(ρ) =

ρ

2−ρ
, exhibits an almost monotonic compliance with respect

to the design change for this test problem. The authors are
only aware of one work in the literature where this interpo-
lation function is used in feature-mapping methods (Zhang
et al, 2017a). However, RAMP is not introduced with the
purpose of avoiding mesh dependency, but to favor reintro-
duction of geometric features during optimization.

In addition to non-monotonicity, Fig. 5(c) reveals an-
other aspect of the feature-mapping: the compliance is non-
smooth, as it exhibits ‘kinks’ whenever the vertical bound-
aries of the moving bar coincide with element boundaries.
This non-smoothness is present even for the seemingly
smoother RAMP interpolation.



A review on feature-mapping methods for structural optimization 7

 300

 600

 900

 1200

 10  11  12  13  14  15  16
 0

 50

 100

bar position s in elements

compliance
grayness in %

(a) Linear

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1
p
h
y
s
c
ia

l 
g
ra

y
n
e
s
s
 g

(µ
(ρ

))
 +

 g
(µ

(1
-ρ

))

pseudo density ρ

linear
RAMP (q=1)

Hashin-Shtrikman
power law ρ

3

(b) Grayness

 0

 300

 600

 900

 1200

 1500

 0  2  4  6  8  10  12  14  16

bar position s in elements

power law ρ
3

Hashin Shtrikman
RAMP (q=1)

linear

(c) Compliance

Fig. 5: (a) Compliance and grayness for the benchmark from Fig. 4 with linear material interpolation (where stiffness is
scaled by the volume fraction covered by the bar); (b) sum of grayness values of the physical density g(µ(ρ)) (13) for left
and right edges of the vertical bar, corresponding to moving s by one element in Fig. 4 for different interpolation functions;
and (c) their corresponding structural compliance values. See Sec. 3.1.1 for a detailed discussion.

3.1.3 Principal boundary modeling approaches

Mapping a feature to a fixed analysis grid requires model-
ing the boundary when the design is not exactly aligned to
the mesh. However, as shown in the previous section, this
may lead to non-monotonicity, non-smoothness and mesh-
dependency. The results in Sec. 3.1.1 assume the boundary
is modelled by an exact Heaviside function (7). In this sec-
tion, we investigate the effect of using a smoothed Heavi-
side, or boundary smoothing, on the test problem.

First, we consider a 1D model of the bar cross-section in
the test case example of Fig. 4. This feature is modelled by
assigning a pseudo-density ρ = 1 to any point inside the fea-
ture and a very small value ρmin to points outside the feature
(similar to the characteristic function as defined in (2)). In
Fig. 6, three approaches to model the transition between ma-
terial and void across the boundary are shown. The first is an
exact Heaviside function, (7), as in Sec. 3.1.1; this function
is discontinuous, a fact we denote as the function being C−1.
The other functions are: a continuous, but non-differentiable
piecewise linear function, which is C0

H̃lin(d(x),h) :=


ρmin if d(x)<−h

(1−ρmin)
d(x)
2h + 1+ρmin

2 if |d(x)| ≤ h

1 if d(x)> h,

(14)

where h defines the size of the transition zone between mate-
rial and void; and a tanh-like function, which is C∞, as used
in Wein and Stingl (2018)

H̃tanh(d(x),β ) = (1−ρmin)

(
1− 1

eβ d(x)+1

)
+ρmin, (15)

where β is a parameter that controls the size of the tran-
sition zone. The function is also known as sigmoid func-
tion. Note that we have chosen the signed-distance function
(d(x)) as the implicit function in the above equations. For
further discussion on how the choice of implicit function af-
fects boundary mapping, see Sec. 3.1.4.

 0
 0  5  10  15  20  25

p
s
e

u
d

o
 d

e
n

s
it
y
 ρ

element spacing

Fig. 6: 1D boundary modeling (in magenta): exact Heavi-
side function (left), piecewise linear (14) (center) and tanh
smoothing (15) (right) and their element-constant pseudo-
density values (in green).

To obtain the element constant pseudo-densities for the
fixed analysis grid we evaluate (8). For simplicity, we as-
sume the linear material interpolation model from Fig. 3.
The corresponding element-constant pseudo-densities are
shown in Fig. 6. Again, the element grayness values depends
on the alignment of the boundary modeling function with re-
spect to the mesh (see Fig. 5(b)). However, the sum over all
elements attains a constant value for the piecewise linear and
tanh functions, see Fig. 12. Applying these functions to the
test problem, we get the compliance values shown in Fig. 7.
The result for the exact Heaviside function has already been
given in Fig. 5(c); the piecewise linear and tanh-functions
result in visually smooth compliance functions that are arti-
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ficially good (low). The smoothness results from the bound-
ary smoothing, while the artificially low compliance results
from the linear material interpolation.
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Fig. 7: Compliance values for the boundary modeling func-
tions in Fig. 6 applied to the test problem in Fig. 4. Due to
the linear density-to-stiffness interpolation the compliance
is underestimated, see Fig. 5(c). The compliance for a con-
forming mesh is plotted for reference.

Upon evaluation of (8), the resulting pseudo-density
ρe(s) and hence the compliance become C0 for the exact
Heaviside function, C1 for the piecewise linear function and
stays C∞ for the tanh function, with respect to a change in s.
For optimization we require C1, hence the piecewise linear
boundary modeling function is sufficient. For more discus-
sion on the effect of numerical integration, see Sec. 3.1.6.

3.1.4 Further smooth boundary modeling approaches

In this section, we review further smooth boundary model-
ing approaches used in feature-mapping methods. Typically
they are piecewise defined with a transitioning zone con-
trolled by the parameter h, and transition function σtrans as

H̃(φω(x),h) :=


ρmin if φω(x)<−h

σtrans(φω(x),h) if |φω(x)| ≤ h

1 if φω(x)> h.

(16)

For example, the transition function for the piecewise
linear boundary model (14) is

σlin = (1−ρmin)
φ(x)
2h

+
1+ρmin

2
. (17)

A common choice of transition function is based on a
spline representation as a cubic function with zero slope on

both sides of the transition zone, which is used by e.g. Zhang
et al (2016c) and Dunning (2018)

σpoly =
3(1−ρmin)

4

(
φ(x)

h
− φ(x)3

3h3

)
+

1+ρmin

2
. (18)

Another choice is based on a trigonometrical function:

σcos =
(1−ρmin)

2
cos
((

φ(x)
2h
− 1

2

)
π

)
+

1+ρmin

2
. (19)

Note that the tanh-like function (15) has no finite transition
zone.

In this section, the more general implicit function, φ(x),
is used instead of the signed-distance function, d(x), as not
all feature-mapping methods use a signed-distance function.
If a signed-distance function is used, then the magnitude of
the implicit function spatial gradient is one, ||∇d||= 1, and
the width of the transition zone between solid and void is de-
fined as: w = 2h. In Sec. 3.1.6 we also introduce the discrete
element transition zone wb. If ||∇φ ||< 1, the transition zone
will be stretched w > 2h. Conversely, if ||∇φ || > 1, then
the transition zone will be compressed w < 2h. This issue
is discussed and investigated by Zhou et al (2016), where
it is argued that a signed-distance function should be used
to avoid issues caused by a varying spatial gradient of φ

around the feature boundary, as this influences the accuracy
of the structural response and gradient computation. See also
Sec. 3.1.6. For further discussion on computing the signed-
distance function, see Sec. 3.1.7.

Sec. 3.1.2 shows the limitations of obtaining the element
pseudo-density ρe as volume fraction of a grid cell e covered
by a non-smoothed feature. A particular issue demonstrated
in Norato et al (2004) is that the volume fraction calcula-
tion becomes non-differentiable if a portion with non-zero
measure of the feature boundary coincides with the element
boundary—for instance, in the test problem of Fig. 4 when
the sides of the vertical bar align with element boundaries.
This problem can be readily circumvented by using a cir-
cular (2D) or spherical (3D) sampling window (instead of
the element itself) to compute the volume fraction, and by
linearizing the boundary of the feature within the sampling
window (cf. Norato et al (2015)). This leads to a closed for-
mula for the transition function, which is given for 2D as

σcirc =
1
π

cos−1
(
−d(x)

h

)
+

d(x)
h

√
1−
(

d(x)
h

)2
 (20)

within the framework of (16). However, note that numerical
integration in (8) is not used in this case, as (20) is derived
from an exact analytical integration of the volume fraction of
the linearized feature boundary within the circular sampling
window and thus only requires the signed-distance informa-
tion from the element center to the feature boundary.

A comparison of boundary smoothing functions is
shown in Fig. 8.
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Fig. 8: Smooth boundary modelling by polynomial (18) (al-
most identical to cos (19)) and volume fraction with circu-
lar sampling window (20) with transition zone 2h equals
one element width. The tanh-based function (15) is plotted
with β = 6.5. All functions are plotted assuming a signed-
distance function.

3.1.5 Sensitivity Analysis

One of the appealing features of the element pseudo-density
approach in feature-mapping methods is that, as in density-
based topology optimization, the computation of design sen-
sitivities is much simpler than for approaches that must com-
pute boundary sensitivities (as in some level-set methods).
Moreover, as we will show in this section, the computation
of sensitivities is closely connected to that of density-based
methods.

Sensitivity analysis in density-based topology optimiza-
tion is well established. It can be readily performed on the
discretized algebraic system resulting from a finite element
analysis for a wide range of functions, and even multi-
physics problems fit one of the known generalized deriva-
tions, see Bendsøe and Sigmund (2003).

We briefly review sensitivity analysis for standard
density-based topology optimization and consider the easy
static case, where the finite element system matrix K de-
pends explicitly on the vector of element pseudo-densities
ρρρ , the state solution u depends only implicitly on ρρρ and the
boundary conditions are assumed to be design-independent.
The system of linear equations arising from the finite ele-
ment discretization reads

K(ρρρ)u(ρρρ) = f. (21)

Using adjoint differentiation (e.g. Tröltzsch (2010)), the sen-
sitivity of a function J(ρρρ,u(ρρρ)) with respect to an element
pseudo-density can be written as

dJ
dρe

=
∂J
∂ρe

+λλλ (ρρρ)>
∂Ke

∂ρe
u(ρρρ). (22)

The partial derivative ∂J
∂ρe

is for many functions zero, ∂Ke
∂ρe

is
trivial to obtain and λλλ solves the adjoint problem

K(ρρρ)λλλ (ρρρ) =−
(

∂J
∂u

)>
. (23)

Notably, the adjoint solution λλλ is independent of the design
parameterization, because the pseudo-load in (23) does not
depend explicitly on the design variables. Consequently, the
adjoint solution needed for feature-mapping methods is the
same as the one obtained for other topology optimization
techniques.

Once the adjoint solution is computed, feature-mapping
methods with pseudo-densities only need to compute the
derivative of the boundary mapping function to obtain
derivatives of pseudo-densities with respect to the high-level
design parameters, s j. The final derivative is obtained by the
chain rule as

dJ
ds j

=
Ne

∑
e

{[
∂J
∂ρe

+
∂ µ

∂ρe
λλλ (ρρρ)>Ke u(ρρρ)

]
∂ρe

∂ s j

}
. (24)

Note that the boundary modeling function (16) is con-
stant outside of the transition region, hence ∂ H̃

∂ s j
= 0 in the

void region (i.e.., H̃ = ρmin) and the solid region (i.e..,
H̃ = 1). It thus follows from (9) that ∂ρe

∂ s j
is non-zero only

in regions with intermediate pseudo-density values, namely
in the gray regions around the boundaries of the structure,
see Fig. 9. The choice of width h of the smoothing functions
in Sec. 3.1.4 controls the amount of information collected
from (22).

Fig. 9: For a smoothly mapped shape (left) the compliance
sensitivity with respect to pseudo-density (22) is shown in
the center. The element-wise summand of the sensitivity
with respect to shape variables (24) is non-zero only where
the pseudo-density has intermediate values (right). From
Wein and Stingl (2018).

3.1.6 Numerical integration of the boundary mapping
function

In principle, density-based feature-mapping requires the
element-constant pseudo-density to be found by integrating
the smoothed Heaviside, or boundary mapping function (8).
In the test case example from Fig. 4, the vertical feature is
aligned with the fixed-grid. This effectively makes the vol-
ume integral of the boundary modeling function 1D. Thus,
analytical integration is reasonably straight-forward and is
used to generate the results above. However, analytical inte-
gration can become involved in two and three dimensions.
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Therefore, many methods compute the pseudo-density by
numerical integration as a weighted sum via (9).

The boundary modeling function (16) influences the
choice of quadrature rule and the number of sampling
points. We now examine the effect of the number of sam-
pling points when using Newton-Cotes formulae to evaluate
(9). Note that zero-degree quadrature corresponds to mid-
point integration (i.e., the value of the function at the ele-
ment center) and first-degree quadrature corresponds to the
trapezoidal rule (i.e., the average of function values at the
corner positions of the element). The number of integra-
tion points for the Newton-Cotes formula with degree deg
is Nip = (deg+1)dim.

The investigation uses the piecewise linear (14) and
polynomial (18) boundary modeling functions with transi-
tion zone w of one element. The tanh-like function (15) is
also included, with a similar maximal slope. The signed-
distance implicit function is used. It is clear that element-
wise numerical integration of the density function does not
increase the regularity with respect to the shape variables. In
particular the piecewise linear boundary modeling function
(17) stays non-continuous differentiable. Thus, this combi-
nation is not suitable for gradient based optimization, but we
feel it worth including in the discussion.

Fig. 10 clearly shows that, for the test problem, the
smoothing effect shown with analytical integration in Fig. 7
is lost when the number of sampling points in numerical in-
tegration is too low. Although, it should be noted that the
test case is selected to reveal extreme response.

When using numerical integration, the term ∂ρe
∂ s in (24)

is found by

∂ρe

∂ s
=

Nip

∑
i

wi
∂ H̃(xi)

∂ s
. (25)

We note that the multi-resolution approach in Liu et al
(2018a) effectively also performs higher order numerical in-
tegration. The test problem is now used to investigate the
effect of the number of sampling points in numerical inte-
gration on (25). We consider the integral of the first element
from the left and vary the bar position, see the upper row
in Fig. 11. We also introduce the element transition zone,
wρ , which is defined as the number of elements across the
boundary with intermediate density (ρmin < ρe < 1) multi-
plied by the element edge length, lel.

For the linear boundary modeling function (top row in
Fig. 11) with midpoint integration at x0, ρe(x0) varies from
1 to 0 with wρ = w. With trapezoidal rule, averaging the
boundary modeling function values at the left and right node
of element 0, ρe(x0) ‘sees’ the boundary a half element ear-
lier and a half element longer, and the element transition
zone is: wρ = w+ lel.

The polynomial function (18), shown in Fig. 8, has zero
slope at the end of its transition zone. Positioning the shape

in the center of the element, a variation of the position has
low impact when the boundary modeling function is only
sampled at the ends of the transition zone by trapezoidal
rule—see the center row in Fig. 11. The tanh-like function
(15) shows similar behavior, but less pronounced.

The transition zone parameter w for the smoothing func-
tion and number of sampling points in numerical integra-
tion are correlated. Enlarging the transition zone allows for
a lower degree of numerical integration. Generally the den-
sity transition zone is w≤ wρ ≤ w+ lel.

In the following, we extend the transition zone w from
one element to up to four elements. We use polynomial
smoothing with midpoint integration. The left figure in
Fig. 12 shows that already a doubled transition zone of two
elements results in a significantly more monotonous compli-
ance function over the parameter. However, due to the lin-
ear material interpolation, see Fig. 5, the compliance value
becomes artificially good due to a more blurred boundary.
The grayness measured by (13) is shown in the center im-
age, revealing again that midpoint integration with transi-
tion zone of one element is not sufficient. Note that a wider
grayness zone wρ allows to include more information from
the ersatz material sensitivity. Finally, we apply the RAMP
material interpolation, discussed in Sec. 3.1.2; the right fig-
ure in Fig. 12 shows that it helps compensate for the non-
smoothness resulting from inaccurate numerical integration.

3.1.7 Computing the signed distance

Feature-mapping methods often employ a signed-distance
implicit function when using pseudo-density mapping, as
this maintains the transition zone, as discussed in Sec. 3.1.4.

For some explicit geometry descriptions, the signed dis-
tance can be easily computed using an analytical expression.
For example, the distance to the edge of a circular, or spher-
ical feature can be directly computed from the feature pa-
rameters (center coordinates and radius). Features described
by offset surfaces (Norato et al, 2015; Zhang et al, 2016a),
whose boundary is defined as the set of all points equidistant
to a medial line segment or surface, readily provide direct
expressions for the signed distance in terms of the design
parameters. Also, for a design feature aligned to one princi-
pal axis, the signed distance is easily computed. We use this
approach in the test problem in Sec. 3.1.2, where the design
variable is simply the position of the left edge of the verti-
cal feature. Wein and Stingl (2018) use a simplified spline
model of horizontal or vertical features, where the distance
is obtained in the same way, see Fig. 22 (b), although the
distance in their model is not necessary the exact distance to
the feature.

To obtain the signed distance for more complex ex-
plicit geometry descriptions, a popular method is to com-
pute an equivalent implicit function, which is also a signed
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Fig. 10: We perform the similar experiment as in Fig. 7 but this time with numerical integration via low order closed Newton-
Cotes formulae. See Fig. 6. On the x-axis, the positional variable s is varied in element units, the y-axis shows the compliance.

distance (i.e. a signed-distance level-set function). This can
be achieved using schemes popular with level-set meth-
ods, such as the fast-marching method (Adalsteinsson and
Sethian, 1999), or iteratively solving a Hamilton-Jacobi
equation in pseudo-time t

∂d(x)
∂ t

+ sign(φ(x))(||∇d(x)||−1) = 0. (26)

The alternative is to directly compute the shortest distance
from a point to the boundary of the feature, as done by No-
rato (2018) when using explicit features defined by super-
shapes.

These methods can also be used to compute the signed
distance for other implicit geometry descriptions. However,
these methods can be computationally expensive, especially
if required each time the design changes. Thus, for implicit
geometry representations, Zhou et al (2016) propose us-
ing a first-order Taylor approximation of the signed-distance
function in the form of

d(x)≈ φ(x)
||∇φ(x)||

. (27)

3.2 XFEM approaches

The alternative to pseudo-density mapping is to use an
immersed-boundary method. The main challenge of map-
ping geometry onto a fixed-grid is that the boundary does
not align with the fixed-grid elements. Immersed-boundary
methods resolve this by introducing extra terms that model
discontinuities within elements, while preserving the sharp-
ness of the geometric interfaces. The eXtended Finite El-
ement Method (XFEM) is a popular immersed-boundary
approach that has been utilized by several feature-mapping
methods.

XFEM approaches model discontinuities by adding en-
richment functions and additional degrees of freedom to
nodes around the discontinuity. It was originally devel-
oped to model crack propagation without re-meshing (Be-
lytschko and Black, 1999; Moës et al, 1999). XFEM can
also model discontinuities between different materials, or
material and void, within an element. Thus, XFEM can be
used to model the material discontinuities created by map-
ping features onto a fixed-grid. The literature on XFEM is
vast (Belytschko et al, 2009; Yazid et al, 2009) and an in-
depth review is not the focus of this paper. Instead we fo-
cus on relevant methods and issues encountered when using
XFEM for feature-mapping methods.

There are two types of discontinuity that are consid-
ered in feature-mapping methods: material-void (or a strong
discontinuity) and material-material (or a weak discontinu-
ity). In general, three components are required to implement
an XFEM scheme for material discontinuity: 1) enrichment
strategy, 2) interface conditions, and 3) numerical integra-
tion.

3.2.1 The simple scheme

For the strong discontinuity case of a material-void inter-
face, a simple scheme may be used, whereby a Heaviside
enrichment is applied to the primary field (e.g. displacement
or temperature) within the element

u(x) =
n

∑
i=1

H(φ(x))Ni(x)ui, (28)

where u(x) is the physical field at point x within an element
with n nodes and shape functions Ni(x), and φ(x) and H(x)
are implicit and Heaviside functions, as defined in Sec. 3.1.

In this scenario, if the boundary is traction-free then
there are no interface conditions and no additional degrees
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Fig. 11: For the first element [0 : 1] we perform numerical in-
tegration (9) by closed Newton–Cotes in the left column (the
y-axis shows the integrated pseudo density ρ) and numeri-
cally evaluate the shape sensitivity in the right columns (the
y-axis shows ∂ρ

∂ s ). The x-axis gives the positional variable
s. The boundary modeling functions are linear (first row),
polynomial (second row) and tanh (last row).

of freedom are required (Villanueva and Maute, 2014). This
leads to a simple scheme, where element matrices are com-
puted by numerical integration over the material domain.
This is usually achieved by automatically sub-dividing the
material domain into triangular sub-cells (e.g. using Delau-
nay triangulation) and using quadrature rules over each sub-
cell. However, integration schemes without quadrature sub-
cells have also been used (Li et al, 2012).

3.2.2 Numerical aspects

The simple scheme for strong discontinuities has been uti-
lized in several feature-mapping methods (Li et al, 2012;
Zhou and Wang, 2013; Liu et al, 2014), its appeal being
simplicity of implementation and ability to capture the sharp
interface at the material-void boundary. However, there are
several issues, or pitfalls, that can be encountered when us-

ing the simple scheme. These issues are discussed in the fol-
lowing along with potential solutions from the literature. In
addition, the weak material-material discontinuity requires
a more complex treatment.

During topology optimization, situations could occur
where the design contains a material “island”, completely
surrounded by void material and disconnected from the main
structure. This causes the global system matrix to become
singular, leading to numerical problems in solving the dis-
cretized governing equations. This can occur in feature-
mapping methods if a solid component is mapped onto the
fixed-grid, but does not overlap any other part of the solid
region. A common remedy is to fill the void region with a
fictitious weak material, which has properties several orders
of magnitude lower than the real solid material (Wei et al,
2010). If the fictitious material is sufficiently weak, then the
simple Heaviside enrichment scheme can still be used, as the
error in ignoring the interface condition is small (Wei et al,
2010). An alternative was proposed by Makhija and Maute
(2014), where each node is attached to a fictitious point in
space by a soft spring. The advantages of this approach are
that elements completely in the void phase are not assem-
bled into the global matrix, reducing computational effort,
and it avoids spurious load transfer through the void regions.

The simple scheme is only valid if the smallest geomet-
ric detail is larger than 2 elements (Villanueva and Maute,
2014). However, situations may occur during optimization
when this is not true, potentially leading to interpolation
error of the geometry and non-physical coupling between
disconnected material phases (when the width of void fea-
ture is smaller than an element—see Fig. 13). This issue
was demonstrated by Makhija and Maute (2014) using a 1D
bar example, where a non-zero reaction force was obtained
when a gap in the bar was less than the element edge length.
To address this issue, Makhija and Maute (2014) proposed
a generalized Heaviside enrichment strategy, based on the
work of Hansbo and Hansbo (2004) and Terada et al (2003),
which captures the physical discontinuity by adding enrich-
ment functions and additional degrees of freedom, depend-
ing on the order of discontinuity around a node.

It should be noted that the issue of non-physical cou-
pling within an element is more common in free-form topol-
ogy optimization methods, compared with feature-mapping
methods, as these methods have some high-level control
of the geometry. However, non-physical coupling can still
occur in feature-mapping methods if solid components are
close, such that the gap between them is less than the size of
an element, as shown in Fig. 13. This type of non-physical
coupling can also occur in pseudo-density mapping meth-
ods. However, a similar treatment has not been developed,
possibly because pseudo-density methods do not aim to cre-
ate a sharp interface in the analysis and therefore, this nu-
merical artifact is not seen as an issue.
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Fig. 12: We vary the polynomial smoothing (center in Fig. 10) by increasing the transition zone w = 2h from one to four
elements, each time with midpoint integration. In the right figure RAMP interpolation (12) is applied. On the x-axis, the
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Fig. 13: Potential non-physical coupling in XFEM.

Modeling the weak discontinuity created by a material-
material interface requires a more advanced XFEM scheme.
Several authors have used an enrichment function proposed
by Moës et al (2003), which is a C0-continuous enrich-
ment function that inherently satisfies continuity in the pri-
mal solution (e.g. displacement, temperature) at an interface
with a weak discontinuity in material properties. Alterna-
tively, the generalized Heaviside enrichment strategy pro-
posed by Makhija and Maute (2014) can be used to model
both strong and weak discontinuities. However, an addi-
tional constraint is required to enforce continuity across the
interface for a weak discontinuity. This can be achieved
using a scheme such as the stabilized Lagrange multiplier
method, or Nitsche’s method.

A further issue that affects both simple and more ad-
vanced XFEM schemes is the ill-conditioning of global sys-
tem matrices due to very small integration regions, com-
pared to the element size. This leads to convergence issues
for nonlinear problems and iterative linear solvers (Lang
et al, 2014). A standard solution is to use a preconditioner
to improve the condition number. For example, Lang et al
(2014) introduced a simple and efficient geometric precon-
ditioner for the generalized Heaviside enrichment scheme.
It only requires knowledge of nodal basis functions and the
interface geometry, so it can be computed before assembling

the system matrix. This method proved effective at reducing
the condition number, while maintaining accuracy.

Small integration regions can also affect the accuracy
of results at the interface. For example, Van Miegroet and
Duysinx (2007) showed large errors in stress when the inte-
gration region of an element on the solid-void boundary was
small. They discussed several possible remedies, including:
removing elements with small solid parts, moving the clos-
est mesh node or moving the boundary to eliminate the small
area, post-processing to remove stresses in elements with
small solid areas, or computing stresses using a smoothing
scheme.

Finally, Sharma et al (2017) showed that the general-
ized Heaviside enrichment strategy proposed by Makhija
and Maute (2014) produces a smooth, non-oscillatory re-
sponse function as the design changes. Thus, XFEM meth-
ods do not appear to produce a non-smooth response func-
tion when modeling the boundary using a sharp step func-
tion, in contrast to some of the pseudo-density material inter-
polation schemes (as shown in Sec. 3.1.1). However, it was
also shown that the shape sensitivity for the XFEM scheme
can be oscillatory and that oscillations decreased with mesh
refinement. Thus, it was concluded that the oscillations were
mainly caused by the accuracy of mapping the geometry to
the fixed-grid elements for numerical integration. Note that
pseudo-density schemes can also produce a smooth, non-
oscillatory response function, if implemented correctly (see
discussion in Sec. 3.1).

3.2.3 Sensitivity analysis

Sensitivity analysis for XFEM is generally more difficult
compared with the pseudo-density approach. This is mainly
because XFEM uses a more complex procedure to compute
element matrices that involves numerical integration over
material sub-domains. In the literature there are three main
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approaches to computing sensitivities when using XFEM in
optimization.

The first approach is to differentiate, then discretize.
This avoids computing derivatives of the change in integra-
tion regions as the interface moves, as sensitivities are de-
rived from the continuum equations. A common example of
this approach is to use shape sensitivities (Zhou and Wang,
2013; Liu et al, 2014; Wang et al, 2014b). However, it is
well-known that convergence issues may occur due to the
discretization error and often some form of regularization or
smoothing is required (van Dijk et al, 2013; Liu et al, 2014).

The second approach is to discretize, then differentiate,
but with a semi-analytical approach. The idea is to com-
pute the derivative of the element matrices with respect
to the design variables using the finite difference method.
This derivative term is then inserted into the analytically de-
rived sensitivity formula. Thus, sensitivities are consistent
with the numerical discretization, but the semi-analytical ap-
proach avoids explicitly computing derivatives with respect
to changes in the integration sub-domains. The finite dif-
ference approach is reasonably efficient, as it is only per-
formed for elements that contain an interface and does not
require assembling and solving a system of equations. This
approach has proved effective and has been used in sev-
eral feature-mapping methods (Van Miegroet and Duysinx,
2007; Sharma et al, 2017).

However, the finite difference scheme should ensure that
the design variable perturbation does not cause a change in
element status, e.g. an element containing a material-void
interface does not become either fully void, or fully solid.
This causes problems in the derivative computation as it
changes the number of degrees of freedom (Zhang et al,
2012; Noël et al, 2016). Several methods have been pro-
posed to avoid this issue. One method is to perform both
forward and backward finite differences and check if either
cause a status change. If neither cause a change, then the
central difference is used. However, if the forward (or back-
ward) difference causes a status change then only the back-
ward (or forward) difference is used. Another method is to
perturb the interface such that the finite difference perturba-
tion cannot cause a status change (Sharma et al, 2017). Al-
ternatively, the finite difference perturbation step can be re-
duced to a magnitude that avoids a status change, although if
the step magnitude is too small, numerical round-off errors
can occur.

The third approach is to discretize first and then differ-
entiate using a full analytical approach, without finite differ-
encing. The challenge is to compute the analytical derivative
for the change in the integration sub-domains with respect to
the design variables. Zhang et al (2012) developed an ana-
lytical derivative for a material-material interface, when the
geometry is represented by nodal implicit function values.
Noël et al (2016) and Najafi et al (2015) proposed schemes

utilizing a velocity field to efficiently compute the analyt-
ical derivatives. These fully analytical schemes are more
complex and difficult to implement than the semi-analytical
scheme, but are more efficient and avoid the status change
issue.

4 Combination of features

The foregoing section describes the approaches that exist-
ing techniques use to map individual geometric features onto
the fixed analysis mesh. To be able to modify the topology
of the structure, it is also necessary to combine these fea-
tures. This is one of the key ingredients of performing topol-
ogy optimization with high-level geometric features, and has
received considerable attention in recent years. In this sec-
tion we specifically consider the combination of closed reg-
ular sets (solids or holes). Unless otherwise stated and for
brevity, whenever we refer to combination of solids we also
refer to combination of holes.

The combination of solids in all approaches corre-
sponds in effect to Boolean operations between solids. Just
like other aspects in this review, it is possible to catego-
rize approaches that combine solids in different ways. The
main criterion we use to categorize combination methods is
whether the combination occurs before or after mapping to
the fixed analysis mesh.

4.1 Smooth combination functions

Many feature-mapping methods utilize smooth combination
functions so that derivatives with respect to the high-level
geometric parameters are continuous. For example, the non-
differentiable Boolean union of multiple solids represented
by implicit functions fi corresponds to their maximum, i.e.,⋃

i fi = maxi( fi(x)) (Shapiro, 2002). Common choices for
differentiable smooth approximations m̃axi( fi(x)) include
the well-known Kreisselmeier–Steinhauser (K-S) function

m̃ax
i

KS( fi) := 1
p ln

N

∑
i
(exp(p fi)) (29)

and the p-norm

m̃ax
i

p( fi) :=

(
N

∑
i

f p
i

) 1
p

, (30)

where N is the number of values and p is a parameter that
controls the sharpness and accuracy of the approximation
(a larger p results in a more accurate estimate of the true
maximum and a sharper function). The work by Coniglio
et al (2019) makes a comparison of several smooth maxi-
mum functions for the combination of geometric features.
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Another type of functions used to perform Boolean
operations is R-functions (cf., Shapiro (2007)). The R-
conjunction corresponds to the logical AND, whereas the
R-disjunction corresponds to logical OR. Compositions of
these two fundamental R-functions can be used to con-
struct any Boolean expression. There are several forms of
R-functions; for example, Chen et al (2007) use the follow-
ing definition

f1∩ f2 := f1 + f2−
√

f 2
1 + f 2

2 ,

f1∪ f2 := f1 + f2 +
√

f 2
1 + f 2

2 ,
(31)

which is differentiable everywhere except at f1 = f2 = 0. It
can be seen that f1∩ f2 is positive if and only if both f1 and
f2 are positive. Whereas, f1 ∪ f2 is positive if either f1 or
f2 is positive. For example, assume φ1 and φ2 are implicit
functions for two solid features and φv the implicit function
of a void feature. The combined implicit function can then
be defined as

φ(x) := (φ1(x)∪φ2(x))∩φv(x). (32)

4.2 Combine-then-map approaches

Since a geometric representation of the solids is available
that is independent of the analysis mesh, a natural approach
is to combine the solids directly using their geometric repre-
sentation, and then map the combined solid onto the analysis
mesh, as described in Sec. 3.

4.2.1 Implicit geometric representations

As mentioned in the previous section, the Boolean union or
intersection of features represented by implicit functions can
be attained by computing their maximum or minimum, re-
spectively. This is a strategy that has been used to combine
both solids (Cheng et al, 2006; Zhou and Wang, 2013; Guo
et al, 2014; Zhang et al, 2016c) and holes (Cheng et al, 2006;
Chen et al, 2007; Mei et al, 2008; Wang et al, 2012; Zhang
et al, 2017b).

This combination approach is illustrated in Fig. 14,
where three rectangular bars are modeled using hyperel-
lipse implicit functions (as used in, e.g., Guo et al (2014);
Zhang et al (2016c)). Fig. 14(b)–(d) show contour plots of
φi for each of the three bars. All contour and fringe plots
in this section are produced using a grid of 48× 48 square
elements. The Boolean union of the implicit functions for
these three bars, as given by the true maximum function, is
shown in Fig. 14(e). Note that smooth maximum functions
could also be used. The combined implicit function is sub-
sequently mapped onto the analysis mesh using a pseudo-
density or immersed-boundary approach, as discussed in

Sec. 3. A combined implicit function subject to a smooth
Heaviside (16) is shown in Fig. 14(f) with the element con-
stant pseudo-densities shown in Fig. 14(g) (which were ob-
tained by the method used by Zhang et al (2016c)).

(a) (b) (c) (d)

(e)(f)

(g)

Fig. 14: Combination by union of implicit functions-then-
mapping: (a) rectangular bars modeled with hyperellipses;
contour plots of (b)–(d) implicit functions φi, (e) union
of implicit functions (Φ) via maximum function, and (f)
smoothed Heaviside of Φ ; and (g) pseudo-density used for
analysis. Thick red line corresponds to zero level set for im-
plicit functions, 0.5 level set for Heaviside (here and in fol-
lowing figures).

This approach is notable for the simplicity of the
Boolean operations. The simplicity is inherited from the im-
plicit geometric representation, since in general it is much
easier to perform Boolean operations with implicit, rather
than with explicit geometric representations. Also, this com-
bination approach is readily extended to 3-dimensional
problems, e.g. (Liu and Ma, 2015; Zhang et al, 2016c).

Topological changes using this combination approach
occur in one of three ways: (1) as solids move and over-
lap, the connectivity of the structure may change (holes may
appear or disappear); (2) if a solid is engulfed inside another
solid, it has no effect in the analysis due to the maximum
operation, and thus the engulfed solid is effectively removed
from the design; and (3) if one or more dimensions of a solid
become sufficiently small, the effect of the solid on the anal-
ysis is negligible.

4.2.2 Explicit geometric representations

When the original geometric representation is explicit, two
approaches have been employed to combine solids. The first
approach consists of performing the Boolean union directly
on the explicit representation, and then converting the re-
sulting design into an implicit geometric representation be-
fore mapping to the analysis mesh. This strategy is illus-
trated in Fig. 15, where the three rectangles of the previous
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example are modeled using cubic B-splines with eight con-
trol points per side, see Fig. 15(a). A combination technique
used in this case (Lee et al, 2007; Seo et al, 2010; Zhang
et al, 2017d; Gai et al, 2020) consists of deleting from the
current design those control points that lie in the overlapping
region between the bars, so that the union of the primitives
is given by a single B-spline made of the remaining control
points, as shown in Fig. 15(b). In Gai et al (2020), cusps aris-
ing from merged holes are removed by replacing the merged
hole with the curve formed by the trajectory followed by the
touching points of a rolling circle. These works all consider
B-spline-shaped holes; however, here we consider solid rect-
angles for consistency with the examples given for the other
strategies.

After combining the solids, the explicit representation is
transformed to an implicit representation, namely by com-
puting the signed distance to the combined B-spline, as
shown in Fig. 15(c). An exact or smooth Heaviside approxi-
mation, such as the one presented in the preceding section, is
then applied to the signed-distance function, at which point
the mapping to the analysis can be completed in the differ-
ent ways discussed in Sec. 3, i.e. using pseudo-densities or
an immersed-boundary method.

0 0.2 0.4 0.6 0.8 1

(a) (b)

(c) (d) (e)

Fig. 15: Combination by union of explicit functions-then-
mapping: (a) rectangular bars modeled with cubic B-splines,
(b) union by deleting B-spline control points in the over-
lapping region, (c) signed-distance function of combined B-
spline, (d) smoothed Heaviside of signed-distance function,
and (e) pseudo-density used for analysis.

This combination approach presents several challenges.
In the particular case of B-splines, it is possible for the con-
trol points to be placed such that the B-spline can present
self-intersections, which requires placing bounds on the po-
sitions of the control points (Lee et al, 2007), or employ-
ing special parameterizations of the B-spline (Zhang et al,
2017d). In both cases, it is necessary to determine the cor-

rect order of control points in the combined B-spline to gen-
erate the correct shape. Another, perhaps more pernicious
challenge, is the potential lack of differentiability introduced
by the control-point deletion approach. Suppose two solids
overlap, and a control point of one of them lies exactly on the
boundary of the other. Small positive and negative rotations
of any of the primitives will cause that control point to be
deleted or retained in the combined B-spline. Therefore, the
combined B-spline may look appreciably different in both
cases, which means the structural response will not be differ-
entiable with respect to the orientation angle of either solid.
To obtain an accurate union of the B-splines it is of course
possible to introduce control points at the intersections with
multiple knots to capture the sharp corners. However, this
introduces additional challenges in the optimization, as the
number of design variables (i.e., the positions of the control
points) would increase with the additional control points. A
third challenge lies in the computational cost incurred in
translating the explicit representation to an implicit repre-
sentation, e.g., the computation of the signed-distance field.
Although there exist computational strategies to do this ef-
ficiently (see Sec. 3.1.7), it still adds computational cost
compared with directly using implicit geometric represen-
tations. Finally, while it is possible to perform Boolean op-
erations of explicit representations of 3-dimensional solids,
the aforementioned challenges are more difficult to solve for
3-dimensional problems.

The second strategy to combine features with explicit
representations is to first convert the explicit representation
of each solid to an implicit representation, and then perform
the combination of the individual implicit representations as
in the previous section (Zhang et al, 2017e). This strategy is
depicted in Fig. 16, where each B-spline is first converted to
an implicit representation (a signed-distance function), and
then the combination of bars is achieved via the true maxi-
mum —in the present case— of the implicit functions. This
approach circumvents the problems arising from the dele-
tion of control points and greatly facilitates the combination
of primitives. However, there is additional computational
cost, as a separate signed-distance function must be com-
puted for each solid. This strategy is arguably similar to the
map-then-combine approach described in the next section,
because in this method the individual implicit functions are
computed on the fixed-grid prior to the combination.

4.3 Map-then-combine approaches

The alternative to the combination strategies described in the
previous section, is to first map each individual solid to the
analysis mesh and then combine the ensuing mapped vari-
ables, such as pseudo-densities, Heaviside function values,
or even material property values. The combination could be
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Fig. 16: Combination by conversion of explicit to implicit
representation-then-mapping: (a) rectangular bars modeled
with cubic B-splines, (b)–(d) signed distance of individ-
ual bars, (e) union of implicit signed-distance functions
via maximum function, (f) smoothed Heaviside of implicit
union, and (e) pseudo-density used for analysis.

done element-wise (e.g. element constant pseudo-densities),
or at integration points (e.g. when using (9)).

All existing map-then-combine approaches require an
implicit geometry description to achieve the mapping. Thus,
map-then-combine approaches that start with an explicit ge-
ometry description first convert each feature to an implicit
function, before mapping the individual implicit functions
to the analysis grid. This is the same as the first step in
Fig. 16(a-d), where the geometry of each solid is described
by a B-spline, which are then converted to implicit signed-
distance functions. Therefore, the remainder of this section
describes map-then-combine methods starting from an im-
plicit geometry description.

4.3.1 Property interpolation for hybrid approaches

Some hybrid approaches described in Sec. 7 combine a
free pseudo-density field (as in density-based methods) with
features using an extended material interpolation function,
which interpolates between the solid-void pseudo-density
field and solid features, e.g. Qian and Ananthasuresh (2004);
Wang et al (2014b), or holes, e.g. Kang and Wang (2013).
For example, if Es is the Young’s modulus of the solid phase
of the free pseudo-density field ρ , and Ec modulus of the
embedded solid component (assuming isotropic materials),
an interpolation of the Young’s modulus may be given by
(cf., Wang et al (2014b))

E(x) = H̃(φ(x))Ec +
[
1− H̃(φ(x))

]
[ρ p(x)]Es, (33)

where φ is an implicit representation of the embedded solid
primitive, H̃ is a smooth approximation of the Heaviside
function and p is the SIMP penalization power. Note that
in (33), x is usually the element center, which is equivalent

to mid-point integration (see Sec. 3.1.6). Further approaches
are discussed in Sec. 7.1.

4.3.2 Combining Heaviside functions

Combination of multiple features can be achieved by com-
bining Heaviside function values of each mapped feature
using a maximum function. The single, combined Heavi-
side function can then be used to compute element pseudo-
densities, or in immersed-boundary methods (as discussed
in Sec. 3). This approach was used by Wein and Stingl
(2018) to obtain element pseudo-densities by numerical in-
tegration via

ρe =

Nip

∑
j

w j m̃ax
i

H̃i(x), (34)

where the combination is done at the integration points. In
(34) a smooth maximum and smooth Heaviside are used,
thus making sensitivity analysis straight-forward.

It is interesting to note that in the case of midpoint inte-
gration and using (9), (34) simplifies to

ρe = m̃ax
i

ρ
i
e, (35)

which is effectively the same as combining mapped ele-
ment pseudo-density values (see Sec. 4.3.3). This highlights
the close connection between the Heaviside function and
pseudo-densities in feature-mapping.

4.3.3 Combining pseudo-density values

Another map-then-combine approach is to compute element
pseudo-density values with respect to each feature, as de-
scribed in Sec. 3.1, and then perform the combination using
a true or smooth maximum function. This approach also al-
lows for an additional control of the combined features, by
introducing variables that penalize the mapped densities of
each solid feature separately. These are called size variables,
which are penalized in the spirit of SIMP, so that a zero value
indicates the solid has no effect on the analysis and thus can
be removed from the design, whereas a value of unity indi-
cates the solid must be retained (Norato et al, 2015; Zhang
et al, 2016a).

Without consideration for the aforementioned penalized
size variable (that is, assuming all bars have a size variable
of unity), the pseudo-density map-then-combine strategy is
depicted in Fig. 17. Fig. 17(a) shows the three bars modeled
as hyperellipses as before; Fig. 17(b)–(d) are the signed-
distance fields corresponding to these surfaces; Fig. 17(e)–
(g) show the mapped pseudo-densities for each bar, com-
puted at each element of the mesh using (20); and Fig. 17(h)
shows the Boolean union of bars, obtained using a smooth
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(b) (c) (d)

(e) (f) (g)(h)

(a)

Fig. 17: Map-then-combine by union of offset surfaces: (a)
bars modeled with offset surfaces (design variables are lo-
cations of endpoints of bars medial axes), (b)–(d) signed-
distance field for each bar, computed directly from design
parameters, (e)–(g) corresponding mapped pseudo-density
for each bar, and (h) union of mapped densities using a
smooth approximation of the maximum.

approximation of the maximum function (here the p-norm
(30)).

The combination of solids when a penalized size vari-
able is used is as follows. First, element pseudo-densities
are computed. The effective density at element e for bar i is
subsequently computed as

ρ̂
i
e = (α i)p

ρ
i
e, (36)

where α(i) is the size variable corresponding to solid i and
p is the penalization power. We note that if α(i) = 0, then
the effective density at element e for bar i is zero, hence this
solid has no effect on the material properties at element e;
this is true for every element for which ρe 6= 0, and so mak-
ing the size variable zero effectively removes the solid from
the design. The combination of the solids is subsequently
obtained via, for example, a smooth maximum of the effec-
tive densities as

ρe = m̃ax
i

ρ̂
i
e. (37)

Fig. 18 shows the combined density after the union of all
three bars when the diagonal bar has different values of its
size variable α (while the other two bars have a size variable
of unity). Clearly, as its size variable nears zero, the effect
of the diagonal bar on the combined density vanishes.

Topological changes using this approach can occur in
different ways. As in the methods of Sec. 4.2, when solids
‘move’ in the optimization, holes can be created or disap-
pear. We also note that some approaches (e.g., Norato et al
(2015); Zhang et al (2016a)) have the limitation that a solid
cannot be removed by collapsing its dimensions, because
for the sensitivities to be always well defined, it is necessary

Fig. 18: Three-bar example, where the diagonal bar has a
size variable value α of (a) 1, (b) 0.8, (c) 0.6, (d) 0.1, and (e)
0. A power value of p = 3 is used in (36) in all cases.

that the size of the sample window used to compute the vol-
ume fraction is smaller than the dimensions of the solid. The
other removal mechanism, as aforementioned, is to make the
size variable of the solid zero.

4.4 Local minima

The combination of geometric features may lead to unfa-
vorable local minima. To illustrate this, we consider the ex-
ample shown in Fig. 19. Four bars are modelled with hy-
perellipses. Three of the bars are fixed, and another one is
moved by changing h. For h ∈ {0,L/2,L} the moving bar
entirely overlaps with one of the fixed bars. The design re-
gion is meshed with square bilinear elements with a rela-
tively fine mesh. A binary pseudo-density mapping is used,
where the element pseudo-density is either ρmin or 1 depend-
ing on whether the element centroid is outside or inside of
a bar, respectively. The combination is performed using a
map-then-combine approach with a true maximum of the
pseudo-density values.

Fig. 19 shows the compliance as a function of h/L.
The actual magnitude of the compliance is not important;
what is important is the presence of two distinct local min-
ima, one of which (h/L ≈ 0.43) is clearly worse than the
other (h/L≈ 0.79). Therefore, if a gradient-based optimizer
is used and the initial design has h < L/2, the optimizer
will most likely converge to the poor local minimum. Thus,
the more compact design representation used by feature-
mapping methods (as opposed to the verbose representa-
tion used by density-based and level-set methods) is more
prone to falling into unfavorable local minima depending on
the initial design. Although all topology optimization tech-
niques are dependent on the initial design (e.g., as shown
by Yan et al (2018) for density-based topology optimiza-
tion of heat conduction structures), this dependency is more
pronounced in feature-mapping techniques, as noted in No-
rato et al (2015); Zhang et al (2016a). We note that this has
nothing to do with the particular feature-mapping technique
used, but with the more restrictive geometric representation.
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Fig. 19: Effect of combination on local minima. The crosses
mark the locations of the local minima.

5 Separation constraints

Separation constraints are high-level geometric constraints
that specify a minimum distance between solid components
(or holes). When the minimum distance is set to zero, sep-
aration constraints are often called non-overlap constraints,
as component overlap is prevented. These constraints can
also be used to prevent components from leaving the design
domain. Several techniques have been proposed to enforce
this type of constraint in feature-mapping methods.

The earliest method is the finite circle method (FCM).
The main idea is to approximate the shape of each compo-
nent with a number of circles, Fig. 20. Separation constraints
can then be posed as simple geometric constraints on the
minimum distance between circle centres. Qian and Anan-
thasuresh (2004) used a single circle for each component
and Zhang and Zhu (2006) extended the idea to use multiple
circles to approximate the shape of each component.

The main benefits of FCM are the simple definition
of the constraints, which are continuous and differentiable.
However, if there is a large number of components, then a
large number of separation constraints is required, although
most are usually inactive at the optimum. For example, even
if only one circle is used to approximate each component,

Fig. 20: Finite circle method.

then N(N−1)/2 constraints are required for N components.
Also, component shapes are only approximated by circles,
so separation constraints may not be able to reach their lower
bound in some situations (due to circles covering a larger
volume than the actual component). If high accuracy in the
separation constraint is required, then more circles can be
used for each component, which adds more constraints. A
large number of constraints may affect the efficiency of the
optimization (Zhang et al, 2011), although the number of
constraints can be reduced by using different sized circles.
Xia et al (2012b) also showed that to prevent components
leaving the design domain using FCM, only a small circle at
each corner of the component is required.

To use FCM more efficiently with a large number of
components and constraints, Gao et al (2015) used con-
straint aggregation to combine all finite circle separation
constraints into a single constraint function. An adaptive
Kreisselmeier–Steinhauser (K-S) function is used, where the
aggregation parameter is automatically determined to ensure
the accuracy of the aggregation function. Another approach
was proposed by Zhu et al (2017) where the finite circle sep-
aration constraints are added to the objective using a combi-
nation of exterior and interior penalty methods.

A further limitation of the standard FCM is that it does
not automatically adapt to components that are changing in
size or shape. This is a challenging problem if the constraints
are to remain continuous and differentiable throughout the
optimization. However, Zhang et al (2012) showed how this
can be achieved for elliptically shaped components by link-
ing the location and radius of each circle to the parameters
of the elliptical shape.

An alternative to the FCM, which is suitable for feature-
mapping methods where solid and/or void features are rep-
resented by an implicit function, was first proposed in the
master’s thesis of Shan (2008) and later refined by Kang
and Wang (2013). The idea is to compare the integral of
the solid region represented by the combination of implicit
functions with the known volume of solid components. (The
same idea also applies to void components). If the integral is
less than the known volume, then there must be some over-
lap of components, or part of a component has left the de-
sign domain, Fig. 21. This observation is used to formulate
a single, differentiable constraint that prevents overlap for
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arbitrary shaped components and also prevents components
leaving the design domain.

1 2

Solid	volume	=	volume	1	+	volume	2

1
2

Solid	volume	< volume	1	+	volume	2

Fig. 21: Integral method for preventing component overlap.

The integral method has also been extended for min-
imum distance separation constraints (Zhang et al, 2015).
To achieve this, each component is represented by a signed-
distance implicit function. The signed-distance information
is used to construct “virtual” components, whose boundaries
are offset by half the minimum distance constraint value.
The original separation constraint formulation is then ap-
plied to the “virtual” components to ensure a minimum dis-
tance between components.

Zhang et al (2015) introduced an approach using the
structural skeleton, which is also suitable for methods where
features are represented by implicit functions. The struc-
tural skeleton is defined as the set of interior points that
have at least two closest boundary points (this is also called
the medial axis). To enforce a minimum distance separa-
tion constraint between two components, a signed-distance
function is constructed for the combined implicit function
of both components. A skeleton is then constructed to iden-
tify all points that are equidistant from both components.
Finally, an explicit constraint is imposed on the minimum
signed-distance value of all points belonging to the skeleton.
This method can also be used to set maximum separation
constraints. However, it requires construction of the signed-
distance functions in each iteration and the number of con-
straints is linked to the number of components. Furthermore,
the formulation is not differentiable and derivatives are ap-
proximated using finite differences and by assuming that the
skeleton does not change when components move.

For methods based on pseudo-densities, Zhang and No-
rato (2017) proposed a simple method using a map-then-
combine approach. First the pseudo-densities for each com-

ponent are mapped onto the fixed-grid. These are then com-
bined using simple summation to create an auxiliary pseudo-
density field. If any density value in the auxiliary field is
greater than 1, then there must be some component over-
lap. Thus, an aggregated constraint function can be defined
that ensures the maximum value of the auxiliary pseudo-
density field is unity and hence prevent component over-
lap. This idea can easily be extended to provide a minimum
separation constraint, by uniformly enlarging the size of the
components by half the minimum separation distance before
computing the auxiliary pseudo-density field.

The FCM- and integral-type methods for preventing
component overlap can also be used to prevent components
leaving the design domain. The integral approach achieves
this without any modification to the original method, as it
automatically detects when any part of a component has left
the design domain. The FCM approach needs additional dis-
tance constraints to prevent components leaving the domain.
This is straightforward for convex design domains (Zhu
et al, 2008), but non-convex domains present difficulties in
defining continuous differentiable distance constraints. An
approach for pseudo-density methods is to use a layer of
ghost points that lie a short distance outside the design do-
main (Zhang et al, 2018a). The pseudo-densities at ghost
points are then computed and if any value is non-zero, then
a component must be outside the domain. This idea is used
to create a aggregated constraint function that ensures the
maximum pseudo-density value at all ghost points is zero.
This approach can be used for both convex and non-convex
design domains without modification.

6 Feature-mapping methods for shape optimization

In this section we discuss the application of feature-mapping
to solve shape optimization problems, which is essentially
a classical shape optimization approach with the design
mapped to a fixed-grid. To this end we start with a brief de-
scription of what we consider as classical shape optimiza-
tion.

6.1 Classical shape optimization

In classical shape optimization, only the structural part is
discretized using finite elements. The structural interface is
exactly modeled, which is for some applications an essen-
tial feature. Void regions are not part of the finite element
analysis, which can significantly reduce the computational
effort.

As a consequence, the boundary mesh nodes are moved
during optimization. To maintain mesh quality for accurate
analysis, mesh smoothing and/or re-meshing is necessary.
However, re-meshing can become rather involved and if the
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quality of the finite element approximation is insufficient,
there is the potential for the mesh to be optimized for numer-
ical artifacts, similar to the checkerboard effect in density-
based topology optimization.

Classical shape optimization has been successfully ap-
plied over several decades. However, the mathematical and
technical realization is rather involved, especially compared
to density-based topology optimization. The mathematical
approach is often formulated in an infinite dimensional set-
ting, see e.g. Sokolowski and Zolesio (1992) or Haslinger
and Mäkinen (2003) and differentiable mesh generation
must be provided (Haslinger and Mäkinen, 2003). The gra-
dient information is based on the shape gradient.

Shape optimization is performed with a wide range of
different parameterizations. These can be categorized as ei-
ther boundary-node-based parameterization, or higher-order
forms of design parameterization. We begin with the first
variant where each surface node is a design variable. This
is called the independent node movement approach (Imam,
1982) or parameter free shape optimization. This provides a
large space of admissible shapes, but it comes with its own
challenges in terms of regularization and feature size con-
trol, see e.g. Le et al (2011). Closing and creation of holes
are generally difficult to achieve, or even impossible. Dur-
ing the optimization process, insertion or deletion of bound-
ary nodes may be necessary, as well as re-meshing. This
generally prevents the use of first-order mathematical pro-
gramming algorithms. As a consequence, constraint func-
tions need to be handled indirectly. Furthermore, no rigorous
convergence criteria are available.

Aside from the parameterization of boundary nodes
there are many variants of higher-order parameterizations
established in shape optimization, see Haftka and Grandhi
(1986) for an early survey. Conveniently, this corresponds to
the construction of geometries by spline functions in com-
puter aided design (CAD). Here, the mapping from the de-
sign parameters onto the boundary nodes is differentiable
and thus allows gradient-based optimization, see Braibant
and Fleury (1984). The separate meshing of the geometry
can be alternatively handled by isogeometric shape opti-
mization, see Wall et al (2008). Provided a differentiable
parameter-to-boundary mapping, the shape sensitivity of an
arbitrary parameterization can be obtained from the nodal
shape gradient by the chain rule.

6.2 Using pseudo-density feature-mapping

Some major advantages of shape optimization are the crisp
boundary description and the wide and versatile range of de-
sign parameterizations. However, the modeling and techni-
cal realization is often quite involved. Density-based topol-
ogy optimization is known for its elegant and easy modeling,

standard approaches for sensitivity analysis and straight-
forward technical realization, e.g. no re-meshing is neces-
sary. On the other side, the extremely rich design space al-
lows only an implicit design description and is, for some
applications, difficult to control. Enforced by standard reg-
ularization approaches, one has to deal with a more or less
blurred interface description which is anyway rasterized by
the fixed analysis mesh.

It is now a natural approach to combine features of both
worlds, density-based topology optimization and parame-
terized shape optimization. This can be seen from two points
of view. One can perform standard parameterized shape op-
timization, but skip the re-meshing by using a fixed anal-
ysis grid, leading to an inexact boundary modeling. The
same picture is given from the point of view of density-
based topology optimization, where a higher level design
parameterization is mapped to the pseudo-density field, al-
lowing much closer control of the design and, as such, in-
tentionally sacrificing the rich design space of density-based
topology optimization. Under certain circumstances, this ap-
proach can be seen as a simplified shape optimization where,
aside from the design to density mapping, the technical im-
plementation and sensitivity follows that of density-based
topology optimization.

In principle, any higher-order classical shape parame-
terization can be combined with feature-mapping, by sim-
ply mapping the boundary transition to a fixed-grid using
pseudo-densities (see Sec. 3.1).

In Garcia and Gonzalez (2004) B-splines are optimized
with a small number of control points, see Fig. 22. The de-
sign parameters are the location of the control points. The
optimization in Garcia and Gonzalez (2004) is performed
without sensitivity analysis using a gradient-free method.

The first rigorous high-level geometry-to-density map-
ping was demonstrated in Norato et al (2004), where bound-
ary smoothing is discussed and the convergence of the ras-
terization of an explicitly given primitive is shown theoret-
ically and numerically. Optimization results based on im-
plicit shapes (via radial basis functions) are also shown, but
the approach is not discussed in detail.

In Wein and Stingl (2018), splines of order 1 (piece-
wise linear functions) are used, where the control points are
aligned to the analysis mesh. The design space is rather re-
stricted, as either the y− or x−component of the control
points are design variables for horizontal or vertical struc-
tures, respectively. Additionally, the width is parameterized
by thickness variables. This facilitates, but also requires,
the control of first and second spatial derivatives of the de-
sign variables in the form of slope constraints and curvature
constraints, which are both directly defined from the design
variables. Also, as the strips are primarily aligned with one
of the axes, see Fig. 22, the computation of an approximate
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signed-distance function is easily obtained and is differen-
tiable with respect to the control points.

(a) B-spline
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Fig. 22: (a) B-spline parameterization in Garcia and Gon-
zalez (2004); (b) piecewise linear spline with mesh aligned
control points in Wein and Stingl (2018).

An interesting variant of the first-order spline represen-
tation is used in Kasolis et al (2012). Here the angle ϑi/l
between line segments of length l expressing the bound-
ary Γd is the design variable, see Fig. 23. The application
is the optimization of an acoustic horn. The line segments
are larger than the mesh element size and no regularization
is necessary. The structure is of constant thickness and fixed
on the left side. A change in the angle ϑi leads to a rigid
body movement of all line segments to the right. The design
to pseudo-density mapping is differentiable.

Fig. 23: Optimization of the angle between line segments in
Kasolis et al (2012). The right figure shows an optimized
acoustic horn in 2D.

6.3 Using immersed-boundary feature-mapping

Combining immersed-boundary feature-mapping with
higher-order classical shape parameterization has also
been demonstrated. Again, in principle, any higher-order
parameterization can be combined with feature-mapping
using an immersed-boundary method, such as XFEM.

Van Miegroet and Duysinx (2007) use XFEM and a
fixed-grid to optimize the shape of a 2D fillet for stress min-
imization. The fillet is parameterized by an implicit geome-
try description, such as a super-circle, or super-ellipse. Noël
et al (2016) use XFEM and feature-mapping for shape op-
timization of bimaterial structures, such as those with ellip-
tical stiff and soft inclusions. The same framework is also
used to optimize the shape of inclusions when designing
micro-structural material layout to minimize the maximum
stress (Noël and Duysinx, 2017).

The interface-enriched generalized FEM (IGFEM) is
used by Najafi et al (2015) for shape optimization of bima-
terial structural and thermal problems, where an explicit ge-
ometry parameterization is used, e.g. circular and ellipitcal
shaped inclusions. XFEM and IGFEM both use a fixed-grid
and enrichment functions. The main difference is that the ad-
ditional degrees of freedom in XFEM enrichment are added
to the fixed-grid nodes, whereas in IGFEM they are added
to points where the interface intersects a fixed-grid element
edge.

7 Hybrid feature-mapping / free-form methods for
topology optimization

Hybrid methods are defined as those that combine feature
optimization with free-form topology optimization, where
free-form means topology optimization without any high-
level feature control (such as conventional density-based and
level-set methods). Features can be solid or void and fea-
ture design variables can include position, orientation, size,
shape and/ or number. Historically, the development of hy-
brid methods began before pure feature-mapping methods
for topology optimization (‘pure’ meaning without any free-
form optimization). Some techniques developed for hybrid
methods were later exploited in the development of pure
feature-mapping methods.

7.1 Combining free-form with features

A key technical challenge of hybrid methods is to com-
bine the properties of features with the properties of the
free-form structure in a single analysis model. Ideally, the
method should enable gradients of all design variables to be
computed, so that an efficient gradient-based optimization
approach can be used to solve the problem. This is achieved
by combining feature and free-form geometry using either a
map-then-combine, or combine-then-map approach (as dis-
cussed in Sec. 4).

Qian and Ananthasuresh (2004) used an implicit Gaus-
sian, or peak function to map the stiffness of rectangular
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solid features onto the analysis mesh via

Êi(x,y) = Ei exp

(
− (∆ x̃i)

η

σ2
xi
− (∆ ỹi)

η

σ2
yi

)
(38)

with(
∆ x̃i
∆ ỹi

)
=

(
cosθi sinθi
−sinθi cosθi

)(
x− xi
y− yi

)
, (39)

where Êi(x,y) is the stiffness of the feature at location (x,y),
Ei is the stiffness of the feature material, xi, yi are the loca-
tion design variables and θi is the orientation. If the exponent
η >= 4, then the feature is approximately rectangular and
the σ values control the dimensions.

The peak function was originally developed for multi-
material topology optimization. Here, it is used to combine
the stiffness of the features with the stiffness of free-form
structure using a simple summation as

E(x,y) = Ê0(x,y)+
N

∑
i

Êi(x,y), (40)

where N is the number of components and Ê0 is the stiffness
of the free-form structure, which is defined by element-wise
density design variables and penalized using a similar peak
function. This map-then-combine approach allows straight-
forward computation of sensitivities, as the effective stiff-
ness of an element in the fixed mesh is a linear combination
of free-form and feature design variable values. The multi-
material formulation also allows for features and free-form
structure to have different properties. However, the implicit
geometry representation in (38) is limited by the shapes it
can represent.

Several methods define features using implicit functions
with more geometric freedom. A popular choice is to define
the boundary of a feature as the zero level-set of an implicit
scalar function (6).

Chen et al (2007) represent both the features and free-
form structure using implicit functions. The benefit of this
approach is that the free-form structure can be combined
with arbitrary features using a combine-then-map approach
with Boolean operations, resulting in a single implicit func-
tion that describes the overall structure. However, Boolean
operations cannot be differentiated. Thus, smooth approx-
imations of Boolean operations are used instead, such as
smooth R-functions (see Sec. 4.1). However, this combine-
then-map approach makes solid features become indistin-
guishable from the free-form structure in the analysis model.
Thus, solid features are limited to have the same material
properties as the free-form structure. R-functions have also
been used in other hybrid methods to create complex fea-
tures by combining primitives represented by implicit func-
tions (Xia et al, 2013).

If features are defined using implicit functions then a
smoothed Heaviside function, e.g. (16), can be used to map
feature properties onto a fixed-grid using pseudo-densities
(Xia et al, 2013; Zhang et al, 2015). This method is dis-
cussed in more detail in Sec. 4.2.1. Using the smoothed
Heaviside also allows for features with different stiffness
values to be combined in the analysis model. For example,
Xia et al (2013) combined implicit feature representations
with an element density-based free-form structure represen-
tation and used the following map-then-combine approach
to define the Young’s modulus within each element of the
fixed mesh

Ee = ρ
p

(
E0 +

N

∑
i=1

H̃(φi)(Ei−E0)

)
. (41)

This formulation works for void features where Ei ≈ 0, al-
though it does not inherently prevent element density vari-
ables beneath solid features from becoming zero, potentially
leading to changes in the shape or topology of a feature.
However, this can be avoided in the optimum for the mini-
mization of compliance problem (subject to a volume con-
straint on the free-form structure) by excluding elements
associated with solid features from the volume calculation.
Pollini and Amir (2020) used a similar approach when us-
ing geometric features to specify different material proper-
ties within an interface region in a structural assembly.

It is also possible to use an exact Heaviside function
when mapping implicit void features onto the fixed mesh
(Shan, 2008; Kang and Wang, 2013). The free-form struc-
ture is parameterized using element-wise density variables
and the pseudo-density within an element, centred at x, is
simply computed by

ρ(x) = ρ̃(x)H(φω(x)), (42)

where ρ is the physical density used to formulate the finite
element stiffness matrices and ρ̃ is obtained using a density
filter of the free-form density design variables. The inherent
discontinuity of the exact Heaviside function does not allow
explicit derivative calculation for feature location and orien-
tation. Thus, shape derivatives (obtained from the analyti-
cal pre-discretized governing equations) are used to update
the location and orientation variables. These shape deriva-
tives are then used to obtain velocity components for fea-
ture location and orientation, which are then used with the
Hamilton-Jacobi equation to update the implicit functions
that define the void features. However, using this approach
does not allow for feature design variables (location and
orientation) to be combined with free-form structure den-
sity variables in the same nonlinear programming optimiza-
tion problem. Thus, to achieve simultaneous optimization
of free-form structure and feature location / orientation, the
feature velocity components are included as design variables
when using a gradient-based optimizer.
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Li et al (2017) introduced the stiffness spreading method
to combine properties of explicit geometry features and the
free-form structure. The method starts with a fitted finite el-
ement mesh of the component whose shape does not change,
but it only moves and rotates. To combine this with the
free-form structure, defined on a fixed-mesh, the compo-
nent stiffness matrix is transformed into an equivalent ma-
trix that has the same dimensions and degrees of freedom
as the fixed-mesh. The free-form structure and transformed
feature matrices are then simply summed for analysis. Thus,
this can be considered a map-then-combine approach. The
transform essentially provides a linear map between a solid
feature and fixed-mesh degrees of freedom. This could be
achieved by a local transform, where feature nodes are sim-
ply mapped to the closest fixed-mesh nodes (i.e. those asso-
ciated with a single element). However, this creates a discon-
tinuity in the derivatives of the feature location and orienta-
tion. Thus, a non-local transform is used, where the connec-
tion is smoothed, or spread over several nodes in the fixed-
mesh within a predefined radius.

Multi-point constraints (MPCs) have also been used to
connect explicit solid features to the fixed-mesh used to pa-
rameterize the free-form structure (Zhu et al, 2015; Gao
et al, 2015). The solid features are meshed independently
and connected to the free-form structure fixed-mesh at a
number of predefined locations that represent bolts or rivets.
This approach is in contrast to other methods that assume a
perfect bonding at the interface between solid features and
free-form structure. The use of MPC connections has also
been extended to a multi-frame problem, where component
locations and free-form structure for a number of frames are
simultaneously optimized with the location of the frames in
a larger design space (Zhu et al, 2017). MPCs are also used
to connect frames to the free-form structure in the larger de-
sign space.

The above methods all aim to map feature properties
onto a fixed analysis mesh in the spirit of feature-mapping
methods as defined in this review. The alternative approach
of re-meshing has also been used in hybrid methods. Solid
features of fixed size and shape are discretized using a con-
forming mesh, whereas a fixed regular mesh is used to pa-
rameterize the free-form structure. The two meshes are com-
bined into a single conforming mesh for analysis. This is
achieved by first placing feature meshes over the fixed mesh.
Elements in the fixed mesh that are partly covered by a fea-
ture are then divided, or remeshed, to create a single con-
forming mesh for analysis (Zhu et al, 2008).

This local re-meshing at the boundary leads to changes
in the free-form mesh whenever a feature moves. Thus, the
usual element-wise density parameterization for the free-
form structure cannot be used. Instead, the concept of den-
sity points is introduced, where the density at a point in-

fluences several elements within a local domain (Zhu et al,
2008).

Re-meshing approaches add computational complexity
and cost (especially in 3D) compared with the fixed-grid
mapping methods. Also, semi-analytical derivatives of fea-
ture design variables are required, where the derivative of
the global stiffness matrix with respect to a small pertur-
bation in the variables is computed using finite differences
(Zhang et al, 2011). This process also adds significant com-
putational cost, as the mesh is perturbed and stiffness matri-
ces recomputed for each feature design variable.

Techniques have been proposed to reduce the computa-
tional cost of semi-analytical derivatives. Xia et al (2012b)
used a superelement formulation to reduce the size of feature
stiffness matrices. The same authors also proposed using a
smoothed Heaviside approximation of the boundary to facil-
itate full analytical derivatives (Xia et al, 2012a). The idea is
to compute stiffness matrix derivatives based on the change
in material properties as a feature moves. The smoothed
Heaviside approximation is required to smooth the sharp
discontinuity in material properties. However, re-meshing is
still performed when features move.

One benefit of re-meshing is that the interface between
solid features and free-form support structure is explicitly
modeled. This could be important if the bonding between
solid features and free-form support structure is included in
the analysis as a nonlinear interface behavior. A recent ex-
ample of this was presented by Liu and Kang (2018), where
a cohesive zone interface model was used and the dissipated
interface energy added to a compliance objective function. It
was observed that features move to positions where the free-
form support structure is under compression, as this helps
minimize the dissipated interface energy.

XFEM is an alternative to re-meshing that can also cap-
ture the explicit interface (see Sec. 3.2). Hybrid methods that
use XFEM also use implicit functions to describe features,
as this provides a natural way to identify elements in the
fixed-mesh that contain an interface between the free-form
structure and a feature. Furthermore, analytical derivatives
of feature location / orientation design variables can be ob-
tained using the chain rule (Zhang et al, 2012). XFEM has
been combined with density-based (Zhang et al, 2012; Wang
et al, 2014b), level-set based (Zhou and Wang, 2013) and
parameterized level-set (Liu et al, 2014) methods for simul-
taneous optimization of features and free-form structure.

In summary, various methods have been proposed to
combine properties of features and free-form structure in hy-
brid methods. Implicit and explicit features have been com-
bined with density and level-set-based free-form structure.
A key difference in the methods is whether they follow a
combine-then-map or map-then-combine approach, as only
the latter allows different material properties for solid fea-
tures and free-form structure.
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7.2 Feature design variables

The original motivation for developing hybrid methods was
to simultaneously optimize the location and orientation of a
number of solid features (with predefined shapes) and a free-
form structure to support the features (Qian and Anantha-
suresh, 2004). The solid features represent components to be
embedded within a free-form structure and their properties
(such as stiffness) contribute to the overall performance of
the structure. Thus, by simultaneously optimizing the free-
form structure and position / orientation of solid features, an
overall optimum can be found.

This idea also applies to void features of fixed size,
which could, for example, represent necessary cutouts for
systems to pass through the structure. Again, by simulta-
neously optimizing the position / orientation of void fea-
tures and the free-form structure, an overall optimum can
be found.

Beyond features of fixed shape and size, hybrid meth-
ods have been proposed that can also simultaneously opti-
mize the size and/or shape of features. Cai and Zhang (2015)
demonstrated the simultaneous optimization of circular hole
radius and support structure. The hole had a fixed location
and the solution was trivial, as the optimal radius is sim-
ply the lower bound. The method presented by Zhou and
Wang (2013) can simultaneously optimize the location, ori-
entation and shape of features. Furthermore, the method can
be used to optimize only the shape of selected feature edges,
thus providing several levels of control over feature geome-
try. This is achieved by modeling the free-form and feature
geometries using implicit functions. These are then com-
bined by multiplying Heaviside functions to give an indi-
cator function

χω(x) =
M

∏
i

H(φi(x)), (43)

where M is the total number of implicit functions (i.e. one
for the free-form structure and M−1 features). The indicator
function is then used to map the combined structure onto the
fixed mesh for analysis (i.e. a combine-then-map approach).
Note that this formulation assumes solid features and free-
form structure have the same material, although the frame-
work does allow for regions with different material proper-
ties.

The method presented by Liu et al (2014) also uses im-
plicit functions to represent both free-form and feature ge-
ometries, which are combined together using R-functions
(also a combine-then-map approach). The features consid-
ered are primitives that can also change shape and size. For
example, the semi-major and semi-minor axes of an ellip-
tical void feature were simultaneously optimized with the
free-form structure. In addition, Liu et al (2014) introduced
the idea of a tolerance zone, which is a fixed-width region

of material around a void feature. This was achieved by en-
suring the presence of free-form structure within a certain
region around void feature edges.

Lin et al (2015) proposed a hybrid method that can op-
timize the size, shape and number of features. Features are
defined explicitly using splines and the free-form topology
is parameterized using a pseudo-density type approach. A
criterion based on the topological derivative is used to cre-
ate new features, such as holes and inclusions.

The hybrid method proposed by Pollini and Amir (2020)
uses a piece-wise linear feature to define an interface region
between parts of a structural assembly. The geometric vari-
ables are simply the horizontal positions of points on the
line (with vertical positions fixed). This enables simultane-
ous optimization of the free-form geometry (via an element-
wise density field) and the interface region in a structural
assembly, whilst taking account the different material prop-
erties and geometric restrictions within the interface region.

7.3 Optimization strategy

Most hybrid methods aim to simultaneously optimize the
features and free-form structure. However, it has long been
recognized that the hybrid problem formulation with mov-
able features is non-convex and the solution is often highly
dependent on the starting position of the features (Qian and
Ananthasuresh, 2004; Zhu et al, 2015; Cheng et al, 2018;
Liu and Kang, 2018).

A simple method to overcome this is to solve the prob-
lem several times with different starting positions of the fea-
tures, although this adds computational cost. Another ap-
proach is to initially optimize just feature positions/ orien-
tations. Then, after a set number of iterations, or after the
feature-only problem converges, both features and free-form
structure are optimized simultaneously (Kang and Wang,
2013; Wang et al, 2014b; Li et al, 2017). This strategy may
provide a better design, as features can get stuck near their
starting positions if the simultaneous approach is used from
the start.

A variant of this approach is to fix feature designs and
positions after the initial optimization (Bakhtiarinejad et al,
2017). This results in a sequential optimization approach
that could be repeated several times, i.e., optimize the fea-
ture design and then the free-form structure alternately, until
convergence (Xia et al, 2012b). An advantage of the sequen-
tial approach, is that different optimization strategies can be
applied to feature design and free-form structure.

7.4 Applications

Most hybrid methods have been applied to maximize the
stiffness (minimize compliance) of the combined feature
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and free-form structure. Thus, solid features are placed to
best utilize their stiffness, whereas void features are placed
to least disrupt the free-form structure from obtaining the
stiffest design.

Developments for other applications include the design
of compliant smart structures with embedded movable actu-
ators (Wang et al, 2014b), where the actuator features pro-
vide an input force and the free-form structure is used to
design the compliant part of the mechanism. By simulta-
neously optimizing embedded piezoelectric actuator place-
ment and the compliant mechanism design, an overall opti-
mum can be found. Cai and Zhang (2015) used features and
free-form structure defined by implicit functions and com-
bined by R-functions to optimize structures with stress con-
straints. Finally, there have also been applications for heat
transfer problems (Li et al, 2017; Cheng et al, 2018), where
the position of solid features are optimized to take advan-
tage of their thermal conductivity and/or heat flux boundary
conditions.

Currently, there are few applications of hybrid methods
beyond designing stiff structures. Thus, there is potential for
future research into other application areas, such as electro-
magnetic and electrical-mechanical problems, fluid flow and
fluid-structure interactions problems and problems involv-
ing nonlinear mechanics.

8 Feature-mapping methods for topology optimization

In this section we discuss feature-mapping methods for
topology optimization, where the structure is exclusively de-
fined by the combination of high-level parametric descrip-
tions of voids in a solid design region, or of solids in a void
design region. For brevity in the discussion, we will refer to
the former as holes and the latter as components. We note
that topology optimization using only solid components has
also been called the adaptive ground structure approach by
Guo et al (2014).

The choice between using components or holes for
topology optimization may seem arbitrary. However, if com-
ponents are used, then each components may have differ-
ent functionalities and/or different physical models could be
used for each component, as discussed by Guo et al (2014).

As a historical note, a mention is due to the bubble
method (Eschenauer et al, 1994), which describes holes in
a solid region using B-splines and is, in fact, one of the first
topology optimization techniques. However, this method
does not fit into the family of methods covered in this re-
view, as it employs a conforming mesh and thus requires re-
meshing upon design changes, and also lacks a mechanism
to merge holes.

We also note that the methods discussed in this section
can be shown to be essentially equivalent to density-based or

level-set techniques under certain conditions—for instance,
by having a geometric component per element in the mesh
such that the component size does not exceed the element
size, as discussed in Liu et al (2018a). However, exploring
this relationship is outside of the scope of this review.

8.1 Combine-then-map methods

As described in Sec. 4, feature-mapping methods for topol-
ogy optimization render structures exclusively made of the
combination of geometric features. Examples of these meth-
ods are shown in Fig. 24. A pioneering work using combine-
then-map was introduced in Cheng et al (2006); Mei et al
(2008).1 This method formulates and successfully demon-
strates all of the hallmark features of methods in this cate-
gory, as well as other features that have not been explored
elsewhere at the time of writing this review, such as the
primitives interpolation strategy described in Sec. 8.3. To
our surprise, this contribution went unnoticed in many sub-
sequent works; only until recently have some works started
citing it. We hope our review aids in restoring credit to this
foundational contribution. In this method, holes are com-
bined using (non-smooth) R-functions.

The first use of combine-then-map with primitive-
shaped solid components using gradient-based optimization
is by Guo et al (2014), in implementing the method of mov-
ing morphable components (MMC). This work has many
derivatives and it discusses the merits of this approach. At
the time of writing this review, is the most cited topol-
ogy optimization approach using feature-mapping. It uses
a true maximum function to combine components into a
single implicit function. The majority of combine-then-map
implementations with implicit representations use a non-
differentiable maximum. Exceptions are the works by Zhou
et al (2016); Sharma (2017); Du et al (2019), which use
a smooth Kreisselmeier-Steinhauser (KS) approximation to
combine the signed-distance representations; the works by
Liu et al (2018a) and Du et al (2020), which employ a KS
function to combine the implicit functions of the individual
components; and the works by Zhang et al (2016b); Xie et al
(2018), which use smooth R-functions. The work by Sharma
(2017) smooths out the combined level-set function with an
anisotropic filter to produce smooth boundaries, although it
indicates that, for the examples presented, such filtering is
not necessary to produce good results.

The works by Lee et al (2007); Lee and Kwak (2008)
and Kim et al (2008) are the first to employ an explicit rep-
resentation, namely B-splines. Holes are merged by delet-
ing control points, as outlined in Sec. 4.2.2. Wang and Yang
(2009) is perhaps the first work to design structures made

1 The latter work seems to be a more detailed journal version of the
former, hence from hereon we only reference the latter.
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(a) (b)

(c) (d)

(e) (f)

Fig. 24: Examples of different feature-mapping methods for
topology optimization: a) feature-based method (Mei et al,
2008), b) smooth boundary method (Lee and Kwak, 2008),
c) circular shaped masks method (Saxena, 2011), d) MMC
method (Guo et al, 2014), e) geometry projection method
(Norato et al, 2015) and f) MMV method (Zhang et al,
2017b).

exclusively of solid components, consisting of wide curves
modeled using Bézier curves. The pseudo-density mapping
in this method is not differentiable, as described in Sec. 8.4,
thus this method uses a genetic algorithm for the optimiza-
tion.

In the material mask overlay strategy (MMOS) of Sax-
ena (2011), holes are represented as the union of primitive-
shaped regions (the ‘masks’), such as circles, rectangles and
ellipses. The mapping to the analysis mesh uses a small
or unity pseudo-density depending on whether an element’s
centroid is inside or outside any of the masks, respectively.
As this mapping is not differentiable, a gradient-free hill-
climbing method is used for the optimization. Wang et al
(2012) introduced a differentiable version of MMOS for the
design of photonic waveguides that combines a free-form
density field with circular holes. The boundary of the holes
is smoothed as described in Sec. 3.1.4 and holes are com-
bined using a product of the smooth Heavisides, similarly to
(43). In the examples provided in this work, however, the cir-
cular holes do not overlap. Hoang and Jang (2017) present a
modification of this differentiable MMOS approach for de-
signs with solid components.

8.2 Map-then-combine methods

The most common method that embodies the map-then-
combine strategy is the geometry projection method of Bell
et al (2012); Norato et al (2015). This method employs a vol-
ume fraction calculation using a circular (in 2D) or spherical
(in 3D) sample window (cf. (20)) to obtain a pseudo-density
for each of the components. To combine features, the pre-
liminary work by Bell et al (2012) used the minimum signed
distance to any of the components, which is equivalent to
a true maximum. The work by Norato et al (2015) intro-
duced the size variable that allows the complete removal of a
component via penalization (cf. (36)). It also uses a p-norm
(cf. (30)) as a smooth approximation of the maximum to
perform the combination of the penalized pseudo-densities.

An interesting recent contribution is the generalized ge-
ometry projection method of Coniglio et al (2019). This
method shows that the mappings to an ersatz material in
the geometry projection method (Norato et al, 2015), the
MMC method (specifically, the implementation of Zhang
et al (2016c) that uses an ersatz material for the analysis,
discussed in Sec. 8.4), and the moving nodes approach dis-
cussed later in this section, can be seen as special cases of
the numerical integration of the smooth Heaviside (a view
that is in line with the approach of Wein and Stingl (2018)).

A mention is due to the works of Guest and Zhu (2012)
and Ha and Guest (2014), which remove holes or produce
components of a fixed shape and size (e.g., circular), respec-
tively, by using projection filters with the given shape on a
grid of density variables. In these methods, the design is de-
scribed by a density field instead of a high-level parametric
description of the holes or components, hence they do not
fall under our categorization of feature-mapping techniques.
The shape of the hole or component determines the neigh-
borhood of elements that contribute to the filtered density in
each element.

Another mention is due to the moving nodes approach
(MNA) of Overvelde (2012). In this method, the geometry
is described by mass nodes with variable positions within
the design region. This method employs an element-free
Galerking (EFG) method for the analysis (which is a mesh-
less method). A combined density for the ersatz material is
obtained via a filter operation that uses the same kernel func-
tion as the one used for the EFG analysis. This filter plays
both the role of combining the mass nodes and mapping to
the pseudo-density field for the ersatz analysis. However, we
do not consider this method to fall in the category of feature-
mapping techniques, since the mass nodes do not have any
geometric features in the sense defined in this paper.

We also note that techniques that use geometric repre-
sentations such as B-splines to represent a density field (e.g.,
Qian (2013)) or a level set function (e.g., Wang et al (2019a))
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are also excluded from our review, as these parameteriza-
tions do not directly represent high-level geometric features.

8.3 Geometric representations

Most of the combine-then-map implementations that use up-
front implicit representations use hyperellipses to represent
various primitives. The original MMC implementation and
most of its derivatives employ a direct hyperellipse repre-
sentation to model 2D bars (Guo et al, 2014), and 3D bars
and plates (Zhang et al, 2017c; Sharma, 2017). (Zhang et al,
2016c) and Guo et al (2016) modify the hyperellipse equa-
tion to produce curved bars with linearly, quadratically or si-
nusoidally varying width. Other methods, notably Mei et al
(2008) and Zhou et al (2016), use a hyperellipse represen-
tation as well, but they convert it to a signed-distance rep-
resentation, which, as mentioned in Sec. 3.1.4, can lead to
better convergence. The geometry projection method in No-
rato (2018) models 2D solid components using supershapes,
which correspond to a generalization of the superellipse for-
mula that has variable symmetry, and thus can approximate
a wide range of primitive shapes with a single equation. As
in all geometry projection implementations, a signed dis-
tance to each supershape is computed to obtain the mapped
pseudo-density.

Lee et al (2007); Lee and Kwak (2008) and Kim et al
(2008) modeled holes with B-splines. The 2D solid com-
ponents in Wang and Yang (2009) are modeled using wide
Bézier curves, with design variables being the control point
locations. The curves connect support and loading points
and a constraint in the optimization is required to prevent
curve self-intersections. 2D (Zhang et al, 2017d; Du et al,
2019, 2020; Gai et al, 2020; Xie et al, 2020a) and 3D (Zhang
et al, 2017b; Xie et al, 2020a,b) B-splines have been used
to model holes in the Moving Morphable Voids (MMV)
method, which is a variant of the MMC method. Control
points inside the intersection are made inactive, and the re-
sulting combined B-spline is converted to a signed-distance
function prior to mapping to the analysis.

An implicit geometry representation common in geom-
etry projection implementations is offset surfaces (cf. Bloo-
menthal and Wyvill (1990)), in which the component bound-
ary is given by the set of points equidistant to a medial axis
or surface. For instance, a 2D bar is given by a rectangle with
semicircular ends (Norato et al, 2015; Smith and Norato,
2020), a 3D bar by a cylinder with semispherical ends (Watts
and Tortorelli, 2017; Kazemi et al, 2018, 2019; Smith and
Norato, 2020), and a 3D plate as a cuboid with semicylin-
drical edges and quarter-sphere corners (Zhang et al, 2016a).
Offset bars have also been used in conjunction with the
MMC method in (Deng and Chen, 2016; Deng et al, 2019;
Deng and To, 2020) and the geometry projection method
(Tahhan, 2019) to produce designs where bars are connected

at all times by sharing endpoints of their medial axes; in
Hoang and Jang (2017) to impose a minimum thickness in
the structure (see Sec. 8.5); and in Hoang et al (2020a) to de-
sign coated structures. Offset plates with a single curvature
radius are modeled in Zhang et al (2018a). The offset surface
representation is combined with a free-form density field in
Zhang et al (2016a) to produce designs made of plates with
free-form holes.

An interesting geometric representation is employed in
Mei et al (2008), whereby each hole is represented as a
weighted sum of prescribed geometric primitives (e.g., cir-
cles and triangles) that are implicitly represented using
signed-distance functions. A constraint is added to the op-
timization to penalize the primitive weights so that the holes
converge to being, for example, either a pure circle or a pure
triangle. A similar constraint is used in Norato (2018) to pe-
nalize supershapes parameters so that the optimal design is
exclusively made of, e.g., rectangles and ellipses. Mei et al
(2008) also use shape matching techniques to take the re-
sulting designs and consolidate them into fewer primitives,
after which an additional optimization stage is performed.

8.4 Analysis approaches

As mentioned in Sec. 4.2, combine-then-map approaches
can perform the analysis using either immersed-boundary or
pseudo-density techniques. Map-then-combine approaches,
on the other hand, have only used pseudo-density tech-
niques, although they could in principle use immersed-
boundary approaches, as discussed in Sec. 4.3.2.

Combine-then-map approaches that utilize an implicit
representation and pseudo-densities for the analysis (cf. Mei
et al (2008); Zhang et al (2016c)) compute a smoothed
Heaviside of the combined implicit function (see Sec. 3.1.4).
Those that use an immersed-boundary approach, have used
the XFEM method (cf. Guo et al (2014); Sharma (2017)).
Other approaches use pseudo-densities and isogeometric
analysis (IGA) (Hou et al, 2017; Xie et al, 2018).

Different analysis techniques are used in combine-then-
map approaches that use a direct explicit representation (i.e.,
without conversion to an implicit representation such as a
signed distance). In Lee et al (2007); Lee and Kwak (2008)
and Kim et al (2008), the analysis uses a pseudo-density
that is computed by determining the intersections of the B-
spline holes with the element boundaries, replacing the in-
tersected boundary with a straight line, and using a volume
fraction approach, as in Garcı́a-Ruı́z and Steven (1999). The
works by Seo et al (2010) and the recent MMV method of
Gai et al (2020) are similar to these methods, however they
use IGA to decompose elements that intersect the structural
boundary into multiple cells to perform the integration. The
work by Zhang et al (2017g) uses the weighted B-spline fi-
nite cell method for the analysis. The technique with wide
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curves of Wang and Yang (2009) uses an element pseudo-
density, which is calculated by successively subdividing el-
ements that intersect the structural boundary, and computing
the area ratio of the subcells that lie inside the curve (or of
overlapping curves). In this approach, a non-gradient-based
optimizer is used.

An interesting analysis technique is presented in the
MMV method of Zhang et al (2017b), whereby elements in
the void regions are removed from the analysis at each iter-
ation to decrease the size of the analysis problem. These el-
ements may be reintroduced in subsequent iterations if they
become non-void.

A mention is due to the recent works of Zhang et al
(2020b) and Zhang et al (2020c), which combine holes in
2D and shell structures using IGA. However, unlike some of
the previously mentioned approaches that use IGA merely to
perform he numerical integration in elements that intersect
the hole boundaries, these methods actually partition the ele-
ment boundaries into new elements to produce a body-fitted
mesh, and therefore they do not fit our definition of feature-
mapping techniques.

8.5 Complexity and minimum size control

We start this section with a brief discussion on complex-
ity control. By complexity, we here mean the topological
genus of the structure, i.e., its number of holes—the higher
the genus, the more complex the structure. One of the well
known characteristics of most density topology optimization
techniques is that, in the absence of a control mechanism
(e.g., filtering, or a perimeter or slope constraint), the design
is usually mesh-dependent. This is a byproduct of the fact
that in these methods the design representation is tied to the
analysis mesh. An alternative in these techniques is to use a
grid of design variables that is independent of the mesh, cf.
Nguyen et al (2010).

Feature-mapping methods in general do not suffer from
this mesh-dependency because the representation of the
components or holes is entirely independent of the mesh.
Moreover, if lower bounds are imposed on the dimensions
of the components, it is of course not possible for the opti-
mization to obtain smaller feature sizes. Therefore, as long
as the total number of components is kept to a maximum,
the designs produced by these methods exhibit similar com-
plexity and member size. This does not entirely mean, how-
ever, that different mesh sizes produce the exact same de-
sign due to several reasons. First, the mesh resolution af-
fects the accuracy of the geometry mapping and the analysis
solution and consequently the sensitivities, hence different
mesh resolutions can lead to different local minima. Further-
more, in the case of pseudo-density approaches, mesh align-
ment (in conjunction with the interpolation approach) may
also cause small differences, as noted in Sec. 3.1.2. Second,

even if a lower bound on the component dimensions guar-
antees a minimum feature size, when components intersect
or ‘touch’ they can produce regions whose size is smaller
(and possibly zero, i.e., a point intersection) than the desired
minimum size.

A minimum size for individual components can be read-
ily attained in various geometric representations by directly
imposing bounds on the design parameters. For instance,
when hyperellipses or supershapes are used to represent
components, the width and length of the component can be
directly controlled by bounding the hyperellipse radii, see
Zhang et al (2016b) and Norato (2018); in the case of bars
modeled using offset surfaces, the bar width can also be
bounded in this way (see Smith and Norato (2020)). When
the component dimensions to be bound do not directly corre-
spond to design parameters, then it is often straightforward
to add constraints that are functions of the design parame-
ters, as in the case of length constraints for bars represented
by offset surfaces, see Tahhan (2019).

In addition to imposing bounds on the geometric pa-
rameters to ensure a minimum component size, the work
in Sharma (2017) adds a penalty to the objective function
to prevent the onset of plates whose medial surface area is
smaller than a specified threshold. The motivation to impose
this penalty is that small components with zero shape sensi-
tivities may disconnect from the structure and cause oscilla-
tions in the optimization.

Several approaches have been proposed to enforce
a minimum size for the combined structure in feature-
mapping methods for topology optimization. In Zhang et al
(2016b), a constraint is added to impose a minimum dis-
tance between any two members that intersect. Since the
constraint is applied only to components that overlap, it
appears to be non-differentiable. Hoang and Jang (2017)
employ bars modeled with offset surfaces (i.e., rectangles
with semi-circular ends) and effectively control the mini-
mum thickness by introducing two constraints: one that en-
sures a minimum volume in a mask that covers the rectan-
gular portion of the bar, and another that limits the amount
of intermediate material in the semicircular ends of the bars.
The work by Niu and Wadbro (2019), which uses rectan-
gular bars and the MMC method, adds a penalty term to
the objective function to enforce a minimum size. This term
consists of a smoothed Heaviside of the minimum distance
between the centerlines of two bars for all pairs of bars; this
term is multiplied by another that consists of the angle dif-
ference between the two bars (raised to a power), so that
the orientation between bars that are closer to being paral-
lel is penalized, but those that are closer to being perpen-
dicular are not. While the foregoing methods are effective,
they are associated with specific geometric representations
(i.e., bars), and a minimum size control that works for com-
bined structures with components of any shape is currently
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missing. The recent work by Wang et al (2019b) constrains
the minimum distance between the medial axes of nearby or
intersecting components to be less than a prescribed value,
together with a constraint on the minimum thickness of the
components.

A note is worth making with regards to intersections be-
tween components, which has an effect on the minimum
size at intersections. For pseudo-density approaches, it is
possible that components that should intersect in the opti-
mal design are not fully connected and there is a small gap
between them. As discussed in Norato (2018), this is due
to the fact that some smooth approximations of the max-
imum, such as the p-norm of (30), approximate the true
maximum from above, and thus they may render artificially
high pseudo-densities, which increases the stiffness of small
gaps between components. To circumvent this problem, sev-
eral works have proposed smooth saturation functions that
cap the combined pseudo-density to 1, cf. Overvelde (2012);
Coniglio et al (2019); Deng and To (2020).

The onset of gaps between components could also be as-
sociated with linear volume-to-stiffness interpolations. The
recent work of Smith and Norato (2020) notes that the pe-
nalization of (36) has a potential problem, namely that it pe-
nalizes the size variable but not the projected density; there-
fore, in the event that the size variable is 1, elements along
the boundary of a component that have intermediate values
of the projected density will result in a linear volume-to-
stiffness relation; this, as noted extensively in Sec. 3.1.2, is
incorrect as it leads to unrealistically stiff material. To cir-
cumvent this, Smith and Norato (2020) propose penalizing
both terms, and they note this leads to less instances of gaps
between components.

8.6 Adaptive resolution

Several feature-mapping methods for topology optimization
have advanced different mechanisms to adaptively improve
the resolution of the mapping. The work by Liu et al (2018a)
employs a coarse finite element mesh for the analysis, and
a fine mesh of sampling windows for the feature-mapping.
Therefore, several sampling windows are contained in a fi-
nite element. This technique renders a higher resolution of
the geometry. The numerical integration to compute the el-
ement stiffness matrix sums over the contributions of all the
pseudo-density mapping elements. A similar scheme using
the MMV method and IGA for the analysis is presented in
Du et al (2020).

The recent work in Zhang et al (2020a) introduces an
adaptive refinement technique for the geometry projection
method. The refinement indicator is given by the projected
pseudo-density, so that the refined mesh is finer along com-
ponent boundaries and coarser in solid and void regions. The
refinement corresponds to h-refinement of quadrilateral (in

2D) and hexahedral (in 3D) elements with hanging nodes.
The refinement and coarsening is done at every iteration,
and the method is demonstrated for meshes with several mil-
lion elements. The recent MMV implementation by Xie et al
(2020a) employs hierarchical B-splines for adaptive refine-
ment using IGA for the analysis. The refinement indicator
corresponds to a band of values around the zero value of the
combined implicit function and so, as in the foregoing work,
it refines boundaries. This method does not coarsen previ-
ously refined elements, and it performs a full optimization
for each level of refinement. We note that these two methods
are the exception to using a fixed analysis grid, as the mesh is
obviously modified throughout the optimization; neverthe-
less, they still employ feature-mapping to a non-body-fitted
mesh.

8.7 Design space modification

As discussed in Sec. 4.4, feature-mapping methods for
topology optimization are more prone to falling into poor
local minima than free-form methods. Therefore, the choice
of initial design, as well as any mechanisms to adaptively
modify it, are important aspects in these methods.

One strategy employed by several of the techniques that
design holes in a solid region is to adaptively introduce
holes at locations that attain the most negative value of
the topological derivative of the compliance. This strategy,
which has been used by level-set techniques (cf. Sigmund
and Maute (2013) and references therein), was introduced
in feature-mapping methods by Mei et al (2008) and later
used by other methods (e.g., Lee et al (2007); Lee and Kwak
(2008); Kim et al (2008)). To our knowledge, this strategy
has not been used yet to introduce solid components into a
void domain. In addition to adaptively introducing holes, the
work of Mei et al (2008) also removes holes that do not inter-
sect any solid region to simplify the design. The generative
design method of Li et al (2019) adaptively adds compo-
nents to generate tree-like structures for area-to-point con-
duction problems. It performs a sequence of optimizations
using the MMC method; at the end of each optimization
run, it adds or removes components at the ends of existing
branches depending on whether the leaf-side thickness of
the component exceeds or falls short of prescribed thresh-
olds, respectively.

To prevent entrapment in poor local minima, the MMC
method of Zhang et al (2017f) introduces a function that
smoothly approximates the number of ‘effective’ bars in the
design. Two or more bars are considered to form a single
effective component if they overlap (near) collinearly . The
function examines the intersection between the bars: if the
intersected area is greater than some specified threshold, and
if the angle between the bars does not nearly equal zero or
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π , they are considered separate components. A constraint is
then imposed on the number of effective components.

A ‘bootstrapping’ strategy to produce good initial de-
signs for 2D problems with bars is presented in Weiss et al
(2018), which uses density-based topology optimization to
produce an initial design. This result is first converted to a
0-1 design by thresholding, and then it is skeletonized to
produce the medial axis of the structure. The nodes of this
skeleton are connected with straight bars to produce an ini-
tial design for the MMC method. A similar approach is pre-
sented in Lian et al (2020).

In Zhang and Norato (2018), the gradient-based tunnel-
ing method is used in conjunction with the geometry pro-
jection method to go from one local minimum to a better
one. In essence, after converging to a local minimum (the
optimization phase), this technique adds a term to the objec-
tive function that makes the current minimum a pole of the
modified objective, and uses this function to find another de-
sign with an equal or lower objective (the tunneling phase).
If successful, a new optimization phase is started with the
original function.

Finally, taking advantage of the reduced number of de-
sign variables in feature-mapping methods, and to attempt to
prevent entrapment in poor local minima, recent works have
used statistical techniques such as: an evolutionary strategy
(Bujny et al, 2018), Bayesian optimization (Sharpe et al,
2018) and machine learning methods such as support vec-
tor regression and K-nearest neighbors (Lei et al, 2019) to
perform the optimization. Raponi et al (2019) also used a
Kriging-based surrogate model to improve the convergence
rate and optimal designs when using a statistical optimiza-
tion technique.

8.8 Geometric constraints

One of the most appealing aspects of feature-mapping meth-
ods is the ability to impose geometric constraints. These
may be motivated by, for example, wanting to make the
structure out of stock material (such as bars or plates), or
facilitating its manufacturing. The simplest of these con-
straints, as noted in Sec. 8.5, is to enforce bounds on the
component geometric parameters. For instance, it is possi-
ble to obtain a structure that is made of bars with the same
cross section (cf. Norato et al (2015)), or to impose upper
bounds on the dimensions of rectangular plates to account
for commercial availability (Zhang et al, 2016a). Although
conceptually simple, enforcing these requirements in free-
form methods is difficult.

Surprisingly, however, there have only been a few works
to date that incorporate other geometric constraints. A com-
mon requirement, particularly for structures made of stock
material, is to ensure that the components lie entirely within

the design region, as otherwise a component that is only
partially inside may require cuts (for example, through the
thickness of a plate) that are impractical to manufacture. For
rectangular and cuboid design regions in 2D and 3D, re-
spectively, this requirement is easily satisfied by imposing
bounds on the design variables that determine the positions
of the components. However, for other design region shapes,
particularly those that are not convex, using bounds or sim-
ple constraints on the design parameters does not work. The
geometry projection method in Zhang et al (2018a) proposes
a way to address this by creating a layer of points slightly
outside of the boundary of the design region, and imposing
a constraint in the optimization that the maximum projected
pseudo-density in any of these points is zero. By imposing
the constraint on the pseudo-densities, this technique works
for components of any shape. An alternative to address this
issue is to employ the no-overlap techniques discussed in
Sec. 5, and require that the geometric components do not
overlap the exterior of the design region.

Another type of geometric constraint aims to control the
orientation of components. In the MMC implementation of
Guo et al (2017), a constraint is imposed on the orientation
of bars in structures fabricated via additive manufacturing
to ensure their angle with respect to the print direction is
smaller than the overhang angle. In the same work, holes
on a solid structure are modeled using B-splines, and a con-
straint is imposed on the control points positions to ensure
the boundaries of the holes do not exceed the overhang an-
gle. In the latter approach, however, another constraint is
also imposed to prevent holes from merging in order to com-
pletely avoid violations of the overhang angle requirement,
thus this method does not change the topology of the design.
The recent MMC implementation by Xian and Rosen (2020)
imposes an angle constraint between bars to avoid overhangs
in additive manufacturing. In the work by Wein and Stingl
(2018), described in Sec. 6.2 and shown in Fig. 22(b), a max-
imum overhang on the strip boundaries is readily enforced
by imposing constraints on the relative position of boundary
points (which are themselves a function of the control points
and the strip semi-widths). Similarly, using constraints on
the positions of the control points and on the semi-widths,
this method enforces slope and curvature constraints on the
overall shape of the strip.

In the geometry projection technique of Smith and No-
rato (2019b), a constraint is imposed on the minimum angle
between any two bars (modeled as offset surfaces) to ease
manufacturing. The form of the angle constraint is some-
what similar to that of Niu and Wadbro (2019) in that it
multiplies a term that penalizes the angles between two bars
with another that measures the distance between their me-
dial axes. However, the angle term penalizes angles that are
smaller than a prescribed value (instead of the angle differ-
ence), and the distance term is used to impose the angle con-
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straint only between bars that are closer than a prescribed
value. Moreover, the penalty term is multiplied by the size
variables of both bars, so that no angle constraint is imposed
when one or both of the bars have a zero size variable.

Feature-mapping methods often produce designs where
components —particularly bars— intersect such that they
have a ‘long’ overlap, i.e., they are close to each other and
they are near parallel. If the structure is fabricated with
stock material, these overlaps make fabrication difficult. The
aforementioned techniques to impose an angle constraint be-
tween bars are very effective in preventing this situation.
Smith and Norato (2019b) define a no-overlap region in the
bar, corresponding to the bar minus its circular ends. A con-
straint is then imposed that the sum of the projected pseudo-
densities for each individual bar on the overlapping region
is at most unity. In effect, these techniques ensure that a bar
intersects another only at its ends. However, it may be in-
tersected by other bars anywhere along its length. Another
technique to prevent long overlaps is the one proposed by
Watts and Tortorelli (2017) for design of periodic lattices,
where a constraint is imposed that ensures the largest dis-
tance from the endpoint of a bar’s axis to the closest end-
point of another bar is at most the bar’s half width. This en-
sures a bar only intersects another at its ends but not along
the bars, thus it is more restrictive than the foregoing tech-
niques.

The geometry projection technique of Kazemi et al
(2020), which designs multi-material lattices made of cylin-
drical struts, introduces a no-cut constraint to ensure struts
are not partially cut by the boundaries of the periodic unit
cell or by the material symmetry planes. This renders de-
signs more amenable to manufacturing as they only produce
struts that are whole. This constraint ensures the difference
between the values of the volume of an individual strut com-
puted from its geometric parameters and from its projected
pseudo-density on the reference region (i.e., the region that
is reflected to enforce material symmetries) is negligible. A
smooth maximum function is used to render a single con-
straint for all the components. This idea is similar in spirit to
the one used in Kang and Wang (2013) to prevent the over-
lap of embedded components in a free-form structure.

Symmetry is another geometric constraint considered by
existing methods. Due to the more restrictive design repre-
sentation, feature-mapping methods may render designs that
are not exactly symmetric even if the design region shape
and the boundary conditions are such that a symmetric de-
sign is expected with free-form methods. In the case of com-
pliance minimization with a volume constraint, this behav-
ior was noted in Norato et al (2015) for components of fixed
width. This finding bears resemblance to the known fact that
optimal truss designs can also be asymmetric not only for
discrete 0-1 trusses (Stolpe, 2010, 2016) but also for trusses
whose element stiffness matrices are penalized as in density-

based topology optimization schemes (Stolpe, 2010). The
works of (Stolpe, 2010), Rozvany (2011), Guo et al (2012)
and Guo et al (2013) examine the issue of symmetry in lay-
out of trusses and may provide clues to the lack of symmetry
in feature-mapping methods for topology optimization.

To ensure a symmetric design, the geometry projec-
tion techniques in Watts and Tortorelli (2017); Kazemi et al
(2018, 2020) use a simple strategy in which the point where
the pseudo density is computed is reflected with respect to
the symmetry plane before computing the signed distance to
the components. This strategy can be applied to any number
of symmetry planes, as demonstrated in Watts and Tortorelli
(2017); Kazemi et al (2020) to design periodic truss lattices
whose homogenized properties exhibit desired symmetries.
It can also be applied to any component shape. A similar
strategy to produce symmetric and periodic structures is em-
ployed in the MMC implementation of Xie et al (2020b). In
Wein and Stingl (2018), the control points that define the
strips are reflected with respect to symmetry planes to ob-
tain, e.g., square symmetric structures.

8.9 Applications

Not surprisingly, most works in feature-mapping methods
for topology optimization consider minimization of com-
pliance with a volume constraint. Recently, some works
have incorporated other structural responses and physical
regimes. Some of the applications mentioned in this section
are shown in Fig. 25.

One problem which feature-mapping methods have been
used for is the design of linear compliant mechanisms (Deng
and Chen, 2016; Guo et al, 2016; Zhang et al, 2016b; Hoang
and Jang, 2017), whereby the objective function is typically
related to maximizing displacements at certain locations.
The mechanisms to impose a minimum size in (Zhang et al,
2016b; Hoang and Jang, 2017) are effective in preventing
single-node hinges often seen in compliant mechanism de-
sign using free-form methods. Another application in elas-
tostatic structures is an MMV method for design-dependent
loading (Zhou et al, 2019). Stress constraints are incorpo-
rated in the geometry projection technique of Zhang et al
(2017a) and in the MMV method of Zhang et al (2018b);
and stresses were minimized in the former work and in the
MMC method of Takalloozadeh and Yoon (2017), which
uses the topological derivative to compute the design sen-
sitivities of the stress function. The recent work in Cui et al
(2020) employs MMC to design plate structures subject to
out-of-plane loading, with the plate modeled using Kirch-
hoff plate elements.

In the area of material design, the geometry projection
methods of Watts and Tortorelli (2017) and Kazemi et al
(2020) are applied to design periodic truss latices with de-
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(a) (b)

(c) (d)

(e) (f)

Fig. 25: Examples of different feature-mapping applications
in topology optimization: a) compliant mechanism design
(Hoang and Jang, 2017), b) material design (Watts and Tor-
torelli, 2017), c) stress constraints (Zhang et al, 2017a), d)
multi-material structures (Kazemi et al, 2018), e) geometric
nonlinearities (Zhu et al, 2018) and f) thermal-fluid prob-
lems (Yu et al, 2019).

sired material symmetries, to maximize the effective bulk
modulus or to obtain negative Poisson’s ratio.

The design of multi-material structures, where each
component is made from one material from a set of available
materials, is another recent application of these methods.
The first work to accomplish this is the aforementioned work
of Watts and Tortorelli (2017). By adapting the density-
based multi-material technique of Sigmund and Torquato
(1997) to the geometry projection framework, their method
simultaneously designs the layout of the bars within the
unit cell and selects the best material for each component.
The MMC method of Zhang et al (2018d) designs struc-
tures with components made of multiple materials. How-

ever, the material for each component is assigned a priori
and does not change during the optimization, and only the
component layout is optimized. Kazemi et al (2018) simul-
taneously design the topology and material choice of multi-
material structures by adapting the discrete material opti-
mization (DMO) technique of Stegmann and Lund (2005)
to the geometry projection method. This method is extended
in Kazemi et al (2020) to the design of multi-material lat-
tices.

Hoang et al (2020b) present a method to design 2D com-
ponents made of a porous material. The shape and topology
of the macro component is given by combining bars; the
honeycomb corresponds to a solid matrix with circular holes
in a honeycomb tiling with designable hole radius and wall
thickness. Two pseudo-density fields are computed—one for
the macro component and one for the honeycomb—, which
are combined to produce the ersatz material.

The MMC method of Zhu et al (2018) minimizes the
compliance of geometrically nonlinear structures. It uses a
neo-Hookean material along with the material interpolation
of Wang et al (2014a), which models low-density elements
with a linear material and thus stabilizes the analysis. The
asymptotes in the optimizer —namely, the method of mov-
ing asymptotes (MMA) of Svanberg (1987)— are adaptively
updated to enforce a more conservative approximation of
the optimization functions when the nonlinear finite element
analysis has difficulty converging. The MMV approach in
Xue et al (2019) designs minimal-compliance structures and
compliant mechanisms with finite deformations. To circum-
vent the convergence issues brought upon by low-density
elements, this method adaptively removes elements inside
the holes whose pseudo-density is lower than a prescribed
threshold.

An interesting application of feature-mapping methods
is the design of particular types of structures that are typi-
cally manufactured using stock material, such as plates or
rods. These include the layout design of reinforcing ribs
made of plates, including the geometry projection technique
of Zhang and Norato (2017) and the MMC method of Zhang
et al (2018c). The latter work incorporates buckling con-
straints. The recent method of Bai and Zuo (2020) employs
MMC to design structures made of hollow components,
such as commonly used structural shapes. A subset of these
works is devoted to the design of aircraft wingbox design:
the method of Smith and Norato (2019a), which aims to find
an optimal layout of ribs for the wingbox, and the method of
Li et al (2018), in which the layout of ribs is fixed, and MMV
is used to find the optimal design of holes in the ribs to min-
imize fuel sloshing. A geometry projection technique is em-
ployed in Coniglio (2019) for the design of an aircraft en-
gine pylon. The recent work in Chu et al (2019) uses MMC
to design periodic truss cores of sandwich panels with mini-
mal compliance. The method of Hoang et al (2020a) designs
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structures with one or two uniform-thickness coatings and
an infill, each made of a homogeneous isotropic material.
We note that the methods of Bai and Zuo (2020) and Hoang
et al (2020a) use not only Boolean unions of geometric com-
ponents but also Boolean subtractions.

Another application area with growing interest is dy-
namics. For instance, several recent works have been de-
voted to design of flexible multibody systems, such as the
MMC techniques of Sun et al (2018b,c) to design a variable-
length structure, and Sun et al (2018a) to design a compo-
nent with large motion and large deformation. MMC is used
to design a rotating thin plate to maximize its first eigen-
frequency, or maximize the gap between two consecutive
eigenfrequencies in Sun et al (2019), and to remove its in-
ternal resonances in Sun (2020). In Xie et al (2019), MMC
is used to design the layout of damping patches on a vibrat-
ing plate to minimize its average kinetic energy over a fre-
quency range. Wormser et al (2017) design periodic lattice
structures that act as phononic band gaps—a problem that
is very hard to solve with free-form topology optimization
techniques, which render disconnected structures that can-
not be manufactured. The MMC method has also been com-
bined with gradient-free optimization methods to optimize
structures for crash-worthiness (Bujny et al, 2018; Raponi
et al, 2019).

In the realm of heat transfer, combine-then-map meth-
ods have been applied to the design of thermo-elastic struc-
tures. Takalloozadeh and Yoon (2017) use the MMC method
to design minimum compliance structures subject to a uni-
form temperature change. Sharma (2017) minimizes the
mismatch between the resulting displacement and a pre-
scribed one for both steady-state and unsteady heat conduc-
tion (in the latter case, the prescribed displacement is speci-
fied at a given time). The method of Lohan et al (2017) de-
signs 2D structures for heat conduction in what amounts to
an MMOS method. The structure, which has higher conduc-
tivity than its surrounding medium, is defined as the union
of circles, and an element pseudo-density of 0 or 1 is as-
signed depending on whether the centroid is outside or in-
side of the structure, respectively. A gradient-free space col-
onization algorithm is used for the optimization. The work
in Yu et al (2019) addresses thermal-fluid problems with the
MMC method to design the pipes in a cooling device, with
the objective function being a weighted sum of the thermal
compliance and the power dissipation of the system.

Finally, in the area of electromagnetics, the work of Li
et al (2019) designs a tree-like power distribution network
on an integrated circuit by minimizing the power mean volt-
age subject to a volume constraint. Liu and Du (2019) use
MMC to solve an inverse problem, namely to reconstruct the
shapes of objects inside a body from electrical impedance
measurements made on the surface of the body.

9 Discussion

Feature-mapping is a powerful and promising approach in
structural optimization. As detailed in this review, there is
a wide range of choices to accomplish the two main ingre-
dients of these methods, namely the mapping of high-level
parameters onto a non-body-fitted mesh for analysis and the
combination of features.

We believe there is still sufficient room for further ex-
ploring the aspects of feature-mapping and to advance novel
techniques, which will likely happen based on applications
of feature-mapping to solve problems not (or not as effi-
ciently) solvable by established methods, notably density-
based and level-set topology optimization.

One area that we identified for potential further work
is to consider more problems where high-level geometric
constraints are essential for the application. For example,
this could include manufacturing constraints and problems
where connectivity between two or more points is essential.

An often discussed benefit of feature-mapping ap-
proaches is the potentially straightforward transfer of op-
timized designs to the CAD environment (due to use of a
high-level geometric parameterization). However, there is
little evidence to demonstrate this benefit in the literature.

Topology optimization using solid components allows
the possibility of having components with different func-
tionalities and/or different physical models that are simul-
taneously considered (Guo et al, 2014). However, to our
knowledge, this ability has not yet been demonstrated or
exploited—e.g. to solve problems driven by complex multi-
disciplinary interactions.

The issue of local minima and initial design-dependent
solutions is currently one of the key challenges of feature-
mapping methods, particularly for hybrid methods and
topology optimization. Some remedies to this problem are
suggested in Sec. 8.7. However, we consider there is scope
for new methods and ideas to solve (or at least mitigate) this
issue.

Feature-mapping methods for topology optimization
have mostly considered Boolean unions of components or
holes. While the use of the Boolean union in conjunc-
tion with other operations (e.g., intersection and subtrac-
tion) was already conceived in the pioneering work of Mei
et al (2008), this has not been fully exploited in methods
for topology optimization (with the exceptions of the meth-
ods that employ hollow components and coatings noted in
Sec. 8.9). Hybrid methods, on the other hand, have demon-
strated this possibility. This is an important capability be-
cause it allows to obtain more complex shapes (albeit still
with high-level parameters), and because it mirrors the way
in which CAD systems construct complex geometries. We
thus believe there is room for topology optimization meth-
ods to further incorporate and demonstrate this capability.
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Finally, in preparing this review we have noticed that
there is a level of reinvention of methods and techniques.
We hope this review helps researchers understand the differ-
ent aspects of feature-mapping and the various techniques
proposed to-date in order to avoid duplication and to duly
credit existing work.

10 Replication of results

This review paper does not introduce any new methodol-
ogy, and to replicate results of the different feature-mapping
techniques discussed here, we refer the reader to the original
works. The code to solve the simple test problems of Sec. 3
and Sec. 4.4 is available by request from the authors.
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